123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708 |
- /**
- * \file GeodesicLine.hpp
- * \brief Header for GeographicLib::GeodesicLine class
- *
- * Copyright (c) Charles Karney (2009-2020) <charles@karney.com> and licensed
- * under the MIT/X11 License. For more information, see
- * https://geographiclib.sourceforge.io/
- **********************************************************************/
- #if !defined(GEOGRAPHICLIB_GEODESICLINE_HPP)
- #define GEOGRAPHICLIB_GEODESICLINE_HPP 1
- #include <GeographicLib/Constants.hpp>
- #include <GeographicLib/Geodesic.hpp>
- namespace GeographicLib {
- /**
- * \brief A geodesic line
- *
- * GeodesicLine facilitates the determination of a series of points on a
- * single geodesic. The starting point (\e lat1, \e lon1) and the azimuth \e
- * azi1 are specified in the constructor; alternatively, the Geodesic::Line
- * method can be used to create a GeodesicLine. GeodesicLine.Position
- * returns the location of point 2 a distance \e s12 along the geodesic. In
- * addition, GeodesicLine.ArcPosition gives the position of point 2 an arc
- * length \e a12 along the geodesic.
- *
- * You can register the position of a reference point 3 a distance (arc
- * length), \e s13 (\e a13) along the geodesic with the
- * GeodesicLine.SetDistance (GeodesicLine.SetArc) functions. Points a
- * fractional distance along the line can be found by providing, for example,
- * 0.5 * Distance() as an argument to GeodesicLine.Position. The
- * Geodesic::InverseLine or Geodesic::DirectLine methods return GeodesicLine
- * objects with point 3 set to the point 2 of the corresponding geodesic
- * problem. GeodesicLine objects created with the public constructor or with
- * Geodesic::Line have \e s13 and \e a13 set to NaNs.
- *
- * The default copy constructor and assignment operators work with this
- * class. Similarly, a vector can be used to hold GeodesicLine objects.
- *
- * The calculations are accurate to better than 15 nm (15 nanometers). See
- * Sec. 9 of
- * <a href="https://arxiv.org/abs/1102.1215v1">arXiv:1102.1215v1</a> for
- * details. The algorithms used by this class are based on series expansions
- * using the flattening \e f as a small parameter. These are only accurate
- * for |<i>f</i>| < 0.02; however reasonably accurate results will be
- * obtained for |<i>f</i>| < 0.2. For very eccentric ellipsoids, use
- * GeodesicLineExact instead.
- *
- * The algorithms are described in
- * - C. F. F. Karney,
- * <a href="https://doi.org/10.1007/s00190-012-0578-z">
- * Algorithms for geodesics</a>,
- * J. Geodesy <b>87</b>, 43--55 (2013);
- * DOI: <a href="https://doi.org/10.1007/s00190-012-0578-z">
- * 10.1007/s00190-012-0578-z</a>;
- * addenda:
- * <a href="https://geographiclib.sourceforge.io/geod-addenda.html">
- * geod-addenda.html</a>.
- * .
- * For more information on geodesics see \ref geodesic.
- *
- * Example of use:
- * \include example-GeodesicLine.cpp
- *
- * <a href="GeodSolve.1.html">GeodSolve</a> is a command-line utility
- * providing access to the functionality of Geodesic and GeodesicLine.
- **********************************************************************/
- class GEOGRAPHICLIB_EXPORT GeodesicLine {
- private:
- typedef Math::real real;
- friend class Geodesic;
- static const int nC1_ = Geodesic::nC1_;
- static const int nC1p_ = Geodesic::nC1p_;
- static const int nC2_ = Geodesic::nC2_;
- static const int nC3_ = Geodesic::nC3_;
- static const int nC4_ = Geodesic::nC4_;
- real tiny_;
- real _lat1, _lon1, _azi1;
- real _a, _f, _b, _c2, _f1, _salp0, _calp0, _k2,
- _salp1, _calp1, _ssig1, _csig1, _dn1, _stau1, _ctau1, _somg1, _comg1,
- _A1m1, _A2m1, _A3c, _B11, _B21, _B31, _A4, _B41;
- real _a13, _s13;
- // index zero elements of _C1a, _C1pa, _C2a, _C3a are unused
- real _C1a[nC1_ + 1], _C1pa[nC1p_ + 1], _C2a[nC2_ + 1], _C3a[nC3_],
- _C4a[nC4_]; // all the elements of _C4a are used
- unsigned _caps;
- void LineInit(const Geodesic& g,
- real lat1, real lon1,
- real azi1, real salp1, real calp1,
- unsigned caps);
- GeodesicLine(const Geodesic& g,
- real lat1, real lon1,
- real azi1, real salp1, real calp1,
- unsigned caps, bool arcmode, real s13_a13);
- enum captype {
- CAP_NONE = Geodesic::CAP_NONE,
- CAP_C1 = Geodesic::CAP_C1,
- CAP_C1p = Geodesic::CAP_C1p,
- CAP_C2 = Geodesic::CAP_C2,
- CAP_C3 = Geodesic::CAP_C3,
- CAP_C4 = Geodesic::CAP_C4,
- CAP_ALL = Geodesic::CAP_ALL,
- CAP_MASK = Geodesic::CAP_MASK,
- OUT_ALL = Geodesic::OUT_ALL,
- OUT_MASK = Geodesic::OUT_MASK,
- };
- public:
- /**
- * Bit masks for what calculations to do. They signify to the
- * GeodesicLine::GeodesicLine constructor and to Geodesic::Line what
- * capabilities should be included in the GeodesicLine object. This is
- * merely a duplication of Geodesic::mask.
- **********************************************************************/
- enum mask {
- /**
- * No capabilities, no output.
- * @hideinitializer
- **********************************************************************/
- NONE = Geodesic::NONE,
- /**
- * Calculate latitude \e lat2. (It's not necessary to include this as a
- * capability to GeodesicLine because this is included by default.)
- * @hideinitializer
- **********************************************************************/
- LATITUDE = Geodesic::LATITUDE,
- /**
- * Calculate longitude \e lon2.
- * @hideinitializer
- **********************************************************************/
- LONGITUDE = Geodesic::LONGITUDE,
- /**
- * Calculate azimuths \e azi1 and \e azi2. (It's not necessary to
- * include this as a capability to GeodesicLine because this is included
- * by default.)
- * @hideinitializer
- **********************************************************************/
- AZIMUTH = Geodesic::AZIMUTH,
- /**
- * Calculate distance \e s12.
- * @hideinitializer
- **********************************************************************/
- DISTANCE = Geodesic::DISTANCE,
- /**
- * Allow distance \e s12 to be used as input in the direct geodesic
- * problem.
- * @hideinitializer
- **********************************************************************/
- DISTANCE_IN = Geodesic::DISTANCE_IN,
- /**
- * Calculate reduced length \e m12.
- * @hideinitializer
- **********************************************************************/
- REDUCEDLENGTH = Geodesic::REDUCEDLENGTH,
- /**
- * Calculate geodesic scales \e M12 and \e M21.
- * @hideinitializer
- **********************************************************************/
- GEODESICSCALE = Geodesic::GEODESICSCALE,
- /**
- * Calculate area \e S12.
- * @hideinitializer
- **********************************************************************/
- AREA = Geodesic::AREA,
- /**
- * Unroll \e lon2 in the direct calculation.
- * @hideinitializer
- **********************************************************************/
- LONG_UNROLL = Geodesic::LONG_UNROLL,
- /**
- * All capabilities, calculate everything. (LONG_UNROLL is not
- * included in this mask.)
- * @hideinitializer
- **********************************************************************/
- ALL = Geodesic::ALL,
- };
- /** \name Constructors
- **********************************************************************/
- ///@{
- /**
- * Constructor for a geodesic line staring at latitude \e lat1, longitude
- * \e lon1, and azimuth \e azi1 (all in degrees).
- *
- * @param[in] g A Geodesic object used to compute the necessary information
- * about the GeodesicLine.
- * @param[in] lat1 latitude of point 1 (degrees).
- * @param[in] lon1 longitude of point 1 (degrees).
- * @param[in] azi1 azimuth at point 1 (degrees).
- * @param[in] caps bitor'ed combination of GeodesicLine::mask values
- * specifying the capabilities the GeodesicLine object should possess,
- * i.e., which quantities can be returned in calls to
- * GeodesicLine::Position.
- *
- * \e lat1 should be in the range [−90°, 90°].
- *
- * The GeodesicLine::mask values are
- * - \e caps |= GeodesicLine::LATITUDE for the latitude \e lat2; this is
- * added automatically;
- * - \e caps |= GeodesicLine::LONGITUDE for the latitude \e lon2;
- * - \e caps |= GeodesicLine::AZIMUTH for the latitude \e azi2; this is
- * added automatically;
- * - \e caps |= GeodesicLine::DISTANCE for the distance \e s12;
- * - \e caps |= GeodesicLine::REDUCEDLENGTH for the reduced length \e m12;
- * - \e caps |= GeodesicLine::GEODESICSCALE for the geodesic scales \e M12
- * and \e M21;
- * - \e caps |= GeodesicLine::AREA for the area \e S12;
- * - \e caps |= GeodesicLine::DISTANCE_IN permits the length of the
- * geodesic to be given in terms of \e s12; without this capability the
- * length can only be specified in terms of arc length;
- * - \e caps |= GeodesicLine::ALL for all of the above.
- * .
- * The default value of \e caps is GeodesicLine::ALL.
- *
- * If the point is at a pole, the azimuth is defined by keeping \e lon1
- * fixed, writing \e lat1 = ±(90° − ε), and taking
- * the limit ε → 0+.
- **********************************************************************/
- GeodesicLine(const Geodesic& g, real lat1, real lon1, real azi1,
- unsigned caps = ALL);
- /**
- * A default constructor. If GeodesicLine::Position is called on the
- * resulting object, it returns immediately (without doing any
- * calculations). The object can be set with a call to Geodesic::Line.
- * Use Init() to test whether object is still in this uninitialized state.
- **********************************************************************/
- GeodesicLine() : _caps(0U) {}
- ///@}
- /** \name Position in terms of distance
- **********************************************************************/
- ///@{
- /**
- * Compute the position of point 2 which is a distance \e s12 (meters) from
- * point 1.
- *
- * @param[in] s12 distance from point 1 to point 2 (meters); it can be
- * negative.
- * @param[out] lat2 latitude of point 2 (degrees).
- * @param[out] lon2 longitude of point 2 (degrees); requires that the
- * GeodesicLine object was constructed with \e caps |=
- * GeodesicLine::LONGITUDE.
- * @param[out] azi2 (forward) azimuth at point 2 (degrees).
- * @param[out] m12 reduced length of geodesic (meters); requires that the
- * GeodesicLine object was constructed with \e caps |=
- * GeodesicLine::REDUCEDLENGTH.
- * @param[out] M12 geodesic scale of point 2 relative to point 1
- * (dimensionless); requires that the GeodesicLine object was constructed
- * with \e caps |= GeodesicLine::GEODESICSCALE.
- * @param[out] M21 geodesic scale of point 1 relative to point 2
- * (dimensionless); requires that the GeodesicLine object was constructed
- * with \e caps |= GeodesicLine::GEODESICSCALE.
- * @param[out] S12 area under the geodesic (meters<sup>2</sup>); requires
- * that the GeodesicLine object was constructed with \e caps |=
- * GeodesicLine::AREA.
- * @return \e a12 arc length from point 1 to point 2 (degrees).
- *
- * The values of \e lon2 and \e azi2 returned are in the range
- * [−180°, 180°].
- *
- * The GeodesicLine object \e must have been constructed with \e caps |=
- * GeodesicLine::DISTANCE_IN; otherwise Math::NaN() is returned and no
- * parameters are set. Requesting a value which the GeodesicLine object is
- * not capable of computing is not an error; the corresponding argument
- * will not be altered.
- *
- * The following functions are overloaded versions of
- * GeodesicLine::Position which omit some of the output parameters. Note,
- * however, that the arc length is always computed and returned as the
- * function value.
- **********************************************************************/
- Math::real Position(real s12,
- real& lat2, real& lon2, real& azi2,
- real& m12, real& M12, real& M21,
- real& S12) const {
- real t;
- return GenPosition(false, s12,
- LATITUDE | LONGITUDE | AZIMUTH |
- REDUCEDLENGTH | GEODESICSCALE | AREA,
- lat2, lon2, azi2, t, m12, M12, M21, S12);
- }
- /**
- * See the documentation for GeodesicLine::Position.
- **********************************************************************/
- Math::real Position(real s12, real& lat2, real& lon2) const {
- real t;
- return GenPosition(false, s12,
- LATITUDE | LONGITUDE,
- lat2, lon2, t, t, t, t, t, t);
- }
- /**
- * See the documentation for GeodesicLine::Position.
- **********************************************************************/
- Math::real Position(real s12, real& lat2, real& lon2,
- real& azi2) const {
- real t;
- return GenPosition(false, s12,
- LATITUDE | LONGITUDE | AZIMUTH,
- lat2, lon2, azi2, t, t, t, t, t);
- }
- /**
- * See the documentation for GeodesicLine::Position.
- **********************************************************************/
- Math::real Position(real s12, real& lat2, real& lon2,
- real& azi2, real& m12) const {
- real t;
- return GenPosition(false, s12,
- LATITUDE | LONGITUDE |
- AZIMUTH | REDUCEDLENGTH,
- lat2, lon2, azi2, t, m12, t, t, t);
- }
- /**
- * See the documentation for GeodesicLine::Position.
- **********************************************************************/
- Math::real Position(real s12, real& lat2, real& lon2,
- real& azi2, real& M12, real& M21)
- const {
- real t;
- return GenPosition(false, s12,
- LATITUDE | LONGITUDE |
- AZIMUTH | GEODESICSCALE,
- lat2, lon2, azi2, t, t, M12, M21, t);
- }
- /**
- * See the documentation for GeodesicLine::Position.
- **********************************************************************/
- Math::real Position(real s12,
- real& lat2, real& lon2, real& azi2,
- real& m12, real& M12, real& M21)
- const {
- real t;
- return GenPosition(false, s12,
- LATITUDE | LONGITUDE | AZIMUTH |
- REDUCEDLENGTH | GEODESICSCALE,
- lat2, lon2, azi2, t, m12, M12, M21, t);
- }
- ///@}
- /** \name Position in terms of arc length
- **********************************************************************/
- ///@{
- /**
- * Compute the position of point 2 which is an arc length \e a12 (degrees)
- * from point 1.
- *
- * @param[in] a12 arc length from point 1 to point 2 (degrees); it can
- * be negative.
- * @param[out] lat2 latitude of point 2 (degrees).
- * @param[out] lon2 longitude of point 2 (degrees); requires that the
- * GeodesicLine object was constructed with \e caps |=
- * GeodesicLine::LONGITUDE.
- * @param[out] azi2 (forward) azimuth at point 2 (degrees).
- * @param[out] s12 distance from point 1 to point 2 (meters); requires
- * that the GeodesicLine object was constructed with \e caps |=
- * GeodesicLine::DISTANCE.
- * @param[out] m12 reduced length of geodesic (meters); requires that the
- * GeodesicLine object was constructed with \e caps |=
- * GeodesicLine::REDUCEDLENGTH.
- * @param[out] M12 geodesic scale of point 2 relative to point 1
- * (dimensionless); requires that the GeodesicLine object was constructed
- * with \e caps |= GeodesicLine::GEODESICSCALE.
- * @param[out] M21 geodesic scale of point 1 relative to point 2
- * (dimensionless); requires that the GeodesicLine object was constructed
- * with \e caps |= GeodesicLine::GEODESICSCALE.
- * @param[out] S12 area under the geodesic (meters<sup>2</sup>); requires
- * that the GeodesicLine object was constructed with \e caps |=
- * GeodesicLine::AREA.
- *
- * The values of \e lon2 and \e azi2 returned are in the range
- * [−180°, 180°].
- *
- * Requesting a value which the GeodesicLine object is not capable of
- * computing is not an error; the corresponding argument will not be
- * altered.
- *
- * The following functions are overloaded versions of
- * GeodesicLine::ArcPosition which omit some of the output parameters.
- **********************************************************************/
- void ArcPosition(real a12, real& lat2, real& lon2, real& azi2,
- real& s12, real& m12, real& M12, real& M21,
- real& S12) const {
- GenPosition(true, a12,
- LATITUDE | LONGITUDE | AZIMUTH | DISTANCE |
- REDUCEDLENGTH | GEODESICSCALE | AREA,
- lat2, lon2, azi2, s12, m12, M12, M21, S12);
- }
- /**
- * See the documentation for GeodesicLine::ArcPosition.
- **********************************************************************/
- void ArcPosition(real a12, real& lat2, real& lon2)
- const {
- real t;
- GenPosition(true, a12,
- LATITUDE | LONGITUDE,
- lat2, lon2, t, t, t, t, t, t);
- }
- /**
- * See the documentation for GeodesicLine::ArcPosition.
- **********************************************************************/
- void ArcPosition(real a12,
- real& lat2, real& lon2, real& azi2)
- const {
- real t;
- GenPosition(true, a12,
- LATITUDE | LONGITUDE | AZIMUTH,
- lat2, lon2, azi2, t, t, t, t, t);
- }
- /**
- * See the documentation for GeodesicLine::ArcPosition.
- **********************************************************************/
- void ArcPosition(real a12, real& lat2, real& lon2, real& azi2,
- real& s12) const {
- real t;
- GenPosition(true, a12,
- LATITUDE | LONGITUDE | AZIMUTH | DISTANCE,
- lat2, lon2, azi2, s12, t, t, t, t);
- }
- /**
- * See the documentation for GeodesicLine::ArcPosition.
- **********************************************************************/
- void ArcPosition(real a12, real& lat2, real& lon2, real& azi2,
- real& s12, real& m12) const {
- real t;
- GenPosition(true, a12,
- LATITUDE | LONGITUDE | AZIMUTH |
- DISTANCE | REDUCEDLENGTH,
- lat2, lon2, azi2, s12, m12, t, t, t);
- }
- /**
- * See the documentation for GeodesicLine::ArcPosition.
- **********************************************************************/
- void ArcPosition(real a12, real& lat2, real& lon2, real& azi2,
- real& s12, real& M12, real& M21)
- const {
- real t;
- GenPosition(true, a12,
- LATITUDE | LONGITUDE | AZIMUTH |
- DISTANCE | GEODESICSCALE,
- lat2, lon2, azi2, s12, t, M12, M21, t);
- }
- /**
- * See the documentation for GeodesicLine::ArcPosition.
- **********************************************************************/
- void ArcPosition(real a12, real& lat2, real& lon2, real& azi2,
- real& s12, real& m12, real& M12, real& M21)
- const {
- real t;
- GenPosition(true, a12,
- LATITUDE | LONGITUDE | AZIMUTH |
- DISTANCE | REDUCEDLENGTH | GEODESICSCALE,
- lat2, lon2, azi2, s12, m12, M12, M21, t);
- }
- ///@}
- /** \name The general position function.
- **********************************************************************/
- ///@{
- /**
- * The general position function. GeodesicLine::Position and
- * GeodesicLine::ArcPosition are defined in terms of this function.
- *
- * @param[in] arcmode boolean flag determining the meaning of the second
- * parameter; if \e arcmode is false, then the GeodesicLine object must
- * have been constructed with \e caps |= GeodesicLine::DISTANCE_IN.
- * @param[in] s12_a12 if \e arcmode is false, this is the distance between
- * point 1 and point 2 (meters); otherwise it is the arc length between
- * point 1 and point 2 (degrees); it can be negative.
- * @param[in] outmask a bitor'ed combination of GeodesicLine::mask values
- * specifying which of the following parameters should be set.
- * @param[out] lat2 latitude of point 2 (degrees).
- * @param[out] lon2 longitude of point 2 (degrees); requires that the
- * GeodesicLine object was constructed with \e caps |=
- * GeodesicLine::LONGITUDE.
- * @param[out] azi2 (forward) azimuth at point 2 (degrees).
- * @param[out] s12 distance from point 1 to point 2 (meters); requires
- * that the GeodesicLine object was constructed with \e caps |=
- * GeodesicLine::DISTANCE.
- * @param[out] m12 reduced length of geodesic (meters); requires that the
- * GeodesicLine object was constructed with \e caps |=
- * GeodesicLine::REDUCEDLENGTH.
- * @param[out] M12 geodesic scale of point 2 relative to point 1
- * (dimensionless); requires that the GeodesicLine object was constructed
- * with \e caps |= GeodesicLine::GEODESICSCALE.
- * @param[out] M21 geodesic scale of point 1 relative to point 2
- * (dimensionless); requires that the GeodesicLine object was constructed
- * with \e caps |= GeodesicLine::GEODESICSCALE.
- * @param[out] S12 area under the geodesic (meters<sup>2</sup>); requires
- * that the GeodesicLine object was constructed with \e caps |=
- * GeodesicLine::AREA.
- * @return \e a12 arc length from point 1 to point 2 (degrees).
- *
- * The GeodesicLine::mask values possible for \e outmask are
- * - \e outmask |= GeodesicLine::LATITUDE for the latitude \e lat2;
- * - \e outmask |= GeodesicLine::LONGITUDE for the latitude \e lon2;
- * - \e outmask |= GeodesicLine::AZIMUTH for the latitude \e azi2;
- * - \e outmask |= GeodesicLine::DISTANCE for the distance \e s12;
- * - \e outmask |= GeodesicLine::REDUCEDLENGTH for the reduced length \e
- * m12;
- * - \e outmask |= GeodesicLine::GEODESICSCALE for the geodesic scales \e
- * M12 and \e M21;
- * - \e outmask |= GeodesicLine::AREA for the area \e S12;
- * - \e outmask |= GeodesicLine::ALL for all of the above;
- * - \e outmask |= GeodesicLine::LONG_UNROLL to unroll \e lon2 instead of
- * reducing it into the range [−180°, 180°].
- * .
- * Requesting a value which the GeodesicLine object is not capable of
- * computing is not an error; the corresponding argument will not be
- * altered. Note, however, that the arc length is always computed and
- * returned as the function value.
- *
- * With the GeodesicLine::LONG_UNROLL bit set, the quantity \e lon2 −
- * \e lon1 indicates how many times and in what sense the geodesic
- * encircles the ellipsoid.
- **********************************************************************/
- Math::real GenPosition(bool arcmode, real s12_a12, unsigned outmask,
- real& lat2, real& lon2, real& azi2,
- real& s12, real& m12, real& M12, real& M21,
- real& S12) const;
- ///@}
- /** \name Setting point 3
- **********************************************************************/
- ///@{
- /**
- * Specify position of point 3 in terms of distance.
- *
- * @param[in] s13 the distance from point 1 to point 3 (meters); it
- * can be negative.
- *
- * This is only useful if the GeodesicLine object has been constructed
- * with \e caps |= GeodesicLine::DISTANCE_IN.
- **********************************************************************/
- void SetDistance(real s13);
- /**
- * Specify position of point 3 in terms of arc length.
- *
- * @param[in] a13 the arc length from point 1 to point 3 (degrees); it
- * can be negative.
- *
- * The distance \e s13 is only set if the GeodesicLine object has been
- * constructed with \e caps |= GeodesicLine::DISTANCE.
- **********************************************************************/
- void SetArc(real a13);
- /**
- * Specify position of point 3 in terms of either distance or arc length.
- *
- * @param[in] arcmode boolean flag determining the meaning of the second
- * parameter; if \e arcmode is false, then the GeodesicLine object must
- * have been constructed with \e caps |= GeodesicLine::DISTANCE_IN.
- * @param[in] s13_a13 if \e arcmode is false, this is the distance from
- * point 1 to point 3 (meters); otherwise it is the arc length from
- * point 1 to point 3 (degrees); it can be negative.
- **********************************************************************/
- void GenSetDistance(bool arcmode, real s13_a13);
- ///@}
- /** \name Inspector functions
- **********************************************************************/
- ///@{
- /**
- * @return true if the object has been initialized.
