|
@@ -0,0 +1,977 @@
|
|
|
+/**
|
|
|
+ * \file Geodesic.hpp
|
|
|
+ * \brief Header for GeographicLib::Geodesic class
|
|
|
+ *
|
|
|
+ * Copyright (c) Charles Karney (2009-2020) <charles@karney.com> and licensed
|
|
|
+ * under the MIT/X11 License. For more information, see
|
|
|
+ * https://geographiclib.sourceforge.io/
|
|
|
+ **********************************************************************/
|
|
|
+
|
|
|
+#if !defined(GEOGRAPHICLIB_GEODESIC_HPP)
|
|
|
+#define GEOGRAPHICLIB_GEODESIC_HPP 1
|
|
|
+
|
|
|
+#include <GeographicLib/Constants.hpp>
|
|
|
+
|
|
|
+#if !defined(GEOGRAPHICLIB_GEODESIC_ORDER)
|
|
|
+/**
|
|
|
+ * The order of the expansions used by Geodesic.
|
|
|
+ * GEOGRAPHICLIB_GEODESIC_ORDER can be set to any integer in [3, 8].
|
|
|
+ **********************************************************************/
|
|
|
+# define GEOGRAPHICLIB_GEODESIC_ORDER \
|
|
|
+ (GEOGRAPHICLIB_PRECISION == 2 ? 6 : \
|
|
|
+ (GEOGRAPHICLIB_PRECISION == 1 ? 3 : \
|
|
|
+ (GEOGRAPHICLIB_PRECISION == 3 ? 7 : 8)))
|
|
|
+#endif
|
|
|
+
|
|
|
+namespace GeographicLib {
|
|
|
+
|
|
|
+ class GeodesicLine;
|
|
|
+
|
|
|
+ /**
|
|
|
+ * \brief %Geodesic calculations
|
|
|
+ *
|
|
|
+ * The shortest path between two points on a ellipsoid at (\e lat1, \e lon1)
|
|
|
+ * and (\e lat2, \e lon2) is called the geodesic. Its length is \e s12 and
|
|
|
+ * the geodesic from point 1 to point 2 has azimuths \e azi1 and \e azi2 at
|
|
|
+ * the two end points. (The azimuth is the heading measured clockwise from
|
|
|
+ * north. \e azi2 is the "forward" azimuth, i.e., the heading that takes you
|
|
|
+ * beyond point 2 not back to point 1.) In the figure below, latitude if
|
|
|
+ * labeled φ, longitude λ (with λ<sub>12</sub> =
|
|
|
+ * λ<sub>2</sub> − λ<sub>1</sub>), and azimuth α.
|
|
|
+ *
|
|
|
+ * <img src="https://upload.wikimedia.org/wikipedia/commons/c/cb/Geodesic_problem_on_an_ellipsoid.svg" width=250 alt="spheroidal triangle">
|
|
|
+ *
|
|
|
+ * Given \e lat1, \e lon1, \e azi1, and \e s12, we can determine \e lat2, \e
|
|
|
+ * lon2, and \e azi2. This is the \e direct geodesic problem and its
|
|
|
+ * solution is given by the function Geodesic::Direct. (If \e s12 is
|
|
|
+ * sufficiently large that the geodesic wraps more than halfway around the
|
|
|
+ * earth, there will be another geodesic between the points with a smaller \e
|
|
|
+ * s12.)
|
|
|
+ *
|
|
|
+ * Given \e lat1, \e lon1, \e lat2, and \e lon2, we can determine \e azi1, \e
|
|
|
+ * azi2, and \e s12. This is the \e inverse geodesic problem, whose solution
|
|
|
+ * is given by Geodesic::Inverse. Usually, the solution to the inverse
|
|
|
+ * problem is unique. In cases where there are multiple solutions (all with
|
|
|
+ * the same \e s12, of course), all the solutions can be easily generated
|
|
|
+ * once a particular solution is provided.
|
|
|
+ *
|
|
|
+ * The standard way of specifying the direct problem is the specify the
|
|
|
+ * distance \e s12 to the second point. However it is sometimes useful
|
|
|
+ * instead to specify the arc length \e a12 (in degrees) on the auxiliary
|
|
|
+ * sphere. This is a mathematical construct used in solving the geodesic
|
|
|
+ * problems. The solution of the direct problem in this form is provided by
|
|
|
+ * Geodesic::ArcDirect. An arc length in excess of 180° indicates that
|
|
|
+ * the geodesic is not a shortest path. In addition, the arc length between
|
|
|
+ * an equatorial crossing and the next extremum of latitude for a geodesic is
|
|
|
+ * 90°.
|
|
|
+ *
|
|
|
+ * This class can also calculate several other quantities related to
|
|
|
+ * geodesics. These are:
|
|
|
+ * - <i>reduced length</i>. If we fix the first point and increase \e azi1
|
|
|
+ * by \e dazi1 (radians), the second point is displaced \e m12 \e dazi1 in
|
|
|
+ * the direction \e azi2 + 90°. The quantity \e m12 is called
|
|
|
+ * the "reduced length" and is symmetric under interchange of the two
|
|
|
+ * points. On a curved surface the reduced length obeys a symmetry
|
|
|
+ * relation, \e m12 + \e m21 = 0. On a flat surface, we have \e m12 = \e
|
|
|
+ * s12. The ratio <i>s12</i>/\e m12 gives the azimuthal scale for an
|
|
|
+ * azimuthal equidistant projection.
|
|
|
+ * - <i>geodesic scale</i>. Consider a reference geodesic and a second
|
|
|
+ * geodesic parallel to this one at point 1 and separated by a small
|
|
|
+ * distance \e dt. The separation of the two geodesics at point 2 is \e
|
|
|
+ * M12 \e dt where \e M12 is called the "geodesic scale". \e M21 is
|
|
|
+ * defined similarly (with the geodesics being parallel at point 2). On a
|
|
|
+ * flat surface, we have \e M12 = \e M21 = 1. The quantity 1/\e M12 gives
|
|
|
+ * the scale of the Cassini-Soldner projection.
|
|
|
+ * - <i>area</i>. The area between the geodesic from point 1 to point 2 and
|
|
|
+ * the equation is represented by \e S12; it is the area, measured
|
|
|
+ * counter-clockwise, of the geodesic quadrilateral with corners
|
|
|
+ * (<i>lat1</i>,<i>lon1</i>), (0,<i>lon1</i>), (0,<i>lon2</i>), and
|
|
|
+ * (<i>lat2</i>,<i>lon2</i>). It can be used to compute the area of any
|
|
|
+ * geodesic polygon.
|
|
|
+ *
|
|
|
+ * Overloaded versions of Geodesic::Direct, Geodesic::ArcDirect, and
|
|
|
+ * Geodesic::Inverse allow these quantities to be returned. In addition
|
|
|
+ * there are general functions Geodesic::GenDirect, and Geodesic::GenInverse
|
|
|
+ * which allow an arbitrary set of results to be computed. The quantities \e
|
|
|
+ * m12, \e M12, \e M21 which all specify the behavior of nearby geodesics
|
|
|
+ * obey addition rules. If points 1, 2, and 3 all lie on a single geodesic,
|
|
|
+ * then the following rules hold:
|
|
|
+ * - \e s13 = \e s12 + \e s23
|
|
|
+ * - \e a13 = \e a12 + \e a23
|
|
|
+ * - \e S13 = \e S12 + \e S23
|
|
|
+ * - \e m13 = \e m12 \e M23 + \e m23 \e M21
|
|
|
+ * - \e M13 = \e M12 \e M23 − (1 − \e M12 \e M21) \e m23 / \e m12
|
|
|
+ * - \e M31 = \e M32 \e M21 − (1 − \e M23 \e M32) \e m12 / \e m23
|
|
|
+ *
|
|
|
+ * Additional functionality is provided by the GeodesicLine class, which
|
|
|
+ * allows a sequence of points along a geodesic to be computed.
|
|
|
+ *
|
|
|
+ * The shortest distance returned by the solution of the inverse problem is
|
|
|
+ * (obviously) uniquely defined. However, in a few special cases there are
|
|
|
+ * multiple azimuths which yield the same shortest distance. Here is a
|
|
|
+ * catalog of those cases:
|
|
|
+ * - \e lat1 = −\e lat2 (with neither point at a pole). If \e azi1 =
|
|
|
+ * \e azi2, the geodesic is unique. Otherwise there are two geodesics and
|
|
|
+ * the second one is obtained by setting [\e azi1, \e azi2] → [\e
|
|
|
+ * azi2, \e azi1], [\e M12, \e M21] → [\e M21, \e M12], \e S12 →
|
|
|
+ * −\e S12. (This occurs when the longitude difference is near
|
|
|
+ * ±180° for oblate ellipsoids.)
|
|
|
+ * - \e lon2 = \e lon1 ± 180° (with neither point at a pole). If
|
|
|
+ * \e azi1 = 0° or ±180°, the geodesic is unique. Otherwise
|
|
|
+ * there are two geodesics and the second one is obtained by setting [\e
|
|
|
+ * azi1, \e azi2] → [−\e azi1, −\e azi2], \e S12 →
|
|
|
+ * −\e S12. (This occurs when \e lat2 is near −\e lat1 for
|
|
|
+ * prolate ellipsoids.)
|
|
|
+ * - Points 1 and 2 at opposite poles. There are infinitely many geodesics
|
|
|
+ * which can be generated by setting [\e azi1, \e azi2] → [\e azi1, \e
|
|
|
+ * azi2] + [\e d, −\e d], for arbitrary \e d. (For spheres, this
|
|
|
+ * prescription applies when points 1 and 2 are antipodal.)
|
|
|
+ * - \e s12 = 0 (coincident points). There are infinitely many geodesics
|
|
|
+ * which can be generated by setting [\e azi1, \e azi2] →
|
|
|
+ * [\e azi1, \e azi2] + [\e d, \e d], for arbitrary \e d.
|
|
|
+ *
|
|
|
+ * The calculations are accurate to better than 15 nm (15 nanometers) for the
|
|
|
+ * WGS84 ellipsoid. See Sec. 9 of
|
|
|
+ * <a href="https://arxiv.org/abs/1102.1215v1">arXiv:1102.1215v1</a> for
|
|
|
+ * details. The algorithms used by this class are based on series expansions
|
|
|
+ * using the flattening \e f as a small parameter. These are only accurate
|
|
|
+ * for |<i>f</i>| < 0.02; however reasonably accurate results will be
|
|
|
+ * obtained for |<i>f</i>| < 0.2. Here is a table of the approximate
|
|
|
+ * maximum error (expressed as a distance) for an ellipsoid with the same
|
|
|
+ * equatorial radius as the WGS84 ellipsoid and different values of the
|
|
|
+ * flattening.<pre>
|
|
|
+ * |f| error
|
|
|
+ * 0.01 25 nm
|
|
|
+ * 0.02 30 nm
|
|
|
+ * 0.05 10 um
|
|
|
+ * 0.1 1.5 mm
|
|
|
+ * 0.2 300 mm
|
|
|
+ * </pre>
|
|
|
+ * For very eccentric ellipsoids, use GeodesicExact instead.
|
|
|
+ *
|
|
|
+ * The algorithms are described in
|
|
|
+ * - C. F. F. Karney,
|
|
|
+ * <a href="https://doi.org/10.1007/s00190-012-0578-z">
|
|
|
+ * Algorithms for geodesics</a>,
|
|
|
+ * J. Geodesy <b>87</b>, 43--55 (2013);
|
|
|
+ * DOI: <a href="https://doi.org/10.1007/s00190-012-0578-z">
|
|
|
+ * 10.1007/s00190-012-0578-z</a>;
|
|
|
+ * addenda:
|
|
|
+ * <a href="https://geographiclib.sourceforge.io/geod-addenda.html">
|
|
|
+ * geod-addenda.html</a>.
|
|
|
+ * .
|
|
|
+ * For more information on geodesics see \ref geodesic.
|
|
|
+ *
|
|
|
+ * Example of use:
|
|
|
+ * \include example-Geodesic.cpp
|
|
|
+ *
|
|
|
+ * <a href="GeodSolve.1.html">GeodSolve</a> is a command-line utility
|
|
|
+ * providing access to the functionality of Geodesic and GeodesicLine.
|
|
|
+ **********************************************************************/
|
|
|
+
|
|
|
+ class GEOGRAPHICLIB_EXPORT Geodesic {
|
|
|
+ private:
|
|
|
+ typedef Math::real real;
|
|
|
+ friend class GeodesicLine;
|
|
|
+ static const int nA1_ = GEOGRAPHICLIB_GEODESIC_ORDER;
|
|
|
+ static const int nC1_ = GEOGRAPHICLIB_GEODESIC_ORDER;
|
|
|
+ static const int nC1p_ = GEOGRAPHICLIB_GEODESIC_ORDER;
|
|
|
+ static const int nA2_ = GEOGRAPHICLIB_GEODESIC_ORDER;
|
|
|
+ static const int nC2_ = GEOGRAPHICLIB_GEODESIC_ORDER;
|
|
|
+ static const int nA3_ = GEOGRAPHICLIB_GEODESIC_ORDER;
|
|
|
+ static const int nA3x_ = nA3_;
|
|
|
+ static const int nC3_ = GEOGRAPHICLIB_GEODESIC_ORDER;
|
|
|
+ static const int nC3x_ = (nC3_ * (nC3_ - 1)) / 2;
|
|
|
+ static const int nC4_ = GEOGRAPHICLIB_GEODESIC_ORDER;
|
|
|
+ static const int nC4x_ = (nC4_ * (nC4_ + 1)) / 2;
|
|
|
+ // Size for temporary array
|
|
|
+ // nC = max(max(nC1_, nC1p_, nC2_) + 1, max(nC3_, nC4_))
|
|
|
+ static const int nC_ = GEOGRAPHICLIB_GEODESIC_ORDER + 1;
|
|
|
+ static const unsigned maxit1_ = 20;
|
|
|
+ unsigned maxit2_;
|
|
|
+ real tiny_, tol0_, tol1_, tol2_, tolb_, xthresh_;
|
|
|
+
|
|
|
+ enum captype {
|
|
|
+ CAP_NONE = 0U,
|
|
|
+ CAP_C1 = 1U<<0,
|
|
|
+ CAP_C1p = 1U<<1,
|
|
|
+ CAP_C2 = 1U<<2,
|
|
|
+ CAP_C3 = 1U<<3,
|
|
|
+ CAP_C4 = 1U<<4,
|
|
|
+ CAP_ALL = 0x1FU,
|
|
|
+ CAP_MASK = CAP_ALL,
|
|
|
+ OUT_ALL = 0x7F80U,
|
|
|
+ OUT_MASK = 0xFF80U, // Includes LONG_UNROLL
|
|
|
+ };
|
|
|
+
|
|
|
+ static real SinCosSeries(bool sinp,
|
|
|
+ real sinx, real cosx, const real c[], int n);
|
|
|
+ static real Astroid(real x, real y);
|
|
|
+
|
|
|
+ real _a, _f, _f1, _e2, _ep2, _n, _b, _c2, _etol2;
|
|
|
+ real _A3x[nA3x_], _C3x[nC3x_], _C4x[nC4x_];
|
|
|
+
|
|
|
+ void Lengths(real eps, real sig12,
|
|
|
+ real ssig1, real csig1, real dn1,
|
|
|
+ real ssig2, real csig2, real dn2,
|
|
|
+ real cbet1, real cbet2, unsigned outmask,
|
|
|
+ real& s12s, real& m12a, real& m0,
|
|
|
+ real& M12, real& M21, real Ca[]) const;
|
|
|
+ real InverseStart(real sbet1, real cbet1, real dn1,
|
|
|
+ real sbet2, real cbet2, real dn2,
|
|
|
+ real lam12, real slam12, real clam12,
|
|
|
+ real& salp1, real& calp1,
|
|
|
+ real& salp2, real& calp2, real& dnm,
|
|
|
+ real Ca[]) const;
|
|
|
+ real Lambda12(real sbet1, real cbet1, real dn1,
|
|
|
+ real sbet2, real cbet2, real dn2,
|
|
|
+ real salp1, real calp1, real slam120, real clam120,
|
|
|
+ real& salp2, real& calp2, real& sig12,
|
|
|
+ real& ssig1, real& csig1, real& ssig2, real& csig2,
|
|
|
+ real& eps, real& domg12,
|
|
|
+ bool diffp, real& dlam12, real Ca[]) const;
|
|
|
+ real GenInverse(real lat1, real lon1, real lat2, real lon2,
|
|
|
+ unsigned outmask, real& s12,
|
|
|
+ real& salp1, real& calp1, real& salp2, real& calp2,
|
|
|
+ real& m12, real& M12, real& M21, real& S12) const;
|
|
|
+
|
|
|
+ // These are Maxima generated functions to provide series approximations to
|
|
|
+ // the integrals for the ellipsoidal geodesic.
|
|
|
+ static real A1m1f(real eps);
|
|
|
+ static void C1f(real eps, real c[]);
|
|
|
+ static void C1pf(real eps, real c[]);
|
|
|
+ static real A2m1f(real eps);
|
|
|
+ static void C2f(real eps, real c[]);
|
|
|
+
|
|
|
+ void A3coeff();
|
|
|
+ real A3f(real eps) const;
|
|
|
+ void C3coeff();
|
|
|
+ void C3f(real eps, real c[]) const;
|
|
|
+ void C4coeff();
|
|
|
+ void C4f(real k2, real c[]) const;
|
|
|
+
|
|
|
+ public:
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Bit masks for what calculations to do. These masks do double duty.
|
|
|
+ * They signify to the GeodesicLine::GeodesicLine constructor and to
|
|
|
+ * Geodesic::Line what capabilities should be included in the GeodesicLine
|
|
|
+ * object. They also specify which results to return in the general
|
|
|
+ * routines Geodesic::GenDirect and Geodesic::GenInverse routines.
|
|
|
+ * GeodesicLine::mask is a duplication of this enum.
|
|
|
+ **********************************************************************/
|
|
|
+ enum mask {
|
|
|
+ /**
|
|
|
+ * No capabilities, no output.
|
|
|
+ * @hideinitializer
|
|
|
+ **********************************************************************/
|
|
|
+ NONE = 0U,
|
|
|
+ /**
|
|
|
+ * Calculate latitude \e lat2. (It's not necessary to include this as a
|
|
|
+ * capability to GeodesicLine because this is included by default.)
|
|
|
+ * @hideinitializer
|
|
|
+ **********************************************************************/
|
|
|
+ LATITUDE = 1U<<7 | CAP_NONE,
|
|
|
+ /**
|
|
|
+ * Calculate longitude \e lon2.
|
|
|
+ * @hideinitializer
|
|
|
+ **********************************************************************/
|
|
|
+ LONGITUDE = 1U<<8 | CAP_C3,
|
|
|
+ /**
|
|
|
+ * Calculate azimuths \e azi1 and \e azi2. (It's not necessary to
|
|
|
+ * include this as a capability to GeodesicLine because this is included
|
|
|
+ * by default.)
|
|
|
+ * @hideinitializer
|
|
|
+ **********************************************************************/
|
|
|
+ AZIMUTH = 1U<<9 | CAP_NONE,
|
|
|
+ /**
|
|
|
+ * Calculate distance \e s12.
|
|
|
+ * @hideinitializer
|
|
|
+ **********************************************************************/
|
|
|
+ DISTANCE = 1U<<10 | CAP_C1,
|
|
|
+ /**
|
|
|
+ * Allow distance \e s12 to be used as input in the direct geodesic
|
|
|
+ * problem.
|
|
|
+ * @hideinitializer
|
|
|
+ **********************************************************************/
|
|
|
+ DISTANCE_IN = 1U<<11 | CAP_C1 | CAP_C1p,
|
|
|
+ /**
|
|
|
+ * Calculate reduced length \e m12.
|
|
|
+ * @hideinitializer
|
|
|
+ **********************************************************************/
|
|
|
+ REDUCEDLENGTH = 1U<<12 | CAP_C1 | CAP_C2,
|
|
|
+ /**
|
|
|
+ * Calculate geodesic scales \e M12 and \e M21.
|
|
|
+ * @hideinitializer
|
|
|
+ **********************************************************************/
|
|
|
+ GEODESICSCALE = 1U<<13 | CAP_C1 | CAP_C2,
|
|
|
+ /**
|
|
|
+ * Calculate area \e S12.
|
|
|
+ * @hideinitializer
|
|
|
+ **********************************************************************/
|
|
|
+ AREA = 1U<<14 | CAP_C4,
|
|
|
+ /**
|
|
|
+ * Unroll \e lon2 in the direct calculation.
|
|
|
+ * @hideinitializer
|
|
|
+ **********************************************************************/
|
|
|
+ LONG_UNROLL = 1U<<15,
|
|
|
+ /**
|
|
|
+ * All capabilities, calculate everything. (LONG_UNROLL is not
|
|
|
+ * included in this mask.)
|
|
|
+ * @hideinitializer
|
|
|
+ **********************************************************************/
|
|
|
+ ALL = OUT_ALL| CAP_ALL,
|
|
|
+ };
|
|
|
+
|
|
|
+ /** \name Constructor
|
|
|
+ **********************************************************************/
|
|
|
+ ///@{
|
|
|
+ /**
|
|
|
+ * Constructor for a ellipsoid with
|
|
|
+ *
|
|
|
+ * @param[in] a equatorial radius (meters).
|
|
|
+ * @param[in] f flattening of ellipsoid. Setting \e f = 0 gives a sphere.
|
|
|
+ * Negative \e f gives a prolate ellipsoid.
|
|
|
+ * @exception GeographicErr if \e a or (1 − \e f) \e a is not
|
|
|
+ * positive.
|
|
|
+ **********************************************************************/
|
|
|
+ Geodesic(real a, real f);
|
|
|
+ ///@}
|
|
|
+
|
|
|
+ /** \name Direct geodesic problem specified in terms of distance.
|
|
|
+ **********************************************************************/
|
|
|
+ ///@{
|
|
|
+ /**
|
|
|
+ * Solve the direct geodesic problem where the length of the geodesic
|
|
|
+ * is specified in terms of distance.
|
|
|
+ *
|
|
|
+ * @param[in] lat1 latitude of point 1 (degrees).
|
|
|
+ * @param[in] lon1 longitude of point 1 (degrees).
|
|
|
+ * @param[in] azi1 azimuth at point 1 (degrees).
|
|
|
+ * @param[in] s12 distance between point 1 and point 2 (meters); it can be
|
|
|
+ * negative.
|
|
|
+ * @param[out] lat2 latitude of point 2 (degrees).
|
|
|
+ * @param[out] lon2 longitude of point 2 (degrees).
|
|
|
+ * @param[out] azi2 (forward) azimuth at point 2 (degrees).
|
|
|
+ * @param[out] m12 reduced length of geodesic (meters).
|
|
|
+ * @param[out] M12 geodesic scale of point 2 relative to point 1
|
|
|
+ * (dimensionless).
|
|
|
+ * @param[out] M21 geodesic scale of point 1 relative to point 2
|
|
|
+ * (dimensionless).
|
|
|
+ * @param[out] S12 area under the geodesic (meters<sup>2</sup>).
|
|
|
+ * @return \e a12 arc length of between point 1 and point 2 (degrees).
|
|
|
+ *
|
|
|
+ * \e lat1 should be in the range [−90°, 90°]. The values of
|
|
|
+ * \e lon2 and \e azi2 returned are in the range [−180°,
|
|
|
+ * 180°].
|
|
|
+ *
|
|
|
+ * If either point is at a pole, the azimuth is defined by keeping the
|
|
|
+ * longitude fixed, writing \e lat = ±(90° − ε),
|
|
|
+ * and taking the limit ε → 0+. An arc length greater that
|
|
|
+ * 180° signifies a geodesic which is not a shortest path. (For a
|
|
|
+ * prolate ellipsoid, an additional condition is necessary for a shortest
|
|
|
+ * path: the longitudinal extent must not exceed of 180°.)
|
|
|
+ *
|
|
|
+ * The following functions are overloaded versions of Geodesic::Direct
|
|
|
+ * which omit some of the output parameters. Note, however, that the arc
|
|
|
+ * length is always computed and returned as the function value.
|
|
|
+ **********************************************************************/
|
|
|
+ Math::real Direct(real lat1, real lon1, real azi1, real s12,
|
|
|
+ real& lat2, real& lon2, real& azi2,
|
|
|
+ real& m12, real& M12, real& M21, real& S12)
|
|
|
+ const {
|
|
|
+ real t;
|
|
|
+ return GenDirect(lat1, lon1, azi1, false, s12,
|
|
|
+ LATITUDE | LONGITUDE | AZIMUTH |
|
|
|
+ REDUCEDLENGTH | GEODESICSCALE | AREA,
|
|
|
+ lat2, lon2, azi2, t, m12, M12, M21, S12);
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * See the documentation for Geodesic::Direct.
|
|
|
+ **********************************************************************/
|
|
|
+ Math::real Direct(real lat1, real lon1, real azi1, real s12,
|
|
|
+ real& lat2, real& lon2)
|
|
|
+ const {
|
|
|
+ real t;
|
|
|
+ return GenDirect(lat1, lon1, azi1, false, s12,
|
|
|
+ LATITUDE | LONGITUDE,
|
|
|
+ lat2, lon2, t, t, t, t, t, t);
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * See the documentation for Geodesic::Direct.
|
|
|
+ **********************************************************************/
|
|
|
+ Math::real Direct(real lat1, real lon1, real azi1, real s12,
|
|
|
+ real& lat2, real& lon2, real& azi2)
|
|
|
+ const {
|
|
|
+ real t;
|
|
|
+ return GenDirect(lat1, lon1, azi1, false, s12,
|
|
|
+ LATITUDE | LONGITUDE | AZIMUTH,
|
|
|
+ lat2, lon2, azi2, t, t, t, t, t);
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * See the documentation for Geodesic::Direct.
|
|
|
+ **********************************************************************/
|
|
|
+ Math::real Direct(real lat1, real lon1, real azi1, real s12,
|
|
|
+ real& lat2, real& lon2, real& azi2, real& m12)
|
|
|
+ const {
|
|
|
+ real t;
|
|
|
+ return GenDirect(lat1, lon1, azi1, false, s12,
|
|
|
+ LATITUDE | LONGITUDE | AZIMUTH | REDUCEDLENGTH,
|
|
|
+ lat2, lon2, azi2, t, m12, t, t, t);
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * See the documentation for Geodesic::Direct.
|
|
|
+ **********************************************************************/
|
|
|
+ Math::real Direct(real lat1, real lon1, real azi1, real s12,
|
|
|
+ real& lat2, real& lon2, real& azi2,
|
|
|
+ real& M12, real& M21)
|
|
|
+ const {
|
|
|
+ real t;
|
|
|
+ return GenDirect(lat1, lon1, azi1, false, s12,
|
|
|
+ LATITUDE | LONGITUDE | AZIMUTH | GEODESICSCALE,
|
|
|
+ lat2, lon2, azi2, t, t, M12, M21, t);
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * See the documentation for Geodesic::Direct.
|
|
|
+ **********************************************************************/
|
|
|
+ Math::real Direct(real lat1, real lon1, real azi1, real s12,
|
|
|
+ real& lat2, real& lon2, real& azi2,
|
|
|
+ real& m12, real& M12, real& M21)
|
|
|
+ const {
|
|
|
+ real t;
|
|
|
+ return GenDirect(lat1, lon1, azi1, false, s12,
|
|
|
+ LATITUDE | LONGITUDE | AZIMUTH |
|
|
|
+ REDUCEDLENGTH | GEODESICSCALE,
|
|
|
+ lat2, lon2, azi2, t, m12, M12, M21, t);
|
|
|
+ }
|
|
|
+ ///@}
|
|
|
+
|
|
|
+ /** \name Direct geodesic problem specified in terms of arc length.
|
|
|
+ **********************************************************************/
|
|
|
+ ///@{
|
|
|
+ /**
|
|
|
+ * Solve the direct geodesic problem where the length of the geodesic
|
|
|
+ * is specified in terms of arc length.
|
|
|
+ *
|
|
|
+ * @param[in] lat1 latitude of point 1 (degrees).
|
|
|
+ * @param[in] lon1 longitude of point 1 (degrees).
|
|
|
+ * @param[in] azi1 azimuth at point 1 (degrees).
|
|
|
+ * @param[in] a12 arc length between point 1 and point 2 (degrees); it can
|
|
|
+ * be negative.
|
|
|
+ * @param[out] lat2 latitude of point 2 (degrees).
|
|
|
+ * @param[out] lon2 longitude of point 2 (degrees).
