Browse Source

add GeographicLib

Sven Czarnian 3 years ago
parent
commit
09e29afe7b
46 changed files with 16958 additions and 0 deletions
  1. 12 0
      cmake/3rdPartyTargets.cmake
  2. 198 0
      external/include/GeographicLib/Accumulator.hpp
  3. 321 0
      external/include/GeographicLib/AlbersEqualArea.hpp
  4. 145 0
      external/include/GeographicLib/AzimuthalEquidistant.hpp
  5. 210 0
      external/include/GeographicLib/CassiniSoldner.hpp
  6. 195 0
      external/include/GeographicLib/CircularEngine.hpp
  7. 25 0
      external/include/GeographicLib/Config.h
  8. 329 0
      external/include/GeographicLib/Constants.hpp
  9. 405 0
      external/include/GeographicLib/DMS.hpp
  10. 542 0
      external/include/GeographicLib/Ellipsoid.hpp
  11. 702 0
      external/include/GeographicLib/EllipticFunction.hpp
  12. 143 0
      external/include/GeographicLib/GARS.hpp
  13. 553 0
      external/include/GeographicLib/GeoCoords.hpp
  14. 274 0
      external/include/GeographicLib/Geocentric.hpp
  15. 977 0
      external/include/GeographicLib/Geodesic.hpp
  16. 869 0
      external/include/GeographicLib/GeodesicExact.hpp
  17. 708 0
      external/include/GeographicLib/GeodesicLine.hpp
  18. 673 0
      external/include/GeographicLib/GeodesicLineExact.hpp
  19. 180 0
      external/include/GeographicLib/Geohash.hpp
  20. 478 0
      external/include/GeographicLib/Geoid.hpp
  21. 161 0
      external/include/GeographicLib/Georef.hpp
  22. 221 0
      external/include/GeographicLib/Gnomonic.hpp
  23. 287 0
      external/include/GeographicLib/GravityCircle.hpp
  24. 549 0
      external/include/GeographicLib/GravityModel.hpp
  25. 330 0
      external/include/GeographicLib/LambertConformalConic.hpp
  26. 244 0
      external/include/GeographicLib/LocalCartesian.hpp
  27. 361 0
      external/include/GeographicLib/MGRS.hpp
  28. 204 0
      external/include/GeographicLib/MagneticCircle.hpp
  29. 406 0
      external/include/GeographicLib/MagneticModel.hpp
  30. 684 0
      external/include/GeographicLib/Math.hpp
  31. 837 0
      external/include/GeographicLib/NearestNeighbor.hpp
  32. 400 0
      external/include/GeographicLib/NormalGravity.hpp
  33. 255 0
      external/include/GeographicLib/OSGB.hpp
  34. 160 0
      external/include/GeographicLib/PolarStereographic.hpp
  35. 325 0
      external/include/GeographicLib/PolygonArea.hpp
  36. 621 0
      external/include/GeographicLib/Rhumb.hpp
  37. 384 0
      external/include/GeographicLib/SphericalEngine.hpp
  38. 356 0
      external/include/GeographicLib/SphericalHarmonic.hpp
  39. 283 0
      external/include/GeographicLib/SphericalHarmonic1.hpp
  40. 320 0
      external/include/GeographicLib/SphericalHarmonic2.hpp
  41. 206 0
      external/include/GeographicLib/TransverseMercator.hpp
  42. 264 0
      external/include/GeographicLib/TransverseMercatorExact.hpp
  43. 428 0
      external/include/GeographicLib/UTMUPS.hpp
  44. 733 0
      external/include/GeographicLib/Utility.hpp
  45. BIN
      external/lib/Geographic.lib
  46. BIN
      external/lib/Geographic_d.lib

+ 12 - 0
cmake/3rdPartyTargets.cmake

@@ -21,6 +21,18 @@ ELSE ()
     MESSAGE(FATAL_ERROR "Unsupported compiler")
 ENDIF ()
 
+# define the import target of GeographicLib
+ADD_LIBRARY(GeographicLib STATIC IMPORTED)
+IF (MSVC)
+    SET_TARGET_PROPERTIES(GeographicLib PROPERTIES
+        IMPORTED_LOCATION_DEBUG "${CMAKE_SOURCE_DIR}/external/lib/Geographic_d.lib"
+        IMPORTED_LOCATION_RELEASE "${CMAKE_SOURCE_DIR}/external/lib/Geographic.lib"
+    )
+    TARGET_INCLUDE_DIRECTORIES(GeographicLib INTERFACE "${CMAKE_SOURCE_DIR}/external/include")
+ELSE ()
+    MESSAGE(FATAL_ERROR "Unsupported compiler")
+ENDIF ()
+
 # define the import target of libsodium
 ADD_LIBRARY(libsodium STATIC IMPORTED)
 IF (MSVC)

+ 198 - 0
external/include/GeographicLib/Accumulator.hpp

@@ -0,0 +1,198 @@
+/**
+ * \file Accumulator.hpp
+ * \brief Header for GeographicLib::Accumulator class
+ *
+ * Copyright (c) Charles Karney (2010-2020) <charles@karney.com> and licensed
+ * under the MIT/X11 License.  For more information, see
+ * https://geographiclib.sourceforge.io/
+ **********************************************************************/
+
+#if !defined(GEOGRAPHICLIB_ACCUMULATOR_HPP)
+#define GEOGRAPHICLIB_ACCUMULATOR_HPP 1
+
+#include <GeographicLib/Constants.hpp>
+
+namespace GeographicLib {
+
+  /**
+   * \brief An accumulator for sums
+   *
+   * This allows many numbers of floating point type \e T to be added together
+   * with twice the normal precision.  Thus if \e T is double, the effective
+   * precision of the sum is 106 bits or about 32 decimal places.
+   *
+   * The implementation follows J. R. Shewchuk,
+   * <a href="https://doi.org/10.1007/PL00009321"> Adaptive Precision
+   * Floating-Point Arithmetic and Fast Robust Geometric Predicates</a>,
+   * Discrete & Computational Geometry 18(3) 305--363 (1997).
+   *
+   * Approximate timings (summing a vector<double>)
+   * - double:               2ns
+   * - Accumulator<double>: 23ns
+   *
+   * In the documentation of the member functions, \e sum stands for the value
+   * currently held in the accumulator.
+   *
+   * Example of use:
+   * \include example-Accumulator.cpp
+   **********************************************************************/
+  template<typename T = Math::real>
+  class GEOGRAPHICLIB_EXPORT Accumulator {
+  private:
+    // _s + _t accumulators for the sum.
+    T _s, _t;
+    // Same as Math::sum, but requires abs(u) >= abs(v).  This isn't currently
+    // used.
+    static T fastsum(T u, T v, T& t) {
+      GEOGRAPHICLIB_VOLATILE T s = u + v;
+      GEOGRAPHICLIB_VOLATILE T vp = s - u;
+      t = v - vp;
+      return s;
+    }
+    void Add(T y) {
+      // Here's Shewchuk's solution...
+      T u;                       // hold exact sum as [s, t, u]
+      // Accumulate starting at least significant end
+      y  = Math::sum(y, _t,  u);
+      _s = Math::sum(y, _s, _t);
+      // Start is _s, _t decreasing and non-adjacent.  Sum is now (s + t + u)
+      // exactly with s, t, u non-adjacent and in decreasing order (except for
+      // possible zeros).  The following code tries to normalize the result.
+      // Ideally, we want _s = round(s+t+u) and _u = round(s+t+u - _s).  The
+      // following does an approximate job (and maintains the decreasing
+      // non-adjacent property).  Here are two "failures" using 3-bit floats:
+      //
+      // Case 1: _s is not equal to round(s+t+u) -- off by 1 ulp
+      // [12, -1] - 8 -> [4, 0, -1] -> [4, -1] = 3 should be [3, 0] = 3
+      //
+      // Case 2: _s+_t is not as close to s+t+u as it shold be
+      // [64, 5] + 4 -> [64, 8, 1] -> [64,  8] = 72 (off by 1)
+      //                    should be [80, -7] = 73 (exact)
+      //
+      // "Fixing" these problems is probably not worth the expense.  The
+      // representation inevitably leads to small errors in the accumulated
+      // values.  The additional errors illustrated here amount to 1 ulp of the
+      // less significant word during each addition to the Accumulator and an
+      // additional possible error of 1 ulp in the reported sum.
+      //
+      // Incidentally, the "ideal" representation described above is not
+      // canonical, because _s = round(_s + _t) may not be true.  For example,
+      // with 3-bit floats:
+      //
+      // [128, 16] + 1 -> [160, -16] -- 160 = round(145).
+      // But [160, 0] - 16 -> [128, 16] -- 128 = round(144).
+      //
+      if (_s == 0)              // This implies t == 0,
+        _s = u;                 // so result is u
+      else
+        _t += u;                // otherwise just accumulate u to t.
+    }
+    T Sum(T y) const {
+      Accumulator a(*this);
+      a.Add(y);
+      return a._s;
+    }
+  public:
+    /**
+     * Construct from a \e T.  This is not declared explicit, so that you can
+     * write <code>Accumulator<double> a = 5;</code>.
+     *
+     * @param[in] y set \e sum = \e y.
+     **********************************************************************/
+    Accumulator(T y = T(0)) : _s(y), _t(0) {
+      static_assert(!std::numeric_limits<T>::is_integer,
+                    "Accumulator type is not floating point");
+    }
+    /**
+     * Set the accumulator to a number.
+     *
+     * @param[in] y set \e sum = \e y.
+     **********************************************************************/
+    Accumulator& operator=(T y) { _s = y; _t = 0; return *this; }
+    /**
+     * Return the value held in the accumulator.
+     *
+     * @return \e sum.
+     **********************************************************************/
+    T operator()() const { return _s; }
+    /**
+     * Return the result of adding a number to \e sum (but don't change \e
+     * sum).
+     *
+     * @param[in] y the number to be added to the sum.
+     * @return \e sum + \e y.
+     **********************************************************************/
+    T operator()(T y) const { return Sum(y); }
+    /**
+     * Add a number to the accumulator.
+     *
+     * @param[in] y set \e sum += \e y.
+     **********************************************************************/
+    Accumulator& operator+=(T y) { Add(y); return *this; }
+    /**
+     * Subtract a number from the accumulator.
+     *
+     * @param[in] y set \e sum -= \e y.
+     **********************************************************************/
+    Accumulator& operator-=(T y) { Add(-y); return *this; }
+    /**
+     * Multiply accumulator by an integer.  To avoid loss of accuracy, use only
+     * integers such that \e n &times; \e T is exactly representable as a \e T
+     * (i.e., &plusmn; powers of two).  Use \e n = &minus;1 to negate \e sum.
+     *
+     * @param[in] n set \e sum *= \e n.
+     **********************************************************************/
+    Accumulator& operator*=(int n) { _s *= n; _t *= n; return *this; }
+    /**
+     * Multiply accumulator by a number.  The fma (fused multiply and add)
+     * instruction is used (if available) in order to maintain accuracy.
+     *
+     * @param[in] y set \e sum *= \e y.
+     **********************************************************************/
+    Accumulator& operator*=(T y) {
+      using std::fma;
+      T d = _s; _s *= y;
+      d = fma(y, d, -_s); // the error in the first multiplication
+      _t = fma(y, _t, d); // add error to the second term
+      return *this;
+    }
+    /**
+     * Reduce accumulator to the range [-y/2, y/2].
+     *
+     * @param[in] y the modulus.
+     **********************************************************************/
+    Accumulator& remainder(T y) {
+      using std::remainder;
+      _s = remainder(_s, y);
+      Add(0);                   // This renormalizes the result.
+      return *this;
+    }
+    /**
+     * Test equality of an Accumulator with a number.
+     **********************************************************************/
+    bool operator==(T y) const { return _s == y; }
+    /**
+     * Test inequality of an Accumulator with a number.
+     **********************************************************************/
+    bool operator!=(T y) const { return _s != y; }
+    /**
+     * Less operator on an Accumulator and a number.
+     **********************************************************************/
+    bool operator<(T y) const { return _s < y; }
+    /**
+     * Less or equal operator on an Accumulator and a number.
+     **********************************************************************/
+    bool operator<=(T y) const { return _s <= y; }
+    /**
+     * Greater operator on an Accumulator and a number.
+     **********************************************************************/
+    bool operator>(T y) const { return _s > y; }
+    /**
+     * Greater or equal operator on an Accumulator and a number.
+     **********************************************************************/
+    bool operator>=(T y) const { return _s >= y; }
+  };
+
+} // namespace GeographicLib
+
+#endif  // GEOGRAPHICLIB_ACCUMULATOR_HPP