- **********************************************************************/
- bool Init() const { return _caps != 0U; }
- /**
- * @return \e lat1 the latitude of point 1 (degrees).
- **********************************************************************/
- Math::real Latitude() const
- { return Init() ? _lat1 : Math::NaN(); }
- /**
- * @return \e lon1 the longitude of point 1 (degrees).
- **********************************************************************/
- Math::real Longitude() const
- { return Init() ? _lon1 : Math::NaN(); }
- /**
- * @return \e azi1 the azimuth (degrees) of the geodesic line at point 1.
- **********************************************************************/
- Math::real Azimuth() const
- { return Init() ? _azi1 : Math::NaN(); }
- /**
- * The sine and cosine of \e azi1.
- *
- * @param[out] sazi1 the sine of \e azi1.
- * @param[out] cazi1 the cosine of \e azi1.
- **********************************************************************/
- void Azimuth(real& sazi1, real& cazi1) const
- { if (Init()) { sazi1 = _salp1; cazi1 = _calp1; } }
- /**
- * @return \e azi0 the azimuth (degrees) of the geodesic line as it crosses
- * the equator in a northward direction.
- *
- * The result lies in [−90°, 90°].
- **********************************************************************/
- Math::real EquatorialAzimuth() const
- { return Init() ? Math::atan2d(_salp0, _calp0) : Math::NaN(); }
- /**
- * The sine and cosine of \e azi0.
- *
- * @param[out] sazi0 the sine of \e azi0.
- * @param[out] cazi0 the cosine of \e azi0.
- **********************************************************************/
- void EquatorialAzimuth(real& sazi0, real& cazi0) const
- { if (Init()) { sazi0 = _salp0; cazi0 = _calp0; } }
- /**
- * @return \e a1 the arc length (degrees) between the northward equatorial
- * crossing and point 1.
- *
- * The result lies in (−180°, 180°].
- **********************************************************************/
- Math::real EquatorialArc() const {
- return Init() ? Math::atan2d(_ssig1, _csig1) : Math::NaN();
- }
- /**
- * @return \e a the equatorial radius of the ellipsoid (meters). This is
- * the value inherited from the Geodesic object used in the constructor.
- **********************************************************************/
- Math::real EquatorialRadius() const
- { return Init() ? _a : Math::NaN(); }
- /**
- * @return \e f the flattening of the ellipsoid. This is the value
- * inherited from the Geodesic object used in the constructor.
- **********************************************************************/
- Math::real Flattening() const
- { return Init() ? _f : Math::NaN(); }
- /**
- * @return \e caps the computational capabilities that this object was
- * constructed with. LATITUDE and AZIMUTH are always included.
- **********************************************************************/
- unsigned Capabilities() const { return _caps; }
- /**
- * Test what capabilities are available.
- *
- * @param[in] testcaps a set of bitor'ed GeodesicLine::mask values.
- * @return true if the GeodesicLine object has all these capabilities.
- **********************************************************************/
- bool Capabilities(unsigned testcaps) const {
- testcaps &= OUT_ALL;
- return (_caps & testcaps) == testcaps;
- }
- /**
- * The distance or arc length to point 3.
- *
- * @param[in] arcmode boolean flag determining the meaning of returned
- * value.
- * @return \e s13 if \e arcmode is false; \e a13 if \e arcmode is true.
- **********************************************************************/
- Math::real GenDistance(bool arcmode) const
- { return Init() ? (arcmode ? _a13 : _s13) : Math::NaN(); }
- /**
- * @return \e s13, the distance to point 3 (meters).
- **********************************************************************/
- Math::real Distance() const { return GenDistance(false); }
- /**
- * @return \e a13, the arc length to point 3 (degrees).
- **********************************************************************/
- Math::real Arc() const { return GenDistance(true); }
- /**
- * \deprecated An old name for EquatorialRadius().
- **********************************************************************/
- GEOGRAPHICLIB_DEPRECATED("Use EquatorialRadius()")
- Math::real MajorRadius() const { return EquatorialRadius(); }
- ///@}
- };
- } // namespace GeographicLib
- #endif // GEOGRAPHICLIB_GEODESICLINE_HPP
|