|
|
|
+ * @param[out] azi2 (forward) azimuth at point 2 (degrees).
|
|
|
+ * @param[out] s12 distance between point 1 and point 2 (meters).
|
|
|
+ * @param[out] m12 reduced length of geodesic (meters).
|
|
|
+ * @param[out] M12 geodesic scale of point 2 relative to point 1
|
|
|
+ * (dimensionless).
|
|
|
+ * @param[out] M21 geodesic scale of point 1 relative to point 2
|
|
|
+ * (dimensionless).
|
|
|
+ * @param[out] S12 area under the geodesic (meters<sup>2</sup>).
|
|
|
+ *
|
|
|
+ * \e lat1 should be in the range [−90°, 90°]. The values of
|
|
|
+ * \e lon2 and \e azi2 returned are in the range [−180°,
|
|
|
+ * 180°].
|
|
|
+ *
|
|
|
+ * If either point is at a pole, the azimuth is defined by keeping the
|
|
|
+ * longitude fixed, writing \e lat = ±(90° − ε),
|
|
|
+ * and taking the limit ε → 0+. An arc length greater that
|
|
|
+ * 180° signifies a geodesic which is not a shortest path. (For a
|
|
|
+ * prolate ellipsoid, an additional condition is necessary for a shortest
|
|
|
+ * path: the longitudinal extent must not exceed of 180°.)
|
|
|
+ *
|
|
|
+ * The following functions are overloaded versions of Geodesic::Direct
|
|
|
+ * which omit some of the output parameters.
|
|
|
+ **********************************************************************/
|
|
|
+ void ArcDirect(real lat1, real lon1, real azi1, real a12,
|
|
|
+ real& lat2, real& lon2, real& azi2, real& s12,
|
|
|
+ real& m12, real& M12, real& M21, real& S12)
|
|
|
+ const {
|
|
|
+ GenDirect(lat1, lon1, azi1, true, a12,
|
|
|
+ LATITUDE | LONGITUDE | AZIMUTH | DISTANCE |
|
|
|
+ REDUCEDLENGTH | GEODESICSCALE | AREA,
|
|
|
+ lat2, lon2, azi2, s12, m12, M12, M21, S12);
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * See the documentation for Geodesic::ArcDirect.
|
|
|
+ **********************************************************************/
|
|
|
+ void ArcDirect(real lat1, real lon1, real azi1, real a12,
|
|
|
+ real& lat2, real& lon2) const {
|
|
|
+ real t;
|
|
|
+ GenDirect(lat1, lon1, azi1, true, a12,
|
|
|
+ LATITUDE | LONGITUDE,
|
|
|
+ lat2, lon2, t, t, t, t, t, t);
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * See the documentation for Geodesic::ArcDirect.
|
|
|
+ **********************************************************************/
|
|
|
+ void ArcDirect(real lat1, real lon1, real azi1, real a12,
|
|
|
+ real& lat2, real& lon2, real& azi2) const {
|
|
|
+ real t;
|
|
|
+ GenDirect(lat1, lon1, azi1, true, a12,
|
|
|
+ LATITUDE | LONGITUDE | AZIMUTH,
|
|
|
+ lat2, lon2, azi2, t, t, t, t, t);
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * See the documentation for Geodesic::ArcDirect.
|
|
|
+ **********************************************************************/
|
|
|
+ void ArcDirect(real lat1, real lon1, real azi1, real a12,
|
|
|
+ real& lat2, real& lon2, real& azi2, real& s12)
|
|
|
+ const {
|
|
|
+ real t;
|
|
|
+ GenDirect(lat1, lon1, azi1, true, a12,
|
|
|
+ LATITUDE | LONGITUDE | AZIMUTH | DISTANCE,
|
|
|
+ lat2, lon2, azi2, s12, t, t, t, t);
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * See the documentation for Geodesic::ArcDirect.
|
|
|
+ **********************************************************************/
|
|
|
+ void ArcDirect(real lat1, real lon1, real azi1, real a12,
|
|
|
+ real& lat2, real& lon2, real& azi2,
|
|
|
+ real& s12, real& m12) const {
|
|
|
+ real t;
|
|
|
+ GenDirect(lat1, lon1, azi1, true, a12,
|
|
|
+ LATITUDE | LONGITUDE | AZIMUTH | DISTANCE |
|
|
|
+ REDUCEDLENGTH,
|
|
|
+ lat2, lon2, azi2, s12, m12, t, t, t);
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * See the documentation for Geodesic::ArcDirect.
|
|
|
+ **********************************************************************/
|
|
|
+ void ArcDirect(real lat1, real lon1, real azi1, real a12,
|
|
|
+ real& lat2, real& lon2, real& azi2, real& s12,
|
|
|
+ real& M12, real& M21) const {
|
|
|
+ real t;
|
|
|
+ GenDirect(lat1, lon1, azi1, true, a12,
|
|
|
+ LATITUDE | LONGITUDE | AZIMUTH | DISTANCE |
|
|
|
+ GEODESICSCALE,
|
|
|
+ lat2, lon2, azi2, s12, t, M12, M21, t);
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * See the documentation for Geodesic::ArcDirect.
|
|
|
+ **********************************************************************/
|
|
|
+ void ArcDirect(real lat1, real lon1, real azi1, real a12,
|
|
|
+ real& lat2, real& lon2, real& azi2, real& s12,
|
|
|
+ real& m12, real& M12, real& M21) const {
|
|
|
+ real t;
|
|
|
+ GenDirect(lat1, lon1, azi1, true, a12,
|
|
|
+ LATITUDE | LONGITUDE | AZIMUTH | DISTANCE |
|
|
|
+ REDUCEDLENGTH | GEODESICSCALE,
|
|
|
+ lat2, lon2, azi2, s12, m12, M12, M21, t);
|
|
|
+ }
|
|
|
+ ///@}
|
|
|
+
|
|
|
+ /** \name General version of the direct geodesic solution.
|
|
|
+ **********************************************************************/
|
|
|
+ ///@{
|
|
|
+
|
|
|
+ /**
|
|
|
+ * The general direct geodesic problem. Geodesic::Direct and
|
|
|
+ * Geodesic::ArcDirect are defined in terms of this function.
|
|
|
+ *
|
|
|
+ * @param[in] lat1 latitude of point 1 (degrees).
|
|
|
+ * @param[in] lon1 longitude of point 1 (degrees).
|
|
|
+ * @param[in] azi1 azimuth at point 1 (degrees).
|
|
|
+ * @param[in] arcmode boolean flag determining the meaning of the \e
|
|
|
+ * s12_a12.
|
|
|
+ * @param[in] s12_a12 if \e arcmode is false, this is the distance between
|
|
|
+ * point 1 and point 2 (meters); otherwise it is the arc length between
|
|
|
+ * point 1 and point 2 (degrees); it can be negative.
|
|
|
+ * @param[in] outmask a bitor'ed combination of Geodesic::mask values
|
|
|
+ * specifying which of the following parameters should be set.
|
|
|
+ * @param[out] lat2 latitude of point 2 (degrees).
|
|
|
+ * @param[out] lon2 longitude of point 2 (degrees).
|
|
|
+ * @param[out] azi2 (forward) azimuth at point 2 (degrees).
|
|
|
+ * @param[out] s12 distance between point 1 and point 2 (meters).