+ 321 - 0
external/include/GeographicLib/AlbersEqualArea.hpp

@@ -0,0 +1,321 @@
+/**
+ * \file AlbersEqualArea.hpp
+ * \brief Header for GeographicLib::AlbersEqualArea class
+ *
+ * Copyright (c) Charles Karney (2010-2021) <charles@karney.com> and licensed
+ * under the MIT/X11 License.  For more information, see
+ * https://geographiclib.sourceforge.io/
+ **********************************************************************/
+
+#if !defined(GEOGRAPHICLIB_ALBERSEQUALAREA_HPP)
+#define GEOGRAPHICLIB_ALBERSEQUALAREA_HPP 1
+
+#include <GeographicLib/Constants.hpp>
+
+namespace GeographicLib {
+
+  /**
+   * \brief Albers equal area conic projection
+   *
+   * Implementation taken from the report,
+   * - J. P. Snyder,
+   *   <a href="http://pubs.er.usgs.gov/usgspubs/pp/pp1395"> Map Projections: A
+   *   Working Manual</a>, USGS Professional Paper 1395 (1987),
+   *   pp. 101--102.
+   *
+   * This is a implementation of the equations in Snyder except that divided
+   * differences will be [have been] used to transform the expressions into
+   * ones which may be evaluated accurately.  [In this implementation, the
+   * projection correctly becomes the cylindrical equal area or the azimuthal
+   * equal area projection when the standard latitude is the equator or a
+   * pole.]
+   *
+   * The ellipsoid parameters, the standard parallels, and the scale on the
+   * standard parallels are set in the constructor.  Internally, the case with
+   * two standard parallels is converted into a single standard parallel, the
+   * latitude of minimum azimuthal scale, with an azimuthal scale specified on
+   * this parallel.  This latitude is also used as the latitude of origin which
+   * is returned by AlbersEqualArea::OriginLatitude.  The azimuthal scale on
+   * the latitude of origin is given by AlbersEqualArea::CentralScale.  The
+   * case with two standard parallels at opposite poles is singular and is
+   * disallowed.  The central meridian (which is a trivial shift of the
+   * longitude) is specified as the \e lon0 argument of the
+   * AlbersEqualArea::Forward and AlbersEqualArea::Reverse functions.
+   * AlbersEqualArea::Forward and AlbersEqualArea::Reverse also return the
+   * meridian convergence, &gamma;, and azimuthal scale, \e k.  A small square
+   * aligned with the cardinal directions is projected to a rectangle with
+   * dimensions \e k (in the E-W direction) and 1/\e k (in the N-S direction).
+   * The E-W sides of the rectangle are oriented &gamma; degrees
+   * counter-clockwise from the \e x axis.  There is no provision in this class
+   * for specifying a false easting or false northing or a different latitude
+   * of origin.
+   *
+   * Example of use:
+   * \include example-AlbersEqualArea.cpp
+   *
+   * <a href="ConicProj.1.html">ConicProj</a> is a command-line utility
+   * providing access to the functionality of LambertConformalConic and
+   * AlbersEqualArea.
+   **********************************************************************/
+  class GEOGRAPHICLIB_EXPORT AlbersEqualArea {
+  private:
+    typedef Math::real real;
+    real eps_, epsx_, epsx2_, tol_, tol0_;
+    real _a, _f, _fm, _e2, _e, _e2m, _qZ, _qx;
+    real _sign, _lat0, _k0;
+    real _n0, _m02, _nrho0, _k2, _txi0, _scxi0, _sxi0;
+    static const int numit_ = 5;   // Newton iterations in Reverse
+    static const int numit0_ = 20; // Newton iterations in Init
+    static real hyp(real x) {
+      using std::hypot;
+      return hypot(real(1), x);
+    }
+    // atanh(      e   * x)/      e   if f > 0
+    // atan (sqrt(-e2) * x)/sqrt(-e2) if f < 0
+    // x                              if f = 0
+    real atanhee(real x) const {
+      using std::atan; using std::abs; using std::atanh;
+      return _f > 0 ? atanh(_e * x)/_e : (_f < 0 ? (atan(_e * x)/_e) : x);
+    }
+    // return atanh(sqrt(x))/sqrt(x) - 1, accurate for small x
+    static real atanhxm1(real x);
+
+    // Divided differences
+    // Definition: Df(x,y) = (f(x)-f(y))/(x-y)
+    // See:
+    //   W. M. Kahan and R. J. Fateman,
+    //   Symbolic computation of divided differences,
+    //   SIGSAM Bull. 33(3), 7-28 (1999)
+    //   https://doi.org/10.1145/334714.334716
+    //   http://www.cs.berkeley.edu/~fateman/papers/divdiff.pdf
+    //
+    // General rules
+    // h(x) = f(g(x)): Dh(x,y) = Df(g(x),g(y))*Dg(x,y)
+    // h(x) = f(x)*g(x):
+    //        Dh(x,y) = Df(x,y)*g(x) + Dg(x,y)*f(y)
+    //                = Df(x,y)*g(y) + Dg(x,y)*f(x)
+    //                = Df(x,y)*(g(x)+g(y))/2 + Dg(x,y)*(f(x)+f(y))/2
+    //
+    // sn(x) = x/sqrt(1+x^2): Dsn(x,y) = (x+y)/((sn(x)+sn(y))*(1+x^2)*(1+y^2))
+    static real Dsn(real x, real y, real sx, real sy) {
+      // sx = x/hyp(x)
+      real t = x * y;
+      return t > 0 ? (x + y) * Math::sq( (sx * sy)/t ) / (sx + sy) :
+        (x - y != 0 ? (sx - sy) / (x - y) : 1);
+    }
+    // Datanhee(x,y) = (atanee(x)-atanee(y))/(x-y)
+    //               = atanhee((x-y)/(1-e^2*x*y))/(x-y)
+    real Datanhee(real x, real y) const {
+      real t = x - y,  d = 1 - _e2 * x * y;
+      return t == 0 ? 1 / d :
+        (x*y < 0 ? atanhee(x) - atanhee(y) : atanhee(t / d)) / t;
+    }
+    // DDatanhee(x,y) = (Datanhee(1,y) - Datanhee(1,x))/(y-x)
+    real DDatanhee(real x, real y) const;
+    real DDatanhee0(real x, real y) const;
+    real DDatanhee1(real x, real y) const;
+    real DDatanhee2(real x, real y) const;
+    void Init(real sphi1, real cphi1, real sphi2, real cphi2, real k1);
+    real txif(real tphi) const;
+    real tphif(real txi) const;
+
+    friend class Ellipsoid;           // For access to txif, tphif, etc.
+  public:
+
+    /**
+     * Constructor with a single standard parallel.
+     *
+     * @param[in] a equatorial radius of ellipsoid (meters).
+     * @param[in] f flattening of ellipsoid.  Setting \e f = 0 gives a sphere.
+     *   Negative \e f gives a prolate ellipsoid.
+     * @param[in] stdlat standard parallel (degrees), the circle of tangency.
+     * @param[in] k0 azimuthal scale on the standard parallel.
+     * @exception GeographicErr if \e a, (1 &minus; \e f) \e a, or \e k0 is
+     *   not positive.
+     * @exception GeographicErr if \e stdlat is not in [&minus;90&deg;,
+     *   90&deg;].
+     **********************************************************************/
+    AlbersEqualArea(real a, real f, real stdlat, real k0);
+
+    /**
+     * Constructor with two standard parallels.
+     *
+     * @param[in] a equatorial radius of ellipsoid (meters).
+     * @param[in] f flattening of ellipsoid.  Setting \e f = 0 gives a sphere.
+     *   Negative \e f gives a prolate ellipsoid.
+     * @param[in] stdlat1 first standard parallel (degrees).
+     * @param[in] stdlat2 second standard parallel (degrees).
+     * @param[in] k1 azimuthal scale on the standard parallels.
+     * @exception GeographicErr if \e a, (1 &minus; \e f) \e a, or \e k1 is
+     *   not positive.
+     * @exception GeographicErr if \e stdlat1 or \e stdlat2 is not in
+     *   [&minus;90&deg;, 90&deg;], or if \e stdlat1 and \e stdlat2 are
+     *   opposite poles.
+     **********************************************************************/
+    AlbersEqualArea(real a, real f, real stdlat1, real stdlat2, real k1);
+
+    /**
+     * Constructor with two standard parallels specified by sines and cosines.
+     *
+     * @param[in] a equatorial radius of ellipsoid (meters).
+     * @param[in] f flattening of ellipsoid.  Setting \e f = 0 gives a sphere.
+     *   Negative \e f gives a prolate ellipsoid.
+     * @param[in] sinlat1 sine of first standard parallel.
+     * @param[in] coslat1 cosine of first standard parallel.
+     * @param[in] sinlat2 sine of second standard parallel.
+     * @param[in] coslat2 cosine of second standard parallel.
+     * @param[in] k1 azimuthal scale on the standard parallels.
+     * @exception GeographicErr if \e a, (1 &minus; \e f) \e a, or \e k1 is
+     *   not positive.
+     * @exception GeographicErr if \e stdlat1 or \e stdlat2 is not in
+     *   [&minus;90&deg;, 90&deg;], or if \e stdlat1 and \e stdlat2 are
+     *   opposite poles.
+     *
+     * This allows parallels close to the poles to be specified accurately.
+     * This routine computes the latitude of origin and the azimuthal scale at
+     * this latitude.  If \e dlat = abs(\e lat2 &minus; \e lat1) &le; 160&deg;,
+     * then the error in the latitude of origin is less than 4.5 &times;
+     * 10<sup>&minus;14</sup>d;.
+     **********************************************************************/
+    AlbersEqualArea(real a, real f,
+                    real sinlat1, real coslat1,
+                    real sinlat2, real coslat2,
+                    real k1);
+
+    /**
+     * Set the azimuthal scale for the projection.
+     *
+     * @param[in] lat (degrees).
+     * @param[in] k azimuthal scale at latitude \e lat (default 1).
+     * @exception GeographicErr \e k is not positive.
+     * @exception GeographicErr if \e lat is not in (&minus;90&deg;,
+     *   90&deg;).
+     *
+     * This allows a "latitude of conformality" to be specified.
+     **********************************************************************/
+    void SetScale(real lat, real k = real(1));
+
+    /**
+     * Forward projection, from geographic to Lambert conformal conic.
+     *
+     * @param[in] lon0 central meridian longitude (degrees).
+     * @param[in] lat latitude of point (degrees).
+     * @param[in] lon longitude of point (degrees).
+     * @param[out] x easting of point (meters).
+     * @param[out] y northing of point (meters).
+     * @param[out] gamma meridian convergence at point (degrees).
+     * @param[out] k azimuthal scale of projection at point; the radial
+     *   scale is the 1/\e k.
+     *
+     * The latitude origin is given by AlbersEqualArea::LatitudeOrigin().  No
+     * false easting or northing is added and \e lat should be in the range
+     * [&minus;90&deg;, 90&deg;].  The values of \e x and \e y returned for
+     * points which project to infinity (i.e., one or both of the poles) will
+     * be large but finite.
+     **********************************************************************/
+    void Forward(real lon0, real lat, real lon,
+                 real& x, real& y, real& gamma, real& k) const;
+
+    /**
+     * Reverse projection, from Lambert conformal conic to geographic.
+     *
+     * @param[in] lon0 central meridian longitude (degrees).
+     * @param[in] x easting of point (meters).
+     * @param[in] y northing of point (meters).
+     * @param[out] lat latitude of point (degrees).
+     * @param[out] lon longitude of point (degrees).
+     * @param[out] gamma meridian convergence at point (degrees).
+     * @param[out] k azimuthal scale of projection at point; the radial
+     *   scale is the 1/\e k.
+     *
+     * The latitude origin is given by AlbersEqualArea::LatitudeOrigin().  No
+     * false easting or northing is added.  The value of \e lon returned is in
+     * the range [&minus;180&deg;, 180&deg;].  The value of \e lat returned is
+     * in the range [&minus;90&deg;, 90&deg;].  If the input point is outside
+     * the legal projected space the nearest pole is returned.
+     **********************************************************************/
+    void Reverse(real lon0, real x, real y,
+                 real& lat, real& lon, real& gamma, real& k) const;
+
+    /**
+     * AlbersEqualArea::Forward without returning the convergence and
+     * scale.
+     **********************************************************************/
+    void Forward(real lon0, real lat, real lon,
+                 real& x, real& y) const {
+      real gamma, k;
+      Forward(lon0, lat, lon, x, y, gamma, k);
+    }
+
+    /**
+     * AlbersEqualArea::Reverse without returning the convergence and
+     * scale.
+     **********************************************************************/
+    void Reverse(real lon0, real x, real y,
+                 real& lat, real& lon) const {
+      real gamma, k;
+      Reverse(lon0, x, y, lat, lon, gamma, k);
+    }
+
+    /** \name Inspector functions
+     **********************************************************************/
+    ///@{
+    /**
+     * @return \e a the equatorial radius of the ellipsoid (meters).  This is
+     *   the value used in the constructor.
+     **********************************************************************/
+    Math::real EquatorialRadius() const { return _a; }
+
+    /**
+     * @return \e f the flattening of the ellipsoid.  This is the value used in
+     *   the constructor.
+     **********************************************************************/
+    Math::real Flattening() const { return _f; }
+
+    /**
+     * @return latitude of the origin for the projection (degrees).
+     *
+     * This is the latitude of minimum azimuthal scale and equals the \e stdlat
+     * in the 1-parallel constructor and lies between \e stdlat1 and \e stdlat2
+     * in the 2-parallel constructors.
+     **********************************************************************/
+    Math::real OriginLatitude() const { return _lat0; }
+
+    /**
+     * @return central scale for the projection.  This is the azimuthal scale
+     *   on the latitude of origin.
+     **********************************************************************/
+    Math::real CentralScale() const { return _k0; }
+
+    /**
+     * \deprecated An old name for EquatorialRadius().
+     **********************************************************************/
+    GEOGRAPHICLIB_DEPRECATED("Use EquatorialRadius()")
+    Math::real MajorRadius() const { return EquatorialRadius(); }
+    ///@}
+
+    /**
+     * A global instantiation of AlbersEqualArea with the WGS84 ellipsoid, \e
+     * stdlat = 0, and \e k0 = 1.  This degenerates to the cylindrical equal
+     * area projection.
+     **********************************************************************/
+    static const AlbersEqualArea& CylindricalEqualArea();
+
+    /**
+     * A global instantiation of AlbersEqualArea with the WGS84 ellipsoid, \e
+     * stdlat = 90&deg;, and \e k0 = 1.  This degenerates to the
+     * Lambert azimuthal equal area projection.
+     **********************************************************************/
+    static const AlbersEqualArea& AzimuthalEqualAreaNorth();
+
+    /**
+     * A global instantiation of AlbersEqualArea with the WGS84 ellipsoid, \e
+     * stdlat = &minus;90&deg;, and \e k0 = 1.  This degenerates to the
+     * Lambert azimuthal equal area projection.
+     **********************************************************************/
+    static const AlbersEqualArea& AzimuthalEqualAreaSouth();
+  };
+
+} // namespace GeographicLib
+
+#endif  // GEOGRAPHICLIB_ALBERSEQUALAREA_HPP

+ 145 - 0
external/include/GeographicLib/AzimuthalEquidistant.hpp

@@ -0,0 +1,145 @@
+/**
+ * \file AzimuthalEquidistant.hpp
+ * \brief Header for GeographicLib::AzimuthalEquidistant class
+ *
+ * Copyright (c) Charles Karney (2009-2020) <charles@karney.com> and licensed
+ * under the MIT/X11 License.  For more information, see
+ * https://geographiclib.sourceforge.io/
+ **********************************************************************/
+
+#if !defined(GEOGRAPHICLIB_AZIMUTHALEQUIDISTANT_HPP)
+#define GEOGRAPHICLIB_AZIMUTHALEQUIDISTANT_HPP 1
+
+#include <GeographicLib/Geodesic.hpp>
+#include <GeographicLib/Constants.hpp>
+
+namespace GeographicLib {
+
+  /**
+   * \brief Azimuthal equidistant projection
+   *
+   * Azimuthal equidistant projection centered at an arbitrary position on the
+   * ellipsoid.  For a point in projected space (\e x, \e y), the geodesic
+   * distance from the center position is hypot(\e x, \e y) and the azimuth of
+   * the geodesic from the center point is atan2(\e x, \e y).  The Forward and
+   * Reverse methods also return the azimuth \e azi of the geodesic at (\e x,
+   * \e y) and reciprocal scale \e rk in the azimuthal direction which,
+   * together with the basic properties of the projection, serve to specify
+   * completely the local affine transformation between geographic and
+   * projected coordinates.
+   *
+   * The conversions all take place using a Geodesic object (by default
+   * Geodesic::WGS84()).  For more information on geodesics see \ref geodesic.
+   *
+   * Example of use:
+   * \include example-AzimuthalEquidistant.cpp
+   *
+   * <a href="GeodesicProj.1.html">GeodesicProj</a> is a command-line utility
+   * providing access to the functionality of AzimuthalEquidistant, Gnomonic,
+   * and CassiniSoldner.
+   **********************************************************************/
+
+  class GEOGRAPHICLIB_EXPORT AzimuthalEquidistant {
+  private:
+    typedef Math::real real;
+    real eps_;
+    Geodesic _earth;
+  public:
+
+    /**
+     * Constructor for AzimuthalEquidistant.
+     *
+     * @param[in] earth the Geodesic object to use for geodesic calculations.
+     *   By default this uses the WGS84 ellipsoid.
+     **********************************************************************/
+    explicit AzimuthalEquidistant(const Geodesic& earth = Geodesic::WGS84());
+
+    /**
+     * Forward projection, from geographic to azimuthal equidistant.
+     *
+     * @param[in] lat0 latitude of center point of projection (degrees).
+     * @param[in] lon0 longitude of center point of projection (degrees).
+     * @param[in] lat latitude of point (degrees).
+     * @param[in] lon longitude of point (degrees).
+     * @param[out] x easting of point (meters).
+     * @param[out] y northing of point (meters).
+     * @param[out] azi azimuth of geodesic at point (degrees).
+     * @param[out] rk reciprocal of azimuthal scale at point.
+     *
+     * \e lat0 and \e lat should be in the range [&minus;90&deg;, 90&deg;].
+     * The scale of the projection is 1 in the "radial" direction, \e azi
+     * clockwise from true north, and is 1/\e rk in the direction perpendicular
+     * to this.  A call to Forward followed by a call to Reverse will return
+     * the original (\e lat, \e lon) (to within roundoff).
+     **********************************************************************/
+    void Forward(real lat0, real lon0, real lat, real lon,
+                 real& x, real& y, real& azi, real& rk) const;
+
+    /**
+     * Reverse projection, from azimuthal equidistant to geographic.
+     *
+     * @param[in] lat0 latitude of center point of projection (degrees).
+     * @param[in] lon0 longitude of center point of projection (degrees).
+     * @param[in] x easting of point (meters).
+     * @param[in] y northing of point (meters).
+     * @param[out] lat latitude of point (degrees).
+     * @param[out] lon longitude of point (degrees).
+     * @param[out] azi azimuth of geodesic at point (degrees).
+     * @param[out] rk reciprocal of azimuthal scale at point.
+     *
+     * \e lat0 should be in the range [&minus;90&deg;, 90&deg;].  \e lat will
+     * be in the range [&minus;90&deg;, 90&deg;] and \e lon will be in the
+     * range [&minus;180&deg;, 180&deg;].  The scale of the projection is 1 in
+     * the "radial" direction, \e azi clockwise from true north, and is 1/\e rk
+     * in the direction perpendicular to this.  A call to Reverse followed by a
+     * call to Forward will return the original (\e x, \e y) (to roundoff) only
+     * if the geodesic to (\e x, \e y) is a shortest path.
+     **********************************************************************/
+    void Reverse(real lat0, real lon0, real x, real y,
+                 real& lat, real& lon, real& azi, real& rk) const;
+
+    /**
+     * AzimuthalEquidistant::Forward without returning the azimuth and scale.
+     **********************************************************************/
+    void Forward(real lat0, real lon0, real lat, real lon,
+                 real& x, real& y) const {
+      real azi, rk;
+      Forward(lat0, lon0, lat, lon, x, y, azi, rk);
+    }
+
+    /**
+     * AzimuthalEquidistant::Reverse without returning the azimuth and scale.
+     **********************************************************************/
+    void Reverse(real lat0, real lon0, real x, real y,
+                 real& lat, real& lon) const {
+      real azi, rk;
+      Reverse(lat0, lon0, x, y, lat, lon, azi, rk);
+    }
+
+    /** \name Inspector functions
+     **********************************************************************/
+    ///@{
+    /**
+     * @return \e a the equatorial radius of the ellipsoid (meters).  This is
+     *   the value inherited from the Geodesic object used in the constructor.
+     **********************************************************************/
+    Math::real EquatorialRadius() const { return _earth.EquatorialRadius(); }
+
+    /**
+     * @return \e f the flattening of the ellipsoid.  This is the value
+     *   inherited from the Geodesic object used in the constructor.
+     **********************************************************************/
+    Math::real Flattening() const { return _earth.Flattening(); }
+
+    /**
+     * \deprecated An old name for EquatorialRadius().
+     **********************************************************************/
+    GEOGRAPHICLIB_DEPRECATED("Use EquatorialRadius()")
+    Math::real MajorRadius() const { return EquatorialRadius(); }
+    ///@}
+
+  };
+
+} // namespace GeographicLib
+
+#endif  // GEOGRAPHICLIB_AZIMUTHALEQUIDISTANT_HPP

+ 210 - 0
external/include/GeographicLib/CassiniSoldner.hpp

@@ -0,0 +1,210 @@
+/**
+ * \file CassiniSoldner.hpp
+ * \brief Header for GeographicLib::CassiniSoldner class
+ *
+ * Copyright (c) Charles Karney (2009-2020) <charles@karney.com> and licensed
+ * under the MIT/X11 License.  For more information, see
+ * https://geographiclib.sourceforge.io/
+ **********************************************************************/
+
+#if !defined(GEOGRAPHICLIB_CASSINISOLDNER_HPP)
+#define GEOGRAPHICLIB_CASSINISOLDNER_HPP 1
+
+#include <GeographicLib/Geodesic.hpp>
+#include <GeographicLib/GeodesicLine.hpp>
+#include <GeographicLib/Constants.hpp>
+
+namespace GeographicLib {
+
+  /**
+   * \brief Cassini-Soldner projection
+   *
+   * Cassini-Soldner projection centered at an arbitrary position, \e lat0, \e
+   * lon0, on the ellipsoid.  This projection is a transverse cylindrical
+   * equidistant projection.  The projection from (\e lat, \e lon) to easting
+   * and northing (\e x, \e y) is defined by geodesics as follows.  Go north
+   * along a geodesic a distance \e y from the central point; then turn
+   * clockwise 90&deg; and go a distance \e x along a geodesic.
+   * (Although the initial heading is north, this changes to south if the pole
+   * is crossed.)  This procedure uniquely defines the reverse projection.  The
+   * forward projection is constructed as follows.  Find the point (\e lat1, \e
+   * lon1) on the meridian closest to (\e lat, \e lon).  Here we consider the
+   * full meridian so that \e lon1 may be either \e lon0 or \e lon0 +
+   * 180&deg;.  \e x is the geodesic distance from (\e lat1, \e lon1) to
+   * (\e lat, \e lon), appropriately signed according to which side of the
+   * central meridian (\e lat, \e lon) lies.  \e y is the shortest distance
+   * along the meridian from (\e lat0, \e lon0) to (\e lat1, \e lon1), again,
+   * appropriately signed according to the initial heading.  [Note that, in the
+   * case of prolate ellipsoids, the shortest meridional path from (\e lat0, \e
+   * lon0) to (\e lat1, \e lon1) may not be the shortest path.]  This procedure
+   * uniquely defines the forward projection except for a small class of points
+   * for which there may be two equally short routes for either leg of the
+   * path.
+   *
+   * Because of the properties of geodesics, the (\e x, \e y) grid is
+   * orthogonal.  The scale in the easting direction is unity.  The scale, \e
+   * k, in the northing direction is unity on the central meridian and
+   * increases away from the central meridian.  The projection routines return
+   * \e azi, the true bearing of the easting direction, and \e rk = 1/\e k, the
+   * reciprocal of the scale in the northing direction.
+   *
+   * The conversions all take place using a Geodesic object (by default
+   * Geodesic::WGS84()).  For more information on geodesics see \ref geodesic.
+   * The determination of (\e lat1, \e lon1) in the forward projection is by
+   * solving the inverse geodesic problem for (\e lat, \e lon) and its twin
+   * obtained by reflection in the meridional plane.  The scale is found by
+   * determining where two neighboring geodesics intersecting the central
+   * meridian at \e lat1 and \e lat1 + \e dlat1 intersect and taking the ratio
+   * of the reduced lengths for the two geodesics between that point and,
+   * respectively, (\e lat1, \e lon1) and (\e lat, \e lon).
+   *
+   * Example of use:
+   * \include example-CassiniSoldner.cpp
+   *
+   * <a href="GeodesicProj.1.html">GeodesicProj</a> is a command-line utility
+   * providing access to the functionality of AzimuthalEquidistant, Gnomonic,
+   * and CassiniSoldner.
+   **********************************************************************/
+
+  class GEOGRAPHICLIB_EXPORT CassiniSoldner {
+  private:
+    typedef Math::real real;
+    Geodesic _earth;
+    GeodesicLine _meridian;
+    real _sbet0, _cbet0;
+    static const unsigned maxit_ = 10;
+
+  public:
+
+    /**
+     * Constructor for CassiniSoldner.
+     *
+     * @param[in] earth the Geodesic object to use for geodesic calculations.
+     *   By default this uses the WGS84 ellipsoid.
+     *
+     * This constructor makes an "uninitialized" object.  Call Reset to set the
+     * central latitude and longitude, prior to calling Forward and Reverse.
+     **********************************************************************/
+    explicit CassiniSoldner(const Geodesic& earth = Geodesic::WGS84());
+
+    /**
+     * Constructor for CassiniSoldner specifying a center point.
+     *
+     * @param[in] lat0 latitude of center point of projection (degrees).
+     * @param[in] lon0 longitude of center point of projection (degrees).
+     * @param[in] earth the Geodesic object to use for geodesic calculations.
+     *   By default this uses the WGS84 ellipsoid.
+     *
+     * \e lat0 should be in the range [&minus;90&deg;, 90&deg;].
+     **********************************************************************/
+    CassiniSoldner(real lat0, real lon0,
+                   const Geodesic& earth = Geodesic::WGS84());
+
+    /**
+     * Set the central point of the projection
+     *
+     * @param[in] lat0 latitude of center point of projection (degrees).
+     * @param[in] lon0 longitude of center point of projection (degrees).
+     *
+     * \e lat0 should be in the range [&minus;90&deg;, 90&deg;].
+     **********************************************************************/
+    void Reset(real lat0, real lon0);
+
+    /**
+     * Forward projection, from geographic to Cassini-Soldner.
+     *
+     * @param[in] lat latitude of point (degrees).
+     * @param[in] lon longitude of point (degrees).
+     * @param[out] x easting of point (meters).
+     * @param[out] y northing of point (meters).
+     * @param[out] azi azimuth of easting direction at point (degrees).
+     * @param[out] rk reciprocal of azimuthal northing scale at point.
+     *
+     * \e lat should be in the range [&minus;90&deg;, 90&deg;].  A call to
+     * Forward followed by a call to Reverse will return the original (\e lat,
+     * \e lon) (to within roundoff).  The routine does nothing if the origin
+     * has not been set.
+     **********************************************************************/
+    void Forward(real lat, real lon,
+                 real& x, real& y, real& azi, real& rk) const;
+
+    /**
+     * Reverse projection, from Cassini-Soldner to geographic.
+     *
+     * @param[in] x easting of point (meters).
+     * @param[in] y northing of point (meters).
+     * @param[out] lat latitude of point (degrees).
+     * @param[out] lon longitude of point (degrees).
+     * @param[out] azi azimuth of easting direction at point (degrees).
+     * @param[out] rk reciprocal of azimuthal northing scale at point.
+     *
+     * A call to Reverse followed by a call to Forward will return the original
+     * (\e x, \e y) (to within roundoff), provided that \e x and \e y are
+     * sufficiently small not to "wrap around" the earth.  The routine does
+     * nothing if the origin has not been set.
+     **********************************************************************/
+    void Reverse(real x, real y,
+                 real& lat, real& lon, real& azi, real& rk) const;
+
+    /**
+     * CassiniSoldner::Forward without returning the azimuth and scale.
+     **********************************************************************/
+    void Forward(real lat, real lon,
+                 real& x, real& y) const {
+      real azi, rk;
+      Forward(lat, lon, x, y, azi, rk);
+    }
+
+    /**
+     * CassiniSoldner::Reverse without returning the azimuth and scale.
+     **********************************************************************/
+    void Reverse(real x, real y,
+                 real& lat, real& lon) const {
+      real azi, rk;
+      Reverse(x, y, lat, lon, azi, rk);
+    }
+
+    /** \name Inspector functions
+     **********************************************************************/
+    ///@{
+    /**
+     * @return true if the object has been initialized.
+     **********************************************************************/
+    bool Init() const { return _meridian.Init(); }
+
+    /**
+     * @return \e lat0 the latitude of origin (degrees).
+     **********************************************************************/
+    Math::real LatitudeOrigin() const
+    { return _meridian.Latitude(); }
+
+    /**
+     * @return \e lon0 the longitude of origin (degrees).
+     **********************************************************************/
+    Math::real LongitudeOrigin() const
+    { return _meridian.Longitude(); }
+
+    /**
+     * @return \e a the equatorial radius of the ellipsoid (meters).  This is
+     *   the value inherited from the Geodesic object used in the constructor.
+     **********************************************************************/
+    Math::real EquatorialRadius() const { return _earth.EquatorialRadius(); }
+
+    /**
+     * @return \e f the flattening of the ellipsoid.  This is the value
+     *   inherited from the Geodesic object used in the constructor.
+     **********************************************************************/
+    Math::real Flattening() const { return _earth.Flattening(); }
+
+    /**
+     * \deprecated An old name for EquatorialRadius().
+     **********************************************************************/
+    GEOGRAPHICLIB_DEPRECATED("Use EquatorialRadius()")
+    Math::real MajorRadius() const { return EquatorialRadius(); }
+    ///@}
+
+  };
+
+} // namespace GeographicLib
+
+#endif  // GEOGRAPHICLIB_CASSINISOLDNER_HPP

+ 195 - 0
external/include/GeographicLib/CircularEngine.hpp

@@ -0,0 +1,195 @@
+/**
+ * \file CircularEngine.hpp
+ * \brief Header for GeographicLib::CircularEngine class
+ *
+ * Copyright (c) Charles Karney (2011-2015) <charles@karney.com> and licensed
+ * under the MIT/X11 License.  For more information, see
+ * https://geographiclib.sourceforge.io/
+ **********************************************************************/
+
+#if !defined(GEOGRAPHICLIB_CIRCULARENGINE_HPP)
+#define GEOGRAPHICLIB_CIRCULARENGINE_HPP 1
+
+#include <vector>
+#include <GeographicLib/Constants.hpp>
+#include <GeographicLib/SphericalEngine.hpp>
+
+#if defined(_MSC_VER)
+// Squelch warnings about dll vs vector
+#  pragma warning (push)
+#  pragma warning (disable: 4251)
+#endif
+
+namespace GeographicLib {
+
+  /**
+   * \brief Spherical harmonic sums for a circle
+   *
+   * The class is a companion to SphericalEngine.  If the results of a
+   * spherical harmonic sum are needed for several points on a circle of
+   * constant latitude \e lat and height \e h, then SphericalEngine::Circle can
+   * compute the inner sum, which is independent of longitude \e lon, and
+   * produce a CircularEngine object.  CircularEngine::operator()() can
+   * then be used to perform the outer sum for particular vales of \e lon.
+   * This can lead to substantial improvements in computational speed for high
+   * degree sum (approximately by a factor of \e N / 2 where \e N is the
+   * maximum degree).
+   *
+   * CircularEngine is tightly linked to the internals of SphericalEngine.  For
+   * that reason, the constructor for this class is private.  Use
+   * SphericalHarmonic::Circle, SphericalHarmonic1::Circle, and
+   * SphericalHarmonic2::Circle to create instances of this class.
+   *
+   * CircularEngine stores the coefficients needed to allow the summation over
+   * order to be performed in 2 or 6 vectors of length \e M + 1 (depending on
+   * whether gradients are to be calculated).  For this reason the constructor
+   * may throw a std::bad_alloc exception.
+   *
+   * Example of use:
+   * \include example-CircularEngine.cpp
+   **********************************************************************/
+
+  class GEOGRAPHICLIB_EXPORT CircularEngine {
+  private:
+    typedef Math::real real;
+    enum normalization {
+      FULL = SphericalEngine::FULL,
+      SCHMIDT = SphericalEngine::SCHMIDT,
+    };
+    int _M;
+    bool _gradp;
+    unsigned _norm;
+    real _a, _r, _u, _t;
+    std::vector<real> _wc, _ws, _wrc, _wrs, _wtc, _wts;
+    real _q, _uq, _uq2;
+
+    Math::real Value(bool gradp, real sl, real cl,
+                     real& gradx, real& grady, real& gradz) const;
+
+    friend class SphericalEngine;
+    CircularEngine(int M, bool gradp, unsigned norm,
+                   real a, real r, real u, real t)
+      : _M(M)
+      , _gradp(gradp)
+      , _norm(norm)
+      , _a(a)
+      , _r(r)
+      , _u(u)
+      , _t(t)
+      , _wc(std::vector<real>(_M + 1, 0))
+      , _ws(std::vector<real>(_M + 1, 0))
+      , _wrc(std::vector<real>(_gradp ? _M + 1 : 0, 0))
+      , _wrs(std::vector<real>(_gradp ? _M + 1 : 0, 0))
+      , _wtc(std::vector<real>(_gradp ? _M + 1 : 0, 0))
+      , _wts(std::vector<real>(_gradp ? _M + 1 : 0, 0))
+      {
+        _q = _a / _r;
+        _uq = _u * _q;
+        _uq2 = Math::sq(_uq);
+      }
+
+    void SetCoeff(int m, real wc, real ws)
+    { _wc[m] = wc; _ws[m] = ws; }
+
+    void SetCoeff(int m, real wc, real ws,
+                  real wrc, real wrs, real wtc, real wts) {
+      _wc[m] = wc; _ws[m] = ws;
+      if (_gradp) {
+        _wrc[m] = wrc; _wrs[m] = wrs;
+        _wtc[m] = wtc; _wts[m] = wts;
+      }
+    }
+
+  public:
+
+    /**
+     * A default constructor.  CircularEngine::operator()() on the resulting
+     * object returns zero.  The resulting object can be assigned to the result
+     * of SphericalHarmonic::Circle.
+     **********************************************************************/
+    CircularEngine()
+      : _M(-1)
+      , _gradp(true)
+      , _u(0)
+      , _t(1)
+      {}
+
+    /**
+     * Evaluate the sum for a particular longitude given in terms of its
+     * sine and cosine.
+     *
+     * @param[in] sinlon the sine of the longitude.
+     * @param[in] coslon the cosine of the longitude.
+     * @return \e V the value of the sum.
+     *
+     * The arguments must satisfy <i>sinlon</i><sup>2</sup> +
+     * <i>coslon</i><sup>2</sup> = 1.
+     **********************************************************************/
+    Math::real operator()(real sinlon, real coslon) const {
+      real dummy;
+      return Value(false, sinlon, coslon, dummy, dummy, dummy);
+    }
+
+    /**
+     * Evaluate the sum for a particular longitude.
+     *
+     * @param[in] lon the longitude (degrees).
+     * @return \e V the value of the sum.
+     **********************************************************************/
+    Math::real operator()(real lon) const {
+      real sinlon, coslon;
+      Math::sincosd(lon, sinlon, coslon);
+      return (*this)(sinlon, coslon);
+    }
+
+    /**
+     * Evaluate the sum and its gradient for a particular longitude given in
+     * terms of its sine and cosine.
+     *
+     * @param[in] sinlon the sine of the longitude.
+     * @param[in] coslon the cosine of the longitude.
+     * @param[out] gradx \e x component of the gradient.
+     * @param[out] grady \e y component of the gradient.
+     * @param[out] gradz \e z component of the gradient.
+     * @return \e V the value of the sum.
+     *
+     * The gradients will only be computed if the CircularEngine object was
+     * created with this capability (e.g., via \e gradp = true in
+     * SphericalHarmonic::Circle).  If not, \e gradx, etc., will not be
+     * touched.  The arguments must satisfy <i>sinlon</i><sup>2</sup> +
+     * <i>coslon</i><sup>2</sup> = 1.
+     **********************************************************************/
+    Math::real operator()(real sinlon, real coslon,
+                          real& gradx, real& grady, real& gradz) const {
+      return Value(true, sinlon, coslon, gradx, grady, gradz);
+    }
+
+    /**
+     * Evaluate the sum and its gradient for a particular longitude.
+     *
+     * @param[in] lon the longitude (degrees).
+     * @param[out] gradx \e x component of the gradient.
+     * @param[out] grady \e y component of the gradient.
+     * @param[out] gradz \e z component of the gradient.
+     * @return \e V the value of the sum.
+     *
+     * The gradients will only be computed if the CircularEngine object was
+     * created with this capability (e.g., via \e gradp = true in
+     * SphericalHarmonic::Circle).  If not, \e gradx, etc., will not be
+     * touched.
+     **********************************************************************/
+    Math::real operator()(real lon,
+                          real& gradx, real& grady, real& gradz) const {
+      real sinlon, coslon;
+      Math::sincosd(lon, sinlon, coslon);
+      return (*this)(sinlon, coslon, gradx, grady, gradz);
+    }
+  };
+
+} // namespace GeographicLib
+
+#if defined(_MSC_VER)
+#  pragma warning (pop)
+#endif
+
+#endif  // GEOGRAPHICLIB_CIRCULARENGINE_HPP

+ 25 - 0
external/include/GeographicLib/Config.h

@@ -0,0 +1,25 @@
+#define GEOGRAPHICLIB_VERSION_STRING "1.52"
+#define GEOGRAPHICLIB_VERSION_MAJOR 1
+#define GEOGRAPHICLIB_VERSION_MINOR 52
+#define GEOGRAPHICLIB_VERSION_PATCH 0
+#define GEOGRAPHICLIB_DATA "C:/Users/sven/Documents/Visual Studio 2019/Projects/TST/install"
+
+// These are macros which affect the building of the library
+#define GEOGRAPHICLIB_HAVE_LONG_DOUBLE 0
+#define GEOGRAPHICLIB_WORDS_BIGENDIAN 0
+#define GEOGRAPHICLIB_PRECISION 1
+
+// Specify whether GeographicLib is a shared or static library.  When compiling
+// under Visual Studio it is necessary to specify whether GeographicLib is a
+// shared library.  This is done with the macro GEOGRAPHICLIB_SHARED_LIB, which
+// cmake will correctly define as 0 or 1 when only one type of library is in
+// the package.  If both shared and static libraries are available,
+// GEOGRAPHICLIB_SHARED_LIB is set to 2 which triggers a preprocessor error in
+// Constants.hpp.  In this case, the appropriate value (0 or 1) for
+// GEOGRAPHICLIB_SHARED_LIB must be specified when compiling any program that
+// includes GeographicLib headers.  This is done automatically if GeographicLib
+// and the user's code were built with cmake version 2.8.11 (which introduced
+// the command target_compile_definitions) or later.
+#if !defined(GEOGRAPHICLIB_SHARED_LIB)
+#define GEOGRAPHICLIB_SHARED_LIB 0
+#endif

+ 329 - 0
external/include/GeographicLib/Constants.hpp

@@ -0,0 +1,329 @@
+/**
+ * \file Constants.hpp
+ * \brief Header for GeographicLib::Constants class
+ *
+ * Copyright (c) Charles Karney (2008-2020) <charles@karney.com> and licensed
+ * under the MIT/X11 License.  For more information, see
+ * https://geographiclib.sourceforge.io/
+ **********************************************************************/
+
+#if !defined(GEOGRAPHICLIB_CONSTANTS_HPP)
+#define GEOGRAPHICLIB_CONSTANTS_HPP 1
+
+#include <GeographicLib/Config.h>
+
+/**
+ * @relates GeographicLib::Constants
+ * Pack the version components into a single integer.  Users should not rely on
+ * this particular packing of the components of the version number; see the
+ * documentation for GEOGRAPHICLIB_VERSION, below.
+ **********************************************************************/
+#define GEOGRAPHICLIB_VERSION_NUM(a,b,c) ((((a) * 10000 + (b)) * 100) + (c))
+
+/**
+ * @relates GeographicLib::Constants
+ * The version of GeographicLib as a single integer, packed as MMmmmmpp where
+ * MM is the major version, mmmm is the minor version, and pp is the patch
+ * level.  Users should not rely on this particular packing of the components
+ * of the version number.  Instead they should use a test such as \code
+   #if GEOGRAPHICLIB_VERSION >= GEOGRAPHICLIB_VERSION_NUM(1,37,0)
+   ...
+   #endif
+ * \endcode
+ **********************************************************************/
+#define GEOGRAPHICLIB_VERSION \
+ GEOGRAPHICLIB_VERSION_NUM(GEOGRAPHICLIB_VERSION_MAJOR, \
+                           GEOGRAPHICLIB_VERSION_MINOR, \
+                           GEOGRAPHICLIB_VERSION_PATCH)
+
+// For reference, here is a table of Visual Studio and _MSC_VER
+// correspondences:
+//
+// _MSC_VER  Visual Studio
+//   1100     vc5
+//   1200     vc6
+//   1300     vc7
+//   1310     vc7.1 (2003)
+//   1400     vc8   (2005)
+//   1500     vc9   (2008)
+//   1600     vc10  (2010)
+//   1700     vc11  (2012)
+//   1800     vc12  (2013)
+//   1900     vc14  (2015) First version of VS to include enough C++11 support
+//   191[0-9] vc15  (2017)
+//   192[0-9] vc16  (2019)
+
+#if defined(_MSC_VER) && defined(GEOGRAPHICLIB_SHARED_LIB) && \
+  GEOGRAPHICLIB_SHARED_LIB
+#  if GEOGRAPHICLIB_SHARED_LIB > 1
+#    error GEOGRAPHICLIB_SHARED_LIB must be 0 or 1
+#  elif defined(GeographicLib_SHARED_EXPORTS)
+#    define GEOGRAPHICLIB_EXPORT __declspec(dllexport)
+#  else
+#    define GEOGRAPHICLIB_EXPORT __declspec(dllimport)
+#  endif
+#else
+#  define GEOGRAPHICLIB_EXPORT
+#endif
+
+// Use GEOGRAPHICLIB_DEPRECATED to mark functions, types or variables as
+// deprecated.  Code inspired by Apache Subversion's svn_types.h file (via
+// MPFR).
+#if defined(__GNUC__)
+#  if __GNUC__ > 4
+#    define GEOGRAPHICLIB_DEPRECATED(msg) __attribute__((deprecated(msg)))
+#  else
+#    define GEOGRAPHICLIB_DEPRECATED(msg) __attribute__((deprecated))
+#  endif
+#elif defined(_MSC_VER) && _MSC_VER >= 1300
+#  define GEOGRAPHICLIB_DEPRECATED(msg) __declspec(deprecated(msg))
+#else
+#  define GEOGRAPHICLIB_DEPRECATED(msg)
+#endif
+
+#include <stdexcept>
+#include <string>
+#include <GeographicLib/Math.hpp>
+
+/**
+ * \brief Namespace for %GeographicLib
+ *
+ * All of %GeographicLib is defined within the GeographicLib namespace.  In
+ * addition all the header files are included via %GeographicLib/Class.hpp.
+ * This minimizes the likelihood of conflicts with other packages.
+ **********************************************************************/
+namespace GeographicLib {
+
+  /**
+   * \brief %Constants needed by %GeographicLib
+   *
+   * Define constants specifying the WGS84 ellipsoid, the UTM and UPS
+   * projections, and various unit conversions.
+   *
+   * Example of use:
+   * \include example-Constants.cpp
+   **********************************************************************/
+  class GEOGRAPHICLIB_EXPORT Constants {
+  private:
+    typedef Math::real real;
+    Constants();                // Disable constructor
+
+  public:
+    /**
+     * A synonym for Math::degree<real>().
+     **********************************************************************/
+    static Math::real degree() { return Math::degree(); }
+    /**
+     * @return the number of radians in an arcminute.
+     **********************************************************************/
+    static Math::real arcminute()
+    { return Math::degree() / 60; }
+    /**
+     * @return the number of radians in an arcsecond.
+     **********************************************************************/
+    static Math::real arcsecond()
+    { return Math::degree() / 3600; }
+
+    /** \name Ellipsoid parameters
+     **********************************************************************/
+    ///@{
+    /**
+     * @tparam T the type of the returned value.
+     * @return the equatorial radius of WGS84 ellipsoid (6378137 m).
+     **********************************************************************/
+    template<typename T = real> static T WGS84_a()
+    { return 6378137 * meter<T>(); }
+    /**
+     * @tparam T the type of the returned value.
+     * @return the flattening of WGS84 ellipsoid (1/298.257223563).
+     **********************************************************************/
+    template<typename T = real> static T WGS84_f() {
+      // Evaluating this as 1000000000 / T(298257223563LL) reduces the
+      // round-off error by about 10%.  However, expressing the flattening as
+      // 1/298.257223563 is well ingrained.
+      return 1 / ( T(298257223563LL) / 1000000000 );
+    }
+    /**
+     * @tparam T the type of the returned value.
+     * @return the gravitational constant of the WGS84 ellipsoid, \e GM, in
+     *   m<sup>3</sup> s<sup>&minus;2</sup>.
+     **********************************************************************/
+    template<typename T = real> static T WGS84_GM()
+    { return T(3986004) * 100000000 + 41800000; }
+    /**
+     * @tparam T the type of the returned value.
+     * @return the angular velocity of the WGS84 ellipsoid, &omega;, in rad
+     *   s<sup>&minus;1</sup>.
+     **********************************************************************/
+    template<typename T = real> static T WGS84_omega()
+    { return 7292115 / (T(1000000) * 100000); }
+    /**
+     * @tparam T the type of the returned value.
+     * @return the equatorial radius of GRS80 ellipsoid, \e a, in m.
+     **********************************************************************/
+    template<typename T = real> static T GRS80_a()
+    { return 6378137 * meter<T>(); }
+    /**
+     * @tparam T the type of the returned value.
+     * @return the gravitational constant of the GRS80 ellipsoid, \e GM, in
+     *   m<sup>3</sup> s<sup>&minus;2</sup>.
+     **********************************************************************/
+    template<typename T = real> static T GRS80_GM()
+    { return T(3986005) * 100000000; }
+    /**
+     * @tparam T the type of the returned value.
+     * @return the angular velocity of the GRS80 ellipsoid, &omega;, in rad
+     *   s<sup>&minus;1</sup>.
+     *
+     * This is about 2 &pi; 366.25 / (365.25 &times; 24 &times; 3600) rad
+     * s<sup>&minus;1</sup>.  365.25 is the number of days in a Julian year and
+     * 365.35/366.25 converts from solar days to sidereal days.  Using the
+     * number of days in a Gregorian year (365.2425) results in a worse
+     * approximation (because the Gregorian year includes the precession of the
+     * earth's axis).
+     **********************************************************************/
+    template<typename T = real> static T GRS80_omega()
+    { return 7292115 / (T(1000000) * 100000); }
+    /**
+     * @tparam T the type of the returned value.
+     * @return the dynamical form factor of the GRS80 ellipsoid,
+     *   <i>J</i><sub>2</sub>.
+     **********************************************************************/
+    template<typename T = real> static T GRS80_J2()
+    { return T(108263) / 100000000; }
+    /**
+     * @tparam T the type of the returned value.
+     * @return the central scale factor for UTM (0.9996).
+     **********************************************************************/
+    template<typename T = real> static T UTM_k0()
+    {return T(9996) / 10000; }
+    /**
+     * @tparam T the type of the returned value.
+     * @return the central scale factor for UPS (0.994).
+     **********************************************************************/
+    template<typename T = real> static T UPS_k0()
+    { return T(994) / 1000; }
+    ///@}
+
+    /** \name SI units
+     **********************************************************************/
+    ///@{
+    /**
+     * @tparam T the type of the returned value.
+     * @return the number of meters in a meter.
+     *
+     * This is unity, but this lets the internal system of units be changed if
+     * necessary.
+     **********************************************************************/
+    template<typename T = real> static T meter() { return T(1); }
+    /**
+     * @return the number of meters in a kilometer.
+     **********************************************************************/
+    static Math::real kilometer()
+    { return 1000 * meter<real>(); }
+    /**
+     * @return the number of meters in a nautical mile (approximately 1 arc
+     *   minute)
+     **********************************************************************/
+    static Math::real nauticalmile()
+    { return 1852 * meter<real>(); }
+
+    /**
+     * @tparam T the type of the returned value.
+     * @return the number of square meters in a square meter.
+     *
+     * This is unity, but this lets the internal system of units be changed if
+     * necessary.
+     **********************************************************************/
+    template<typename T = real> static T square_meter()
+    { return meter<T>() * meter<T>(); }
+    /**
+     * @return the number of square meters in a hectare.
+     **********************************************************************/
+    static Math::real hectare()
+    { return 10000 * square_meter<real>(); }
+    /**
+     * @return the number of square meters in a square kilometer.
+     **********************************************************************/
+    static Math::real square_kilometer()
+    { return kilometer() * kilometer(); }
+    /**
+     * @return the number of square meters in a square nautical mile.
+     **********************************************************************/
+    static Math::real square_nauticalmile()
+    { return nauticalmile() * nauticalmile(); }
+    ///@}
+
+    /** \name Anachronistic British units
+     **********************************************************************/
+    ///@{
+    /**
+     * @return the number of meters in an international foot.
+     **********************************************************************/
+    static Math::real foot()
+    { return real(254 * 12) / 10000 * meter<real>(); }
+    /**
+     * @return the number of meters in a yard.
+     **********************************************************************/
+    static Math::real yard() { return 3 * foot(); }
+    /**
+     * @return the number of meters in a fathom.
+     **********************************************************************/
+    static Math::real fathom() { return 2 * yard(); }
+    /**
+     * @return the number of meters in a chain.
+     **********************************************************************/
+    static Math::real chain() { return 22 * yard(); }
+    /**
+     * @return the number of meters in a furlong.
+     **********************************************************************/
+    static Math::real furlong() { return 10 * chain(); }
+    /**
+     * @return the number of meters in a statute mile.
+     **********************************************************************/
+    static Math::real mile() { return 8 * furlong(); }
+    /**
+     * @return the number of square meters in an acre.
+     **********************************************************************/
+    static Math::real acre() { return chain() * furlong(); }
+    /**
+     * @return the number of square meters in a square statute mile.
+     **********************************************************************/
+    static Math::real square_mile() { return mile() * mile(); }
+    ///@}
+
+    /** \name Anachronistic US units
+     **********************************************************************/
+    ///@{
+    /**
+     * @return the number of meters in a US survey foot.
+     **********************************************************************/
+    static Math::real surveyfoot()
+    { return real(1200) / 3937 * meter<real>(); }
+    ///@}
+  };
+
+  /**
+   * \brief Exception handling for %GeographicLib
+   *
+   * A class to handle exceptions.  It's derived from std::runtime_error so it
+   * can be caught by the usual catch clauses.
+   *
+   * Example of use:
+   * \include example-GeographicErr.cpp
+   **********************************************************************/
+  class GeographicErr : public std::runtime_error {
+  public:
+
+    /**
+     * Constructor
+     *
+     * @param[in] msg a string message, which is accessible in the catch
+     *   clause via what().
+     **********************************************************************/
+    GeographicErr(const std::string& msg) : std::runtime_error(msg) {}
+  };
+
+} // namespace GeographicLib
+
+#endif  // GEOGRAPHICLIB_CONSTANTS_HPP

+ 405 - 0
external/include/GeographicLib/DMS.hpp

@@ -0,0 +1,405 @@
+/**
+ * \file DMS.hpp
+ * \brief Header for GeographicLib::DMS class
+ *
+ * Copyright (c) Charles Karney (2008-2020) <charles@karney.com> and licensed
+ * under the MIT/X11 License.  For more information, see
+ * https://geographiclib.sourceforge.io/
+ **********************************************************************/
+
+#if !defined(GEOGRAPHICLIB_DMS_HPP)
+#define GEOGRAPHICLIB_DMS_HPP 1
+
+#include <GeographicLib/Constants.hpp>
+#include <GeographicLib/Utility.hpp>
+
+#if defined(_MSC_VER)
+// Squelch warnings about dll vs vector and constant conditional expressions
+#  pragma warning (push)
+#  pragma warning (disable: 4251 4127)
+#endif
+
+namespace GeographicLib {
+
+  /**
+   * \brief Convert between degrees and the %DMS representation
+   *
+   * Parse a string representing degree, minutes, and seconds and return the
+   * angle in degrees and format an angle in degrees as degree, minutes, and
+   * seconds.  In addition, handle NANs and infinities on input and output.
+   *
+   * Example of use:
+   * \include example-DMS.cpp
+   **********************************************************************/
+  class GEOGRAPHICLIB_EXPORT DMS {
+  public:
+
+    /**
+     * Indicator for presence of hemisphere indicator (N/S/E/W) on latitudes
+     * and longitudes.
+     **********************************************************************/
+    enum flag {
+      /**
+       * No indicator present.
+       * @hideinitializer
+       **********************************************************************/
+      NONE = 0,
+      /**
+       * Latitude indicator (N/S) present.
+       * @hideinitializer
+       **********************************************************************/
+      LATITUDE = 1,
+      /**
+       * Longitude indicator (E/W) present.
+       * @hideinitializer
+       **********************************************************************/
+      LONGITUDE = 2,
+      /**
+       * Used in Encode to indicate output of an azimuth in [000, 360) with no
+       * letter indicator.
+       * @hideinitializer
+       **********************************************************************/
+      AZIMUTH = 3,
+      /**
+       * Used in Encode to indicate output of a plain number.
+       * @hideinitializer
+       **********************************************************************/
+      NUMBER = 4,
+    };
+
+    /**
+     * Indicator for trailing units on an angle.
+     **********************************************************************/
+    enum component {
+      /**
+       * Trailing unit is degrees.
+       * @hideinitializer
+       **********************************************************************/
+      DEGREE = 0,
+      /**
+       * Trailing unit is arc minutes.
+       * @hideinitializer
+       **********************************************************************/
+      MINUTE = 1,
+      /**
+       * Trailing unit is arc seconds.
+       * @hideinitializer
+       **********************************************************************/
+      SECOND = 2,
+    };
+
+  private:
+    typedef Math::real real;
+    // Replace all occurrences of pat by c.  If c is NULL remove pat.
+    static void replace(std::string& s, const std::string& pat, char c) {
+      std::string::size_type p = 0;
+      int count = c ? 1 : 0;
+      while (true) {
+        p = s.find(pat, p);
+        if (p == std::string::npos)
+          break;
+        s.replace(p, pat.length(), count, c);
+      }
+    }
+    static const char* const hemispheres_;
+    static const char* const signs_;
+    static const char* const digits_;
+    static const char* const dmsindicators_;
+    static const char* const components_[3];
+    static Math::real NumMatch(const std::string& s);
+    static Math::real InternalDecode(const std::string& dmsa, flag& ind);
+    DMS();                      // Disable constructor
+
+  public:
+
+    /**
+     * Convert a string in DMS to an angle.
+     *
+     * @param[in] dms string input.
+     * @param[out] ind a DMS::flag value signaling the presence of a
+     *   hemisphere indicator.
+     * @exception GeographicErr if \e dms is malformed (see below).
+     * @return angle (degrees).
+     *
+     * Degrees, minutes, and seconds are indicated by the characters d, '
+     * (single quote), &quot; (double quote), and these components may only be
+     * given in this order.  Any (but not all) components may be omitted and
+     * other symbols (e.g., the &deg; symbol for degrees and the unicode prime
+     * and double prime symbols for minutes and seconds) may be substituted;
+     * two single quotes can be used instead of &quot;.  The last component
+     * indicator may be omitted and is assumed to be the next smallest unit
+     * (thus 33d10 is interpreted as 33d10').  The final component may be a
+     * decimal fraction but the non-final components must be integers.  Instead
+     * of using d, ', and &quot; to indicate degrees, minutes, and seconds, :
+     * (colon) may be used to <i>separate</i> these components (numbers must
+     * appear before and after each colon); thus 50d30'10.3&quot; may be
+     * written as 50:30:10.3, 5.5' may be written 0:5.5, and so on.  The
+     * integer parts of the minutes and seconds components must be less
+     * than 60.  A single leading sign is permitted.  A hemisphere designator
+     * (N, E, W, S) may be added to the beginning or end of the string.  The
+     * result is multiplied by the implied sign of the hemisphere designator
+     * (negative for S and W).  In addition \e ind is set to DMS::LATITUDE if N
+     * or S is present, to DMS::LONGITUDE if E or W is present, and to
+     * DMS::NONE otherwise.  Throws an error on a malformed string.  No check
+     * is performed on the range of the result.  Examples of legal and illegal
+     * strings are
+     * - <i>LEGAL</i> (all the entries on each line are equivalent)
+     *   - -20.51125, 20d30'40.5&quot;S, -20&deg;30'40.5, -20d30.675,
+     *     N-20d30'40.5&quot;, -20:30:40.5
+     *   - 4d0'9, 4d9&quot;, 4d9'', 4:0:9, 004:00:09, 4.0025, 4.0025d, 4d0.15,
+     *     04:.15
+     *   - 4:59.99999999999999, 4:60.0, 4:59:59.9999999999999, 4:59:60.0, 5
+     * - <i>ILLEGAL</i> (the exception thrown explains the problem)
+     *   - 4d5&quot;4', 4::5, 4:5:, :4:5, 4d4.5'4&quot;, -N20.5, 1.8e2d, 4:60,
+     *     4:59:60
+     *
+     * The decoding operation can also perform addition and subtraction
+     * operations.  If the string includes <i>internal</i> signs (i.e., not at
+     * the beginning nor immediately after an initial hemisphere designator),
+     * then the string is split immediately before such signs and each piece is
+     * decoded according to the above rules and the results added; thus
+     * <code>S3-2.5+4.1N</code> is parsed as the sum of <code>S3</code>,
+     * <code>-2.5</code>, <code>+4.1N</code>.  Any piece can include a
+     * hemisphere designator; however, if multiple designators are given, they
+     * must compatible; e.g., you cannot mix N and E.  In addition, the
+     * designator can appear at the beginning or end of the first piece, but
+     * must be at the end of all subsequent pieces (a hemisphere designator is
+     * not allowed after the initial sign).  Examples of legal and illegal
+     * combinations are
+     * - <i>LEGAL</i> (these are all equivalent)
+     *   - 070:00:45, 70:01:15W+0:0.5, 70:01:15W-0:0:30W, W70:01:15+0:0:30E
+     * - <i>ILLEGAL</i> (the exception thrown explains the problem)
+     *   - 70:01:15W+0:0:15N, W70:01:15+W0:0:15
+     *
+     * \warning The "exponential" notation is not recognized.  Thus
+     * <code>7.0E1</code> is illegal, while <code>7.0E+1</code> is parsed as
+     * <code>(7.0E) + (+1)</code>, yielding the same result as
+     * <code>8.0E</code>.
+     *
+     * \note At present, all the string handling in the C++ implementation of
+     * %GeographicLib is with 8-bit characters.  The support for unicode
+     * symbols for degrees, minutes, and seconds is therefore via the
+     * <a href="https://en.wikipedia.org/wiki/UTF-8">UTF-8</a> encoding.  (The
+     * JavaScript implementation of this class uses unicode natively, of
+     * course.)
+     *
+     * Here is the list of Unicode symbols supported for degrees, minutes,
+     * seconds, and the plus and minus signs; various symbols denoting variants
+     * of a space, which may separate the components of a DMS string, are
+     * removed:
+     * - degrees:
+     *   - d, D lower and upper case letters
+     *   - U+00b0 degree symbol (&deg;)
+     *   - U+00ba masculine ordinal indicator (&ordm;)
+     *   - U+2070 superscript zero (⁰)
+     *   - U+02da ring above (˚)
+     *   - U+2218 compose function (∘)
+     *   - * the <a href="https://grid.nga.mil">GRiD</a> symbol for degrees
+     * - minutes:
+     *   - ' apostrophe
+     *   - ` grave accent
+     *   - U+2032 prime (&prime;)
+     *   - U+2035 back prime (‵)
+     *   - U+00b4 acute accent (&acute;)
+     *   - U+2018 left single quote (&lsquo;)
+     *   - U+2019 right single quote (&rsquo;)
+     *   - U+201b reversed-9 single quote (‛)
+     *   - U+02b9 modifier letter prime (ʹ)
+     *   - U+02ca modifier letter acute accent (ˊ)
+     *   - U+02cb modifier letter grave accent (ˋ)
+     * - seconds:
+     *   - &quot; quotation mark
+     *   - U+2033 double prime (&Prime;)
+     *   - U+2036 reversed double prime (‶)
+     *   + U+02dd double acute accent (˝)
+     *   - U+201c left double quote (&ldquo;)
+     *   - U+201d right double quote (&rdquo;)
+     *   - U+201f reversed-9 double quote (‟)
+     *   - U+02ba modifier letter double prime (ʺ)
+     *   - '&nbsp;' any two consecutive symbols for minutes
+     * - plus sign:
+     *   - + plus
+     *   - U+2795 heavy plus (➕)
+     *   - U+2064 invisible plus (|⁤|)
+     * - minus sign:
+     *   - - hyphen
+     *   - U+2010 dash (‐)
+     *   - U+2011 non-breaking hyphen (‑)
+     *   - U+2013 en dash (&ndash;)
+     *   - U+2014 em dash (&mdash;)
+     *   - U+2212 minus sign (&minus;)
+     *   - U+2796 heavy minus (➖)
+     * - ignored spaces:
+     *   - U+00a0 non-breaking space
+     *   - U+2007 figure space (| |)
+     *   - U+2009 thin space (|&thinsp;|)
+     *   - U+200a hair space ( | |)
+     *   - U+200b invisible space (|​|)
+     *   - U+202f narrow space ( | |)
+     *   - U+2063 invisible separator (|⁣|)
+     * .
+     * The codes with a leading zero byte, e.g., U+00b0, are accepted in their
+     * UTF-8 coded form 0xc2 0xb0 and as a single byte 0xb0.
+     **********************************************************************/
+    static Math::real Decode(const std::string& dms, flag& ind);
+
+    /**
+     * Convert DMS to an angle.
+     *
+     * @param[in] d degrees.
+     * @param[in] m arc minutes.
+     * @param[in] s arc seconds.
+     * @return angle (degrees)
+     *
+     * This does not propagate the sign on \e d to the other components,
+     * so -3d20' would need to be represented as - DMS::Decode(3.0, 20.0) or
+     * DMS::Decode(-3.0, -20.0).
+     **********************************************************************/
+    static Math::real Decode(real d, real m = 0, real s = 0)
+    { return d + (m + s / 60) / 60; }
+
+    /**
+     * Convert a pair of strings to latitude and longitude.
+     *
+     * @param[in] dmsa first string.
+     * @param[in] dmsb second string.
+     * @param[out] lat latitude (degrees).
+     * @param[out] lon longitude (degrees).
+     * @param[in] longfirst if true assume longitude is given before latitude
+     *   in the absence of hemisphere designators (default false).
+     * @exception GeographicErr if \e dmsa or \e dmsb is malformed.
+     * @exception GeographicErr if \e dmsa and \e dmsb are both interpreted as
+     *   latitudes.
+     * @exception GeographicErr if \e dmsa and \e dmsb are both interpreted as
+     *   longitudes.
+     * @exception GeographicErr if decoded latitude is not in [&minus;90&deg;,
+     *   90&deg;].
+     *
+     * By default, the \e lat (resp., \e lon) is assigned to the results of
+     * decoding \e dmsa (resp., \e dmsb).  However this is overridden if either
+     * \e dmsa or \e dmsb contain a latitude or longitude hemisphere designator
+     * (N, S, E, W).  If an exception is thrown, \e lat and \e lon are
+     * unchanged.
+     **********************************************************************/
+    static void DecodeLatLon(const std::string& dmsa, const std::string& dmsb,
+                             real& lat, real& lon,
+                             bool longfirst = false);
+
+    /**
+     * Convert a string to an angle in degrees.
+     *
+     * @param[in] angstr input string.
+     * @exception GeographicErr if \e angstr is malformed.
+     * @exception GeographicErr if \e angstr includes a hemisphere designator.
+     * @return angle (degