709 baris
		
	
	
		
			30 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			709 baris
		
	
	
		
			30 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
/**
 | 
						|
 * \file GeodesicLine.hpp
 | 
						|
 * \brief Header for GeographicLib::GeodesicLine class
 | 
						|
 *
 | 
						|
 * Copyright (c) Charles Karney (2009-2020) <charles@karney.com> and licensed
 | 
						|
 * under the MIT/X11 License.  For more information, see
 | 
						|
 * https://geographiclib.sourceforge.io/
 | 
						|
 **********************************************************************/
 | 
						|
 | 
						|
#if !defined(GEOGRAPHICLIB_GEODESICLINE_HPP)
 | 
						|
#define GEOGRAPHICLIB_GEODESICLINE_HPP 1
 | 
						|
 | 
						|
#include <GeographicLib/Constants.hpp>
 | 
						|
#include <GeographicLib/Geodesic.hpp>
 | 
						|
 | 
						|
namespace GeographicLib {
 | 
						|
 | 
						|
  /**
 | 
						|
   * \brief A geodesic line
 | 
						|
   *
 | 
						|
   * GeodesicLine facilitates the determination of a series of points on a
 | 
						|
   * single geodesic.  The starting point (\e lat1, \e lon1) and the azimuth \e
 | 
						|
   * azi1 are specified in the constructor; alternatively, the Geodesic::Line
 | 
						|
   * method can be used to create a GeodesicLine.  GeodesicLine.Position
 | 
						|
   * returns the location of point 2 a distance \e s12 along the geodesic.  In
 | 
						|
   * addition, GeodesicLine.ArcPosition gives the position of point 2 an arc
 | 
						|
   * length \e a12 along the geodesic.
 | 
						|
   *
 | 
						|
   * You can register the position of a reference point 3 a distance (arc
 | 
						|
   * length), \e s13 (\e a13) along the geodesic with the
 | 
						|
   * GeodesicLine.SetDistance (GeodesicLine.SetArc) functions.  Points a
 | 
						|
   * fractional distance along the line can be found by providing, for example,
 | 
						|
   * 0.5 * Distance() as an argument to GeodesicLine.Position.  The
 | 
						|
   * Geodesic::InverseLine or Geodesic::DirectLine methods return GeodesicLine
 | 
						|
   * objects with point 3 set to the point 2 of the corresponding geodesic
 | 
						|
   * problem.  GeodesicLine objects created with the public constructor or with
 | 
						|
   * Geodesic::Line have \e s13 and \e a13 set to NaNs.
 | 
						|
   *
 | 
						|
   * The default copy constructor and assignment operators work with this
 | 
						|
   * class.  Similarly, a vector can be used to hold GeodesicLine objects.
 | 
						|
   *
 | 
						|
   * The calculations are accurate to better than 15 nm (15 nanometers).  See
 | 
						|
   * Sec. 9 of
 | 
						|
   * <a href="https://arxiv.org/abs/1102.1215v1">arXiv:1102.1215v1</a> for
 | 
						|
   * details.  The algorithms used by this class are based on series expansions
 | 
						|
   * using the flattening \e f as a small parameter.  These are only accurate
 | 
						|
   * for |<i>f</i>| < 0.02; however reasonably accurate results will be
 | 
						|
   * obtained for |<i>f</i>| < 0.2.  For very eccentric ellipsoids, use
 | 
						|
   * GeodesicLineExact instead.
 | 
						|
   *
 | 
						|
   * The algorithms are described in
 | 
						|
   * - C. F. F. Karney,
 | 
						|
   *   <a href="https://doi.org/10.1007/s00190-012-0578-z">
 | 
						|
   *   Algorithms for geodesics</a>,
 | 
						|
   *   J. Geodesy <b>87</b>, 43--55 (2013);
 | 
						|
   *   DOI: <a href="https://doi.org/10.1007/s00190-012-0578-z">
 | 
						|
   *   10.1007/s00190-012-0578-z</a>;
 | 
						|
   *   addenda:
 | 
						|
   *   <a href="https://geographiclib.sourceforge.io/geod-addenda.html">
 | 
						|
   *   geod-addenda.html</a>.
 | 
						|
   * .
 | 
						|
   * For more information on geodesics see \ref geodesic.
 | 
						|
   *
 | 
						|
   * Example of use:
 | 
						|
   * \include example-GeodesicLine.cpp
 | 
						|
   *
 | 
						|
   * <a href="GeodSolve.1.html">GeodSolve</a> is a command-line utility
 | 
						|
   * providing access to the functionality of Geodesic and GeodesicLine.