|
|
|
+ * @param[out] m12 reduced length of geodesic (meters).
|
|
|
+ * @param[out] M12 geodesic scale of point 2 relative to point 1
|
|
|
+ * (dimensionless).
|
|
|
+ * @param[out] M21 geodesic scale of point 1 relative to point 2
|
|
|
+ * (dimensionless).
|
|
|
+ * @param[out] S12 area under the geodesic (meters<sup>2</sup>).
|
|
|
+ * @return \e a12 arc length of between point 1 and point 2 (degrees).
|
|
|
+ *
|
|
|
+ * The Geodesic::mask values possible for \e outmask are
|
|
|
+ * - \e outmask |= Geodesic::LATITUDE for the latitude \e lat2;
|
|
|
+ * - \e outmask |= Geodesic::LONGITUDE for the latitude \e lon2;
|
|
|
+ * - \e outmask |= Geodesic::AZIMUTH for the latitude \e azi2;
|
|
|
+ * - \e outmask |= Geodesic::DISTANCE for the distance \e s12;
|
|
|
+ * - \e outmask |= Geodesic::REDUCEDLENGTH for the reduced length \e
|
|
|
+ * m12;
|
|
|
+ * - \e outmask |= Geodesic::GEODESICSCALE for the geodesic scales \e
|
|
|
+ * M12 and \e M21;
|
|
|
+ * - \e outmask |= Geodesic::AREA for the area \e S12;
|
|
|
+ * - \e outmask |= Geodesic::ALL for all of the above;
|
|
|
+ * - \e outmask |= Geodesic::LONG_UNROLL to unroll \e lon2 instead of
|
|
|
+ * wrapping it into the range [−180°, 180°].
|
|
|
+ * .
|
|
|
+ * The function value \e a12 is always computed and returned and this
|
|
|
+ * equals \e s12_a12 is \e arcmode is true. If \e outmask includes
|
|
|
+ * Geodesic::DISTANCE and \e arcmode is false, then \e s12 = \e s12_a12.
|
|
|
+ * It is not necessary to include Geodesic::DISTANCE_IN in \e outmask; this
|
|
|
+ * is automatically included is \e arcmode is false.
|
|
|
+ *
|
|
|
+ * With the Geodesic::LONG_UNROLL bit set, the quantity \e lon2 − \e
|
|
|
+ * lon1 indicates how many times and in what sense the geodesic encircles
|
|
|
+ * the ellipsoid.
|
|
|
+ **********************************************************************/
|
|
|
+ Math::real GenDirect(real lat1, real lon1, real azi1,
|
|
|
+ bool arcmode, real s12_a12, unsigned outmask,
|
|
|
+ real& lat2, real& lon2, real& azi2,
|
|
|
+ real& s12, real& m12, real& M12, real& M21,
|
|
|
+ real& S12) const;
|
|
|
+ ///@}
|
|
|
+
|
|
|
+ /** \name Inverse geodesic problem.
|
|
|
+ **********************************************************************/
|
|
|
+ ///@{
|
|
|
+ /**
|
|
|
+ * Solve the inverse geodesic problem.
|
|
|
+ *
|
|
|
+ * @param[in] lat1 latitude of point 1 (degrees).
|
|
|
+ * @param[in] lon1 longitude of point 1 (degrees).
|
|
|
+ * @param[in] lat2 latitude of point 2 (degrees).
|
|
|
+ * @param[in] lon2 longitude of point 2 (degrees).
|
|
|
+ * @param[out] s12 distance between point 1 and point 2 (meters).
|
|
|
+ * @param[out] azi1 azimuth at point 1 (degrees).
|
|
|
+ * @param[out] azi2 (forward) azimuth at point 2 (degrees).
|
|
|
+ * @param[out] m12 reduced length of geodesic (meters).
|
|
|
+ * @param[out] M12 geodesic scale of point 2 relative to point 1
|
|
|
+ * (dimensionless).
|
|
|
+ * @param[out] M21 geodesic scale of point 1 relative to point 2
|
|
|
+ * (dimensionless).
|
|
|
+ * @param[out] S12 area under the geodesic (meters<sup>2</sup>).
|
|
|
+ * @return \e a12 arc length of between point 1 and point 2 (degrees).
|
|
|
+ *
|
|
|
+ * \e lat1 and \e lat2 should be in the range [−90°, 90°].
|
|
|
+ * The values of \e azi1 and \e azi2 returned are in the range
|
|
|
+ * [−180°, 180°].
|
|
|
+ *
|
|
|
+ * If either point is at a pole, the azimuth is defined by keeping the
|
|
|
+ * longitude fixed, writing \e lat = ±(90° − ε),
|
|
|
+ * and taking the limit ε → 0+.
|
|
|
+ *
|
|
|
+ * The solution to the inverse problem is found using Newton's method. If
|
|
|
+ * this fails to converge (this is very unlikely in geodetic applications
|
|
|
+ * but does occur for very eccentric ellipsoids), then the bisection method
|
|
|
+ * is used to refine the solution.
|
|
|
+ *
|
|
|
+ * The following functions are overloaded versions of Geodesic::Inverse
|
|
|
+ * which omit some of the output parameters. Note, however, that the arc
|
|
|
+ * length is always computed and returned as the function value.
|
|
|
+ **********************************************************************/
|
|
|
+ Math::real Inverse(real lat1, real lon1, real lat2, real lon2,
|
|
|
+ real& s12, real& azi1, real& azi2, real& m12,
|
|
|
+ real& M12, real& M21, real& S12) const {
|
|
|
+ return GenInverse(lat1, lon1, lat2, lon2,
|
|
|
+ DISTANCE | AZIMUTH |
|
|
|
+ REDUCEDLENGTH | GEODESICSCALE | AREA,
|
|
|
+ s12, azi1, azi2, m12, M12, M21, S12);
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * See the documentation for Geodesic::Inverse.
|
|
|
+ **********************************************************************/
|
|
|
+ Math::real Inverse(real lat1, real lon1, real lat2, real lon2,
|
|
|
+ real& s12) const {
|
|
|
+ real t;
|
|
|
+ return GenInverse(lat1, lon1, lat2, lon2,
|
|
|
+ DISTANCE,
|
|
|
+ s12, t, t, t, t, t, t);
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * See the documentation for Geodesic::Inverse.
|
|
|
+ **********************************************************************/
|
|
|
+ Math::real Inverse(real lat1, real lon1, real lat2, real lon2,
|
|
|
+ real& azi1, real& azi2) const {
|
|
|
+ real t;
|
|
|
+ return GenInverse(lat1, lon1, lat2, lon2,
|
|
|
+ AZIMUTH,
|
|
|
+ t, azi1, azi2, t, t, t, t);
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * See the documentation for Geodesic::Inverse.
|
|
|
+ **********************************************************************/
|
|
|
+ Math::real Inverse(real lat1, real lon1, real lat2, real lon2,
|
|
|
+ real& s12, real& azi1, real& azi2)
|
|
|
+ const {
|
|
|
+ real t;
|
|
|
+ return GenInverse(lat1, lon1, lat2, lon2,
|
|
|
+ DISTANCE | AZIMUTH,
|
|
|
+ s12, azi1, azi2, t, t, t, t);
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * See the documentation for Geodesic::Inverse.
|
|
|
+ **********************************************************************/
|
|
|
+ Math::real Inverse(real lat1, real lon1, real lat2, real lon2,
|
|
|
+ real& s12, real& azi1, real& azi2, real& m12)
|
|
|
+ const {
|
|
|
+ real t;
|
|
|
+ return GenInverse(lat1, lon1, lat2, lon2,
|
|
|
+ DISTANCE | AZIMUTH | REDUCEDLENGTH,
|
|
|
+ s12, azi1, azi2, m12, t, t, t);
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * See the documentation for Geodesic::Inverse.
|
|
|
+ **********************************************************************/
|
|
|
+ Math::real Inverse(real lat1, real lon1, real lat2, real lon2,
|
|
|
+ real& s12, real& azi1, real& azi2,
|
|
|
+ real& M12, real& M21) const {
|
|
|
+ real t;
|
|
|
+ return GenInverse(lat1, lon1, lat2, lon2,
|
|
|
+ DISTANCE | AZIMUTH | GEODESICSCALE,
|
|
|
+ s12, azi1, azi2, t, M12, M21, t);
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * See the documentation for Geodesic::Inverse.
|
|
|
+ **********************************************************************/
|
|
|
+ Math::real Inverse(real lat1, real lon1, real lat2, real lon2,
|
|
|
+ real& s12, real& azi1, real& azi2, real& m12,
|
|
|
+ real& M12, real& M21) const {
|
|
|
+ real t;
|
|
|
+ return GenInverse(lat1, lon1, lat2, lon2,
|
|
|
+ DISTANCE | AZIMUTH |
|
|
|
+ REDUCEDLENGTH | GEODESICSCALE,
|
|
|
+ s12, azi1, azi2, m12, M12, M21, t);
|
|
|
+ }
|
|
|
+ ///@}
|
|
|
+
|
|
|
+ /** \name General version of inverse geodesic solution.
|
|
|
+ **********************************************************************/
|
|
|
+ ///@{
|
|
|
+ /**
|
|
|
+ * The general inverse geodesic calculation. Geodesic::Inverse is defined
|
|
|
+ * in terms of this function.
|
|
|
+ *
|
|
|
+ * @param[in] lat1 latitude of point 1 (degrees).
|
|
|
+ * @param[in] lon1 longitude of point 1 (degrees).
|
|
|
+ * @param[in] lat2 latitude of point 2 (degrees).
|
|
|
+ * @param[in] lon2 longitude of point 2 (degrees).
|
|
|
+ * @param[in] outmask a bitor'ed combination of Geodesic::mask values
|
|
|
+ * specifying which of the following parameters should be set.
|
|
|
+ * @param[out] s12 distance between point 1 and point 2 (meters).
|
|
|
+ * @param[out] azi1 azimuth at point 1 (degrees).
|
|
|
+ * @param[out] azi2 (forward) azimuth at point 2 (degrees).
|
|
|
+ * @param[out] m12 reduced length of geodesic (meters).
|
|
|
+ * @param[out] M12 geodesic scale of point 2 relative to point 1
|
|
|
+ * (dimensionless).
|
|
|
+ * @param[out] M21 geodesic scale of point 1 relative to point 2
|
|
|
+ * (dimensionless).
|
|
|
+ * @param[out] S12 area under the geodesic (meters<sup>2</sup>).
|
|
|
+ * @return \e a12 arc length of between point 1 and point 2 (degrees).
|
|
|
+ *
|
|
|
+ * The Geodesic::mask values possible for \e outmask are
|
|
|
+ * - \e outmask |= Geodesic::DISTANCE for the distance \e s12;
|
|
|
+ * - \e outmask |= Geodesic::AZIMUTH for the latitude \e azi2;
|
|
|
+ * - \e outmask |= Geodesic::REDUCEDLENGTH for the reduced length \e
|
|
|
+ * m12;
|
|
|
+ * - \e outmask |= Geodesic::GEODESICSCALE for the geodesic scales \e
|
|
|
+ * M12 and \e M21;
|
|
|
+ * - \e outmask |= Geodesic::AREA for the area \e S12;
|
|
|
+ * - \e outmask |= Geodesic::ALL for all of the above.
|
|
|
+ * .
|
|
|
+ * The arc length is always computed and returned as the function value.
|
|
|
+ **********************************************************************/
|
|
|
+ Math::real GenInverse(real lat1, real lon1, real lat2, real lon2,
|
|
|
+ unsigned outmask,
|
|
|
+ real& s12, real& azi1, real& azi2,
|
|
|
+ real& m12, real& M12, real& M21, real& S12) const;
|
|
|
+ ///@}
|
|
|
+
|
|
|
+ /** \name Interface to GeodesicLine.
|
|
|
+ **********************************************************************/
|
|
|
+ ///@{
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Set up to compute several points on a single geodesic.
|
|
|
+ *
|
|
|
+ * @param[in] lat1 latitude of point 1 (degrees).
|
|
|
+ * @param[in] lon1 longitude of point 1 (degrees).
|
|
|
+ * @param[in] azi1 azimuth at point 1 (degrees).
|
|
|
+ * @param[in] caps bitor'ed combination of Geodesic::mask values
|
|
|
+ * specifying the capabilities the GeodesicLine object should possess,
|
|
|
+ * i.e., which quantities can be returned in calls to
|
|
|
+ * GeodesicLine::Position.
|
|
|
+ * @return a GeodesicLine object.
|
|
|
+ *
|
|
|
+ * \e lat1 should be in the range [−90°, 90°].
|
|
|
+ *
|
|
|
+ * The Geodesic::mask values are
|
|
|
+ * - \e caps |= Geodesic::LATITUDE for the latitude \e lat2; this is
|
|
|
+ * added automatically;
|
|
|
+ * - \e caps |= Geodesic::LONGITUDE for the latitude \e lon2;
|
|
|
+ * - \e caps |= Geodesic::AZIMUTH for the azimuth \e azi2; this is
|
|
|
+ * added automatically;
|
|
|
+ * - \e caps |= Geodesic::DISTANCE for the distance \e s12;
|
|
|
+ * - \e caps |= Geodesic::REDUCEDLENGTH for the reduced length \e m12;
|
|
|
+ * - \e caps |= Geodesic::GEODESICSCALE for the geodesic scales \e M12
|
|
|
+ * and \e M21;
|
|
|
+ * - \e caps |= Geodesic::AREA for the area \e S12;
|
|
|
+ * - \e caps |= Geodesic::DISTANCE_IN permits the length of the
|
|
|
+ * geodesic to be given in terms of \e s12; without this capability the
|
|
|
+ * length can only be specified in terms of arc length;
|
|
|
+ * - \e caps |= Geodesic::ALL for all of the above.
|
|
|
+ * .
|
|
|
+ * The default value of \e caps is Geodesic::ALL.
|
|
|
+ *
|
|
|
+ * If the point is at a pole, the azimuth is defined by keeping \e lon1
|
|
|
+ * fixed, writing \e lat1 = ±(90 − ε), and taking the
|
|
|
+ * limit ε → 0+.
|
|
|
+ **********************************************************************/
|
|
|
+ GeodesicLine Line(real lat1, real lon1, real azi1, unsigned caps = ALL)
|
|
|
+ const;
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Define a GeodesicLine in terms of the inverse geodesic problem.
|
|
|
+ *
|
|
|
+ * @param[in] lat1 latitude of point 1 (degrees).
|
|
|
+ * @param[in] lon1 longitude of point 1 (degrees).
|
|
|
+ * @param[in] lat2 latitude of point 2 (degrees).
|
|
|
+ * @param[in] lon2 longitude of point 2 (degrees).
|
|
|
+ * @param[in] caps bitor'ed combination of Geodesic::mask values
|
|
|
+ * specifying the capabilities the GeodesicLine object should possess,
|
|
|
+ * i.e., which quantities can be returned in calls to
|
|
|
+ * GeodesicLine::Position.
|
|
|
+ * @return a GeodesicLine object.
|
|
|
+ *
|
|
|
+ * This function sets point 3 of the GeodesicLine to correspond to point 2
|
|
|
+ * of the inverse geodesic problem.
|
|
|
+ *
|
|
|
+ * \e lat1 and \e lat2 should be in the range [−90°, 90°].
|
|
|
+ **********************************************************************/
|
|
|
+ GeodesicLine InverseLine(real lat1, real lon1, real lat2, real lon2,
|
|
|
+ unsigned caps = ALL) const;
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Define a GeodesicLine in terms of the direct geodesic problem specified
|
|
|
+ * in terms of distance.
|
|
|
+ *
|
|
|
+ * @param[in] lat1 latitude of point 1 (degrees).
|
|
|
+ * @param[in] lon1 longitude of point 1 (degrees).
|
|
|
+ * @param[in] azi1 azimuth at point 1 (degrees).
|
|
|
+ * @param[in] s12 distance between point 1 and point 2 (meters); it can be
|
|
|
+ * negative.
|
|
|
+ * @param[in] caps bitor'ed combination of Geodesic::mask values
|
|
|
+ * specifying the capabilities the GeodesicLine object should possess,
|
|
|
+ * i.e., which quantities can be returned in calls to
|
|
|
+ * GeodesicLine::Position.
|
|
|
+ * @return a GeodesicLine object.
|
|
|
+ *
|
|
|
+ * This function sets point 3 of the GeodesicLine to correspond to point 2
|
|
|
+ * of the direct geodesic problem.
|
|
|
+ *
|
|
|
+ * \e lat1 should be in the range [−90°, 90°].
|
|
|
+ **********************************************************************/
|
|
|
+ GeodesicLine DirectLine(real lat1, real lon1, real azi1, real s12,
|
|
|
+ unsigned caps = ALL) const;
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Define a GeodesicLine in terms of the direct geodesic problem specified
|
|
|
+ * in terms of arc length.
|
|
|
+ *
|
|
|
+ * @param[in] lat1 latitude of point 1 (degrees).
|
|
|
+ * @param[in] lon1 longitude of point 1 (degrees).
|
|
|
+ * @param[in] azi1 azimuth at point 1 (degrees).
|
|
|
+ * @param[in] a12 arc length between point 1 and point 2 (degrees); it can
|
|
|
+ * be negative.
|
|
|
+ * @param[in] caps bitor'ed combination of Geodesic::mask values
|
|
|
+ * specifying the capabilities the GeodesicLine object should possess,
|
|
|
+ * i.e., which quantities can be returned in calls to
|
|
|
+ * GeodesicLine::Position.
|
|
|
+ * @return a GeodesicLine object.
|
|
|
+ *
|
|
|
+ * This function sets point 3 of the GeodesicLine to correspond to point 2
|
|
|
+ * of the direct geodesic problem.
|
|
|
+ *
|
|
|
+ * \e lat1 should be in the range [−90°, 90°].
|
|
|
+ **********************************************************************/
|
|
|
+ GeodesicLine ArcDirectLine(real lat1, real lon1, real azi1, real a12,
|
|
|
+ unsigned caps = ALL) const;
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Define a GeodesicLine in terms of the direct geodesic problem specified
|
|
|
+ * in terms of either distance or arc length.
|
|
|
+ *
|
|
|
+ * @param[in] lat1 latitude of point 1 (degrees).
|
|
|
+ * @param[in] lon1 longitude of point 1 (degrees).
|
|
|
+ * @param[in] azi1 azimuth at point 1 (degrees).
|
|
|
+ * @param[in] arcmode boolean flag determining the meaning of the \e
|
|
|
+ * s12_a12.
|
|
|
+ * @param[in] s12_a12 if \e arcmode is false, this is the distance between
|
|
|
+ * point 1 and point 2 (meters); otherwise it is the arc length between
|
|
|
+ * point 1 and point 2 (degrees); it can be negative.
|
|
|
+ * @param[in] caps bitor'ed combination of Geodesic::mask values
|
|
|
+ * specifying the capabilities the GeodesicLine object should possess,
|
|
|
+ * i.e., which quantities can be returned in calls to
|
|
|
+ * GeodesicLine::Position.
|
|
|
+ * @return a GeodesicLine object.
|
|
|
+ *
|
|
|
+ * This function sets point 3 of the GeodesicLine to correspond to point 2
|
|
|
+ * of the direct geodesic problem.
|
|
|
+ *
|
|
|
+ * \e lat1 should be in the range [−90°, 90°].
|
|
|
+ **********************************************************************/
|
|
|
+ GeodesicLine GenDirectLine(real lat1, real lon1, real azi1,
|
|
|
+ bool arcmode, real s12_a12,
|
|
|
+ unsigned caps = ALL) const;
|
|
|
+ ///@}
|
|
|
+
|
|
|
+ /** \name Inspector functions.
|
|
|
+ **********************************************************************/
|
|
|
+ ///@{
|
|
|
+
|
|
|
+ /**
|
|
|
+ * @return \e a the equatorial radius of the ellipsoid (meters). This is
|
|
|
+ * the value used in the constructor.
|
|
|
+ **********************************************************************/
|
|
|
+ Math::real EquatorialRadius() const { return _a; }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * @return \e f the flattening of the ellipsoid. This is the
|
|
|
+ * value used in the constructor.
|
|
|
+ **********************************************************************/
|
|
|
+ Math::real Flattening() const { return _f; }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * @return total area of ellipsoid in meters<sup>2</sup>. The area of a
|
|
|
+ * polygon encircling a pole can be found by adding
|
|
|
+ * Geodesic::EllipsoidArea()/2 to the sum of \e S12 for each side of the
|
|
|
+ * polygon.
|
|
|
+ **********************************************************************/
|
|
|
+ Math::real EllipsoidArea() const
|
|
|
+ { return 4 * Math::pi() * _c2; }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * \deprecated An old name for EquatorialRadius().
|
|
|
+ **********************************************************************/
|
|
|
+ GEOGRAPHICLIB_DEPRECATED("Use EquatorialRadius()")
|
|
|
+ Math::real MajorRadius() const { return EquatorialRadius(); }
|
|
|
+ ///@}
|
|
|
+
|
|
|
+ /**
|
|
|
+ * A global instantiation of Geodesic with the parameters for the WGS84
|
|
|
+ * ellipsoid.
|
|
|
+ **********************************************************************/
|
|
|
+ static const Geodesic& WGS84();
|
|
|
+
|
|
|
+ };
|
|
|
+
|
|
|
+} // namespace GeographicLib
|
|
|
+
|
|
|
+#endif // GEOGRAPHICLIB_GEODESIC_HPP
|