 | 
						|
   **********************************************************************/
 | 
						|
 | 
						|
  class GEOGRAPHICLIB_EXPORT GeodesicLine {
 | 
						|
  private:
 | 
						|
    typedef Math::real real;
 | 
						|
    friend class Geodesic;
 | 
						|
    static const int nC1_ = Geodesic::nC1_;
 | 
						|
    static const int nC1p_ = Geodesic::nC1p_;
 | 
						|
    static const int nC2_ = Geodesic::nC2_;
 | 
						|
    static const int nC3_ = Geodesic::nC3_;
 | 
						|
    static const int nC4_ = Geodesic::nC4_;
 | 
						|
 | 
						|
    real tiny_;
 | 
						|
    real _lat1, _lon1, _azi1;
 | 
						|
    real _a, _f, _b, _c2, _f1, _salp0, _calp0, _k2,
 | 
						|
      _salp1, _calp1, _ssig1, _csig1, _dn1, _stau1, _ctau1, _somg1, _comg1,
 | 
						|
      _A1m1, _A2m1, _A3c, _B11, _B21, _B31, _A4, _B41;
 | 
						|
    real _a13, _s13;
 | 
						|
    // index zero elements of _C1a, _C1pa, _C2a, _C3a are unused
 | 
						|
    real _C1a[nC1_ + 1], _C1pa[nC1p_ + 1], _C2a[nC2_ + 1], _C3a[nC3_],
 | 
						|
      _C4a[nC4_];    // all the elements of _C4a are used
 | 
						|
    unsigned _caps;
 | 
						|
 | 
						|
    void LineInit(const Geodesic& g,
 | 
						|
                  real lat1, real lon1,
 | 
						|
                  real azi1, real salp1, real calp1,
 | 
						|
                  unsigned caps);
 | 
						|
    GeodesicLine(const Geodesic& g,
 | 
						|
                 real lat1, real lon1,
 | 
						|
                 real azi1, real salp1, real calp1,
 | 
						|
                 unsigned caps, bool arcmode, real s13_a13);
 | 
						|
 | 
						|
    enum captype {
 | 
						|
      CAP_NONE = Geodesic::CAP_NONE,
 | 
						|
      CAP_C1   = Geodesic::CAP_C1,
 | 
						|
      CAP_C1p  = Geodesic::CAP_C1p,
 | 
						|
      CAP_C2   = Geodesic::CAP_C2,
 | 
						|
      CAP_C3   = Geodesic::CAP_C3,
 | 
						|
      CAP_C4   = Geodesic::CAP_C4,
 | 
						|
      CAP_ALL  = Geodesic::CAP_ALL,
 | 
						|
      CAP_MASK = Geodesic::CAP_MASK,
 | 
						|
      OUT_ALL  = Geodesic::OUT_ALL,
 | 
						|
      OUT_MASK = Geodesic::OUT_MASK,
 | 
						|
    };
 | 
						|
  public:
 | 
						|
 | 
						|
    /**
 | 
						|
     * Bit masks for what calculations to do.  They signify to the
 | 
						|
     * GeodesicLine::GeodesicLine constructor and to Geodesic::Line what
 | 
						|
     * capabilities should be included in the GeodesicLine object.  This is
 | 
						|
     * merely a duplication of Geodesic::mask.
 | 
						|
     **********************************************************************/
 | 
						|
    enum mask {
 | 
						|
      /**
 | 
						|
       * No capabilities, no output.
 | 
						|
       * @hideinitializer
 | 
						|
       **********************************************************************/
 | 
						|
      NONE          = Geodesic::NONE,
 | 
						|
      /**
 | 
						|
       * Calculate latitude \e lat2.  (It's not necessary to include this as a
 | 
						|
       * capability to GeodesicLine because this is included by default.)
 | 
						|
       * @hideinitializer
 | 
						|
       **********************************************************************/
 | 
						|
      LATITUDE      = Geodesic::LATITUDE,
 | 
						|
      /**
 | 
						|
       * Calculate longitude \e lon2.
 | 
						|
       * @hideinitializer
 | 
						|
       **********************************************************************/
 | 
						|
      LONGITUDE     = Geodesic::LONGITUDE,
 | 
						|
      /**
 | 
						|
       * Calculate azimuths \e azi1 and \e azi2.  (It's not necessary to
 | 
						|
       * include this as a capability to GeodesicLine because this is included
 | 
						|
       * by default.)
 | 
						|
       * @hideinitializer
 | 
						|
       **********************************************************************/
 | 
						|
      AZIMUTH       = Geodesic::AZIMUTH,
 | 
						|
      /**
 | 
						|
       * Calculate distance \e s12.
 | 
						|
       * @hideinitializer
 | 
						|
       **********************************************************************/
 | 
						|
      DISTANCE      = Geodesic::DISTANCE,
 | 
						|
      /**
 | 
						|
       * Allow distance \e s12 to be used as input in the direct geodesic
 | 
						|
       * problem.
 | 
						|
       * @hideinitializer
 | 
						|
       **********************************************************************/
 | 
						|
      DISTANCE_IN   = Geodesic::DISTANCE_IN,
 | 
						|
      /**
 | 
						|
       * Calculate reduced length \e m12.
 | 
						|
       * @hideinitializer
 | 
						|
       **********************************************************************/
 | 
						|
      REDUCEDLENGTH = Geodesic::REDUCEDLENGTH,
 | 
						|
      /**
 | 
						|
       * Calculate geodesic scales \e M12 and \e M21.
 | 
						|
       * @hideinitializer
 | 
						|
       **********************************************************************/
 | 
						|
      GEODESICSCALE = Geodesic::GEODESICSCALE,
 | 
						|
      /**
 | 
						|
       * Calculate area \e S12.
 | 
						|
       * @hideinitializer
 | 
						|
       **********************************************************************/
 | 
						|
      AREA          = Geodesic::AREA,
 | 
						|
      /**
 | 
						|
       * Unroll \e lon2 in the direct calculation.
 | 
						|
       * @hideinitializer
 | 
						|
       **********************************************************************/
 | 
						|
      LONG_UNROLL   = Geodesic::LONG_UNROLL,
 | 
						|
      /**
 | 
						|
       * All capabilities, calculate everything.  (LONG_UNROLL is not
 | 
						|
       * included in this mask.)
 | 
						|
       * @hideinitializer
 | 
						|
       **********************************************************************/
 | 
						|
      ALL           = Geodesic::ALL,
 | 
						|
    };
 | 
						|
 | 
						|
    /** \name Constructors
 | 
						|
     **********************************************************************/
 | 
						|
    ///@{
 | 
						|
 | 
						|
    /**
 | 
						|
     * Constructor for a geodesic line staring at latitude \e lat1, longitude
 | 
						|
     * \e lon1, and azimuth \e azi1 (all in degrees).
 | 
						|
     *
 | 
						|
     * @param[in] g A Geodesic object used to compute the necessary information
 | 
						|
     *   about the GeodesicLine.
 | 
						|
     * @param[in] lat1 latitude of point 1 (degrees).
 | 
						|
     * @param[in] lon1 longitude of point 1 (degrees).
 | 
						|
     * @param[in] azi1 azimuth at point 1 (degrees).
 | 
						|
     * @param[in] caps bitor'ed combination of GeodesicLine::mask values
 | 
						|
     *   specifying the capabilities the GeodesicLine object should possess,
 | 
						|
     *   i.e., which quantities can be returned in calls to
 | 
						|
     *   GeodesicLine::Position.
 | 
						|
     *
 | 
						|
     * \e lat1 should be in the range [−90°, 90°].
 | 
						|
     *
 | 
						|
     * The GeodesicLine::mask values are
 | 
						|
     * - \e caps |= GeodesicLine::LATITUDE for the latitude \e lat2; this is
 | 
						|
     *   added automatically;
 | 
						|
     * - \e caps |= GeodesicLine::LONGITUDE for the latitude \e lon2;
 | 
						|
     * - \e caps |= GeodesicLine::AZIMUTH for the latitude \e azi2; this is
 | 
						|
     *   added automatically;
 | 
						|
     * - \e caps |= GeodesicLine::DISTANCE for the distance \e s12;
 | 
						|
     * - \e caps |= GeodesicLine::REDUCEDLENGTH for the reduced length \e m12;
 | 
						|
     * - \e caps |= GeodesicLine::GEODESICSCALE for the geodesic scales \e M12
 | 
						|
     *   and \e M21;
 | 
						|
     * - \e caps |= GeodesicLine::AREA for the area \e S12;
 | 
						|
     * - \e caps |= GeodesicLine::DISTANCE_IN permits the length of the
 | 
						|
     *   geodesic to be given in terms of \e s12; without this capability the
 | 
						|
     *   length can only be specified in terms of arc length;
 | 
						|
     * - \e caps |= GeodesicLine::ALL for all of the above.
 | 
						|
     * .
 | 
						|
     * The default value of \e caps is GeodesicLine::ALL.
 | 
						|
     *
 | 
						|
     * If the point is at a pole, the azimuth is defined by keeping \e lon1
 | 
						|
     * fixed, writing \e lat1 = ±(90° − ε), and taking
 | 
						|
     * the limit ε → 0+.
 | 
						|
     **********************************************************************/
 | 
						|
    GeodesicLine(const Geodesic& g, real lat1, real lon1, real azi1,
 | 
						|
                 unsigned caps = ALL);
 | 
						|
 | 
						|
    /**
 | 
						|
     * A default constructor.  If GeodesicLine::Position is called on the
 | 
						|
     * resulting object, it returns immediately (without doing any
 | 
						|
     * calculations).  The object can be set with a call to Geodesic::Line.
 | 
						|
     * Use Init() to test whether object is still in this uninitialized state.
 | 
						|
     **********************************************************************/
 | 
						|
    GeodesicLine() : _caps(0U) {}
 | 
						|
    ///@}
 | 
						|
 | 
						|
    /** \name Position in terms of distance
 | 
						|
     **********************************************************************/
 | 
						|
    ///@{
 | 
						|
 | 
						|
    /**
 | 
						|
     * Compute the position of point 2 which is a distance \e s12 (meters) from
 | 
						|
     * point 1.
 | 
						|
     *
 | 
						|
     * @param[in] s12 distance from point 1 to point 2 (meters); it can be
 | 
						|
     *   negative.
 | 
						|
     * @param[out] lat2 latitude of point 2 (degrees).
 | 
						|
     * @param[out] lon2 longitude of point 2 (degrees); requires that the
 | 
						|
     *   GeodesicLine object was constructed with \e caps |=
 | 
						|
     *   GeodesicLine::LONGITUDE.
 | 
						|
     * @param[out] azi2 (forward) azimuth at point 2 (degrees).
 | 
						|
     * @param[out] m12 reduced length of geodesic (meters); requires that the
 | 
						|
     *   GeodesicLine object was constructed with \e caps |=
 | 
						|
     *   GeodesicLine::REDUCEDLENGTH.
 | 
						|
     * @param[out] M12 geodesic scale of point 2 relative to point 1
 | 
						|
     *   (dimensionless); requires that the GeodesicLine object was constructed
 | 
						|
     *   with \e caps |= GeodesicLine::GEODESICSCALE.
 | 
						|
     * @param[out] M21 geodesic scale of point 1 relative to point 2
 | 
						|
     *   (dimensionless); requires that the GeodesicLine object was constructed
 | 
						|
     *   with \e caps |= GeodesicLine::GEODESICSCALE.
 | 
						|
     * @param[out] S12 area under the geodesic (meters<sup>2</sup>); requires
 | 
						|
     *   that the GeodesicLine object was constructed with \e caps |=
 | 
						|
     *   GeodesicLine::AREA.
 | 
						|
     * @return \e a12 arc length from point 1 to point 2 (degrees).
 | 
						|
     *
 | 
						|
     * The values of \e lon2 and \e azi2 returned are in the range
 | 
						|
     * [−180°, 180°].
 | 
						|
     *
 | 
						|
     * The GeodesicLine object \e must have been constructed with \e caps |=
 | 
						|
     * GeodesicLine::DISTANCE_IN; otherwise Math::NaN() is returned and no
 | 
						|
     * parameters are set.  Requesting a value which the GeodesicLine object is
 | 
						|
     * not capable of computing is not an error; the corresponding argument
 | 
						|
     * will not be altered.
 | 
						|
     *
 | 
						|
     * The following functions are overloaded versions of
 | 
						|
     * GeodesicLine::Position which omit some of the output parameters.  Note,
 | 
						|
     * however, that the arc length is always computed and returned as the
 | 
						|
     * function value.
 | 
						|
     **********************************************************************/
 | 
						|
    Math::real Position(real s12,
 | 
						|
                        real& lat2, real& lon2, real& azi2,
 | 
						|
                        real& m12, real& M12, real& M21,
 | 
						|
                        real& S12) const {
 | 
						|
      real t;
 | 
						|
      return GenPosition(false, s12,
 | 
						|
                         LATITUDE | LONGITUDE | AZIMUTH |
 | 
						|
                         REDUCEDLENGTH | GEODESICSCALE | AREA,
 | 
						|
                         lat2, lon2, azi2, t, m12, M12, M21, S12);
 | 
						|
    }
 | 
						|
 | 
						|
    /**
 | 
						|
     * See the documentation for GeodesicLine::Position.
 | 
						|
     **********************************************************************/
 | 
						|
    Math::real Position(real s12, real& lat2, real& lon2) const {
 | 
						|
      real t;
 | 
						|
      return GenPosition(false, s12,
 | 
						|
                         LATITUDE | LONGITUDE,
 | 
						|
                         lat2, lon2, t, t, t, t, t, t);
 | 
						|
    }
 | 
						|
 | 
						|
    /**
 | 
						|
     * See the documentation for GeodesicLine::Position.
 | 
						|
     **********************************************************************/
 | 
						|
    Math::real Position(real s12, real& lat2, real& lon2,
 | 
						|
                        real& azi2) const {
 | 
						|
      real t;
 | 
						|
      return GenPosition(false, s12,
 | 
						|
                         LATITUDE | LONGITUDE | AZIMUTH,
 | 
						|
                         lat2, lon2, azi2, t, t, t, t, t);
 | 
						|
    }
 | 
						|
 | 
						|
    /**
 | 
						|
     * See the documentation for GeodesicLine::Position.
 | 
						|
     **********************************************************************/
 | 
						|
    Math::real Position(real s12, real& lat2, real& lon2,
 | 
						|
                        real& azi2, real& m12) const {
 | 
						|
      real t;
 | 
						|
      return GenPosition(false, s12,
 | 
						|
                         LATITUDE | LONGITUDE |
 | 
						|
                         AZIMUTH | REDUCEDLENGTH,
 | 
						|
                         lat2, lon2, azi2, t, m12, t, t, t);
 | 
						|
    }
 | 
						|
 | 
						|
    /**
 | 
						|
     * See the documentation for GeodesicLine::Position.
 | 
						|
     **********************************************************************/
 | 
						|
    Math::real Position(real s12, real& lat2, real& lon2,
 | 
						|
                        real& azi2, real& M12, real& M21)
 | 
						|
      const {
 | 
						|
      real t;
 | 
						|
      return GenPosition(false, s12,
 | 
						|
                         LATITUDE | LONGITUDE |
 | 
						|
                         AZIMUTH | GEODESICSCALE,
 | 
						|
                         lat2, lon2, azi2, t, t, M12, M21, t);
 | 
						|
    }
 | 
						|
 | 
						|
    /**
 | 
						|
     * See the documentation for GeodesicLine::Position.
 | 
						|
     **********************************************************************/
 | 
						|
    Math::real Position(real s12,
 | 
						|
                        real& lat2, real& lon2, real& azi2,
 | 
						|
                        real& m12, real& M12, real& M21)
 | 
						|
      const {
 | 
						|
      real t;
 | 
						|
      return GenPosition(false, s12,
 | 
						|
                         LATITUDE | LONGITUDE | AZIMUTH |
 | 
						|
                         REDUCEDLENGTH | GEODESICSCALE,
 | 
						|
                         lat2, lon2, azi2, t, m12, M12, M21, t);
 | 
						|
    }
 | 
						|
    ///@}
 | 
						|
 | 
						|
    /** \name Position in terms of arc length
 | 
						|
     **********************************************************************/
 | 
						|
    ///@{
 | 
						|
 | 
						|
    /**
 | 
						|
     * Compute the position of point 2 which is an arc length \e a12 (degrees)
 | 
						|
     * from point 1.
 | 
						|
     *
 | 
						|
     * @param[in] a12 arc length from point 1 to point 2 (degrees); it can
 | 
						|
     *   be negative.
 | 
						|
     * @param[out] lat2 latitude of point 2 (degrees).
 | 
						|
     * @param[out] lon2 longitude of point 2 (degrees); requires that the
 | 
						|
     *   GeodesicLine object was constructed with \e caps |=
 | 
						|
     *   GeodesicLine::LONGITUDE.
 | 
						|
     * @param[out] azi2 (forward) azimuth at point 2 (degrees).
 | 
						|
     * @param[out] s12 distance from point 1 to point 2 (meters); requires
 | 
						|
     *   that the GeodesicLine object was constructed with \e caps |=
 | 
						|
     *   GeodesicLine::DISTANCE.
 | 
						|
     * @param[out] m12 reduced length of geodesic (meters); requires that the
 | 
						|
     *   GeodesicLine object was constructed with \e caps |=
 | 
						|
     *   GeodesicLine::REDUCEDLENGTH.
 | 
						|
     * @param[out] M12 geodesic scale of point 2 relative to point 1
 | 
						|
     *   (dimensionless); requires that the GeodesicLine object was constructed
 | 
						|
     *   with \e caps |= GeodesicLine::GEODESICSCALE.
 | 
						|
     * @param[out] M21 geodesic scale of point 1 relative to point 2
 | 
						|
     *   (dimensionless); requires that the GeodesicLine object was constructed
 | 
						|
     *   with \e caps |= GeodesicLine::GEODESICSCALE.
 | 
						|
     * @param[out] S12 area under the geodesic (meters<sup>2</sup>); requires
 | 
						|
     *   that the GeodesicLine object was constructed with \e caps |=
 | 
						|
     *   GeodesicLine::AREA.
 | 
						|
     *
 | 
						|
     * The values of \e lon2 and \e azi2 returned are in the range
 | 
						|
     * [−180°, 180°].
 | 
						|
     *
 | 
						|
     * Requesting a value which the GeodesicLine object is not capable of
 | 
						|
     * computing is not an error; the corresponding argument will not be
 | 
						|
     * altered.
 | 
						|
     *
 | 
						|
     * The following functions are overloaded versions of
 | 
						|
     * GeodesicLine::ArcPosition which omit some of the output parameters.
 | 
						|
     **********************************************************************/
 | 
						|
    void ArcPosition(real a12, real& lat2, real& lon2, real& azi2,
 | 
						|
                     real& s12, real& m12, real& M12, real& M21,
 | 
						|
                     real& S12) const {
 | 
						|
      GenPosition(true, a12,
 | 
						|
                  LATITUDE | LONGITUDE | AZIMUTH | DISTANCE |
 | 
						|
                  REDUCEDLENGTH | GEODESICSCALE | AREA,
 | 
						|
                  lat2, lon2, azi2, s12, m12, M12, M21, S12);
 | 
						|
    }
 | 
						|
 | 
						|
    /**
 | 
						|
     * See the documentation for GeodesicLine::ArcPosition.
 | 
						|
     **********************************************************************/
 | 
						|
    void ArcPosition(real a12, real& lat2, real& lon2)
 | 
						|
      const {
 | 
						|
      real t;
 | 
						|
      GenPosition(true, a12,
 | 
						|
                  LATITUDE | LONGITUDE,
 | 
						|
                  lat2, lon2, t, t, t, t, t, t);
 | 
						|
    }
 | 
						|
 | 
						|
    /**
 | 
						|
     * See the documentation for GeodesicLine::ArcPosition.
 | 
						|
     **********************************************************************/
 | 
						|
    void ArcPosition(real a12,
 | 
						|
                     real& lat2, real& lon2, real& azi2)
 | 
						|
      const {
 | 
						|
      real t;
 | 
						|
      GenPosition(true, a12,
 | 
						|
                  LATITUDE | LONGITUDE | AZIMUTH,
 | 
						|
                  lat2, lon2, azi2, t, t, t, t, t);
 | 
						|
    }
 | 
						|
 | 
						|
    /**
 | 
						|
     * See the documentation for GeodesicLine::ArcPosition.
 | 
						|
     **********************************************************************/
 | 
						|
    void ArcPosition(real a12, real& lat2, real& lon2, real& azi2,
 | 
						|
                     real& s12) const {
 | 
						|
      real t;
 | 
						|
      GenPosition(true, a12,
 | 
						|
                  LATITUDE | LONGITUDE | AZIMUTH | DISTANCE,
 | 
						|
                  lat2, lon2, azi2, s12, t, t, t, t);
 | 
						|
    }
 | 
						|
 | 
						|
    /**
 | 
						|
     * See the documentation for GeodesicLine::ArcPosition.
 | 
						|
     **********************************************************************/
 | 
						|
    void ArcPosition(real a12, real& lat2, real& lon2, real& azi2,
 | 
						|
                     real& s12, real& m12) const {
 | 
						|
      real t;
 | 
						|
      GenPosition(true, a12,
 | 
						|
                  LATITUDE | LONGITUDE | AZIMUTH |
 | 
						|
                  DISTANCE | REDUCEDLENGTH,
 | 
						|
                  lat2, lon2, azi2, s12, m12, t, t, t);
 | 
						|
    }
 | 
						|
 | 
						|
    /**
 | 
						|
     * See the documentation for GeodesicLine::ArcPosition.
 | 
						|
     **********************************************************************/
 | 
						|
    void ArcPosition(real a12, real& lat2, real& lon2, real& azi2,
 | 
						|
                     real& s12, real& M12, real& M21)
 | 
						|
      const {
 | 
						|
      real t;
 | 
						|
      GenPosition(true, a12,
 | 
						|
                  LATITUDE | LONGITUDE | AZIMUTH |
 | 
						|
                  DISTANCE | GEODESICSCALE,
 | 
						|
                  lat2, lon2, azi2, s12, t, M12, M21, t);
 | 
						|
    }
 | 
						|
 | 
						|
    /**
 | 
						|
     * See the documentation for GeodesicLine::ArcPosition.
 | 
						|
     **********************************************************************/
 | 
						|
    void ArcPosition(real a12, real& lat2, real& lon2, real& azi2,
 | 
						|
                     real& s12, real& m12, real& M12, real& M21)
 | 
						|
      const {
 | 
						|
      real t;
 | 
						|
      GenPosition(true, a12,
 | 
						|
                  LATITUDE | LONGITUDE | AZIMUTH |
 | 
						|
                  DISTANCE | REDUCEDLENGTH | GEODESICSCALE,
 | 
						|
                  lat2, lon2, azi2, s12, m12, M12, M21, t);
 | 
						|
    }
 | 
						|
    ///@}
 | 
						|
 | 
						|
    /** \name The general position function.
 | 
						|
     **********************************************************************/
 | 
						|
    ///@{
 | 
						|
 | 
						|
    /**
 | 
						|
     * The general position function.  GeodesicLine::Position and
 | 
						|
     * GeodesicLine::ArcPosition are defined in terms of this function.
 | 
						|
     *
 | 
						|
     * @param[in] arcmode boolean flag determining the meaning of the second
 | 
						|
     *   parameter; if \e arcmode is false, then the GeodesicLine object must
 | 
						|
     *   have been constructed with \e caps |= GeodesicLine::DISTANCE_IN.
 | 
						|
     * @param[in] s12_a12 if \e arcmode is false, this is the distance between
 | 
						|
     *   point 1 and point 2 (meters); otherwise it is the arc length between
 | 
						|
     *   point 1 and point 2 (degrees); it can be negative.
 | 
						|
     * @param[in] outmask a bitor'ed combination of GeodesicLine::mask values
 | 
						|
     *   specifying which of the following parameters should be set.
 | 
						|
     * @param[out] lat2 latitude of point 2 (degrees).
 | 
						|
     * @param[out] lon2 longitude of point 2 (degrees); requires that the
 | 
						|
     *   GeodesicLine object was constructed with \e caps |=
 | 
						|
     *   GeodesicLine::LONGITUDE.
 | 
						|
     * @param[out] azi2 (forward) azimuth at point 2 (degrees).
 | 
						|
     * @param[out] s12 distance from point 1 to point 2 (meters); requires
 | 
						|
     *   that the GeodesicLine object was constructed with \e caps |=
 | 
						|
     *   GeodesicLine::DISTANCE.
 | 
						|
     * @param[out] m12 reduced length of geodesic (meters); requires that the
 | 
						|
     *   GeodesicLine object was constructed with \e caps |=
 | 
						|
     *   GeodesicLine::REDUCEDLENGTH.
 | 
						|
     * @param[out] M12 geodesic scale of point 2 relative to point 1
 | 
						|
     *   (dimensionless); requires that the GeodesicLine object was constructed
 | 
						|
     *   with \e caps |= GeodesicLine::GEODESICSCALE.
 | 
						|
     * @param[out] M21 geodesic scale of point 1 relative to point 2
 | 
						|
     *   (dimensionless); requires that the GeodesicLine object was constructed
 | 
						|
     *   with \e caps |= GeodesicLine::GEODESICSCALE.
 | 
						|
     * @param[out] S12 area under the geodesic (meters<sup>2</sup>); requires
 | 
						|
     *   that the GeodesicLine object was constructed with \e caps |=
 | 
						|
     *   GeodesicLine::AREA.
 | 
						|
     * @return \e a12 arc length from point 1 to point 2 (degrees).
 | 
						|
     *
 | 
						|
     * The GeodesicLine::mask values possible for \e outmask are
 | 
						|
     * - \e outmask |= GeodesicLine::LATITUDE for the latitude \e lat2;
 | 
						|
     * - \e outmask |= GeodesicLine::LONGITUDE for the latitude \e lon2;
 | 
						|
     * - \e outmask |= GeodesicLine::AZIMUTH for the latitude \e azi2;
 | 
						|
     * - \e outmask |= GeodesicLine::DISTANCE for the distance \e s12;
 | 
						|
     * - \e outmask |= GeodesicLine::REDUCEDLENGTH for the reduced length \e
 | 
						|
     *   m12;
 | 
						|
     * - \e outmask |= GeodesicLine::GEODESICSCALE for the geodesic scales \e
 | 
						|
     *   M12 and \e M21;
 | 
						|
     * - \e outmask |= GeodesicLine::AREA for the area \e S12;
 | 
						|
     * - \e outmask |= GeodesicLine::ALL for all of the above;
 | 
						|
     * - \e outmask |= GeodesicLine::LONG_UNROLL to unroll \e lon2 instead of
 | 
						|
     *   reducing it into the range [−180°, 180°].
 | 
						|
     * .
 | 
						|
     * Requesting a value which the GeodesicLine object is not capable of
 | 
						|
     * computing is not an error; the corresponding argument will not be
 | 
						|
     * altered.  Note, however, that the arc length is always computed and
 | 
						|
     * returned as the function value.
 | 
						|
     *
 | 
						|
     * With the GeodesicLine::LONG_UNROLL bit set, the quantity \e lon2 −
 | 
						|
     * \e lon1 indicates how many times and in what sense the geodesic
 | 
						|
     * encircles the ellipsoid.
 | 
						|
     **********************************************************************/
 | 
						|
    Math::real GenPosition(bool arcmode, real s12_a12, unsigned outmask,
 | 
						|
                           real& lat2, real& lon2, real& azi2,
 | 
						|
                           real& s12, real& m12, real& M12, real& M21,
 | 
						|
                           real& S12) const;
 | 
						|
    ///@}
 | 
						|
 | 
						|
    /** \name Setting point 3
 | 
						|
     **********************************************************************/
 | 
						|
    ///@{
 | 
						|
 | 
						|
    /**
 | 
						|
     * Specify position of point 3 in terms of distance.
 | 
						|
     *
 | 
						|
     * @param[in] s13 the distance from point 1 to point 3 (meters); it
 | 
						|
     *   can be negative.
 | 
						|
     *
 | 
						|
     * This is only useful if the GeodesicLine object has been constructed
 | 
						|
     * with \e caps |= GeodesicLine::DISTANCE_IN.
 | 
						|
     **********************************************************************/
 | 
						|
    void SetDistance(real s13);
 | 
						|
 | 
						|
    /**
 | 
						|
     * Specify position of point 3 in terms of arc length.
 | 
						|
     *
 | 
						|
     * @param[in] a13 the arc length from point 1 to point 3 (degrees); it
 | 
						|
     *   can be negative.
 | 
						|
     *
 | 
						|
     * The distance \e s13 is only set if the GeodesicLine object has been
 | 
						|
     * constructed with \e caps |= GeodesicLine::DISTANCE.
 | 
						|
     **********************************************************************/
 | 
						|
    void SetArc(real a13);
 | 
						|
 | 
						|
    /**
 | 
						|
     * Specify position of point 3 in terms of either distance or arc length.
 | 
						|
     *
 | 
						|
     * @param[in] arcmode boolean flag determining the meaning of the second
 | 
						|
     *   parameter; if \e arcmode is false, then the GeodesicLine object must
 | 
						|
     *   have been constructed with \e caps |= GeodesicLine::DISTANCE_IN.
 | 
						|
     * @param[in] s13_a13 if \e arcmode is false, this is the distance from
 | 
						|
     *   point 1 to point 3 (meters); otherwise it is the arc length from
 | 
						|
     *   point 1 to point 3 (degrees); it can be negative.
 | 
						|
     **********************************************************************/
 | 
						|
    void GenSetDistance(bool arcmode, real s13_a13);
 | 
						|
    ///@}
 | 
						|
 | 
						|
    /** \name Inspector functions
 | 
						|
     **********************************************************************/
 | 
						|
    ///@{
 | 
						|
 | 
						|
    /**
 | 
						|
     * @return true if the object has been initialized.
 | 
						|
     **********************************************************************/
 | 
						|
    bool Init() const { return _caps != 0U; }
 | 
						|
 | 
						|
    /**
 | 
						|
     * @return \e lat1 the latitude of point 1 (degrees).
 | 
						|
     **********************************************************************/
 | 
						|
    Math::real Latitude() const
 | 
						|
    { return Init() ? _lat1 : Math::NaN(); }
 | 
						|
 | 
						|
    /**
 | 
						|
     * @return \e lon1 the longitude of point 1 (degrees).
 | 
						|
     **********************************************************************/
 | 
						|
    Math::real Longitude() const
 | 
						|
    { return Init() ? _lon1 : Math::NaN(); }
 | 
						|
 | 
						|
    /**
 | 
						|
     * @return \e azi1 the azimuth (degrees) of the geodesic line at point 1.
 | 
						|
     **********************************************************************/
 | 
						|
    Math::real Azimuth() const
 | 
						|
    { return Init() ? _azi1 : Math::NaN(); }
 | 
						|
 | 
						|
    /**
 | 
						|
     * The sine and cosine of \e azi1.
 | 
						|
     *
 | 
						|
     * @param[out] sazi1 the sine of \e azi1.
 | 
						|
     * @param[out] cazi1 the cosine of \e azi1.
 | 
						|
     **********************************************************************/
 | 
						|
    void Azimuth(real& sazi1, real& cazi1) const
 | 
						|
    { if (Init()) { sazi1 = _salp1; cazi1 = _calp1; } }
 | 
						|
 | 
						|
    /**
 | 
						|
     * @return \e azi0 the azimuth (degrees) of the geodesic line as it crosses
 | 
						|
     *   the equator in a northward direction.
 | 
						|
     *
 | 
						|
     * The result lies in [−90°, 90°].
 | 
						|
     **********************************************************************/
 | 
						|
    Math::real EquatorialAzimuth() const
 | 
						|
    { return Init() ? Math::atan2d(_salp0, _calp0) : Math::NaN(); }
 | 
						|
 | 
						|
    /**
 | 
						|
     * The sine and cosine of \e azi0.
 | 
						|
     *
 | 
						|
     * @param[out] sazi0 the sine of \e azi0.
 | 
						|
     * @param[out] cazi0 the cosine of \e azi0.
 | 
						|
     **********************************************************************/
 | 
						|
    void EquatorialAzimuth(real& sazi0, real& cazi0) const
 | 
						|
    { if (Init()) { sazi0 = _salp0; cazi0 = _calp0; } }
 | 
						|
 | 
						|
    /**
 | 
						|
     * @return \e a1 the arc length (degrees) between the northward equatorial
 | 
						|
     *   crossing and point 1.
 | 
						|
     *
 | 
						|
     * The result lies in (−180°, 180°].
 | 
						|
     **********************************************************************/
 | 
						|
    Math::real EquatorialArc() const {
 | 
						|
      return Init() ? Math::atan2d(_ssig1, _csig1) : Math::NaN();
 | 
						|
    }
 | 
						|
 | 
						|
    /**
 | 
						|
     * @return \e a the equatorial radius of the ellipsoid (meters).  This is
 | 
						|
     *   the value inherited from the Geodesic object used in the constructor.
 | 
						|
     **********************************************************************/
 | 
						|
    Math::real EquatorialRadius() const
 | 
						|
    { return Init() ? _a : Math::NaN(); }
 | 
						|
 | 
						|
    /**
 | 
						|
     * @return \e f the flattening of the ellipsoid.  This is the value
 | 
						|
     *   inherited from the Geodesic object used in the constructor.
 | 
						|
     **********************************************************************/
 | 
						|
    Math::real Flattening() const
 | 
						|
    { return Init() ? _f : Math::NaN(); }
 | 
						|
 | 
						|
    /**
 | 
						|
     * @return \e caps the computational capabilities that this object was
 | 
						|
     *   constructed with.  LATITUDE and AZIMUTH are always included.
 | 
						|
     **********************************************************************/
 | 
						|
    unsigned Capabilities() const { return _caps; }
 | 
						|
 | 
						|
    /**
 | 
						|
     * Test what capabilities are available.
 | 
						|
     *
 | 
						|
     * @param[in] testcaps a set of bitor'ed GeodesicLine::mask values.
 | 
						|
     * @return true if the GeodesicLine object has all these capabilities.
 | 
						|
     **********************************************************************/
 | 
						|
    bool Capabilities(unsigned testcaps) const {
 | 
						|
      testcaps &= OUT_ALL;
 | 
						|
      return (_caps & testcaps) == testcaps;
 | 
						|
    }
 | 
						|
 | 
						|
    /**
 | 
						|
     * The distance or arc length to point 3.
 | 
						|
     *
 | 
						|
     * @param[in] arcmode boolean flag determining the meaning of returned
 | 
						|
     *   value.
 | 
						|
     * @return \e s13 if \e arcmode is false; \e a13 if \e arcmode is true.
 | 
						|
     **********************************************************************/
 | 
						|
    Math::real GenDistance(bool arcmode) const
 | 
						|
    { return Init() ? (arcmode ? _a13 : _s13) : Math::NaN(); }
 | 
						|
 | 
						|
    /**
 | 
						|
     * @return \e s13, the distance to point 3 (meters).
 | 
						|
     **********************************************************************/
 | 
						|
    Math::real Distance() const { return GenDistance(false); }
 | 
						|
 | 
						|
    /**
 | 
						|
     * @return \e a13, the arc length to point 3 (degrees).
 | 
						|
     **********************************************************************/
 | 
						|
    Math::real Arc() const { return GenDistance(true); }
 | 
						|
 | 
						|
    /**
 | 
						|
     * \deprecated An old name for EquatorialRadius().
 | 
						|
     **********************************************************************/
 | 
						|
    GEOGRAPHICLIB_DEPRECATED("Use EquatorialRadius()")
 | 
						|
    Math::real MajorRadius() const { return EquatorialRadius(); }
 | 
						|
    ///@}
 | 
						|
 | 
						|
  };
 | 
						|
 | 
						|
} // namespace GeographicLib
 | 
						|
 | 
						|
#endif  // GEOGRAPHICLIB_GEODESICLINE_HPP
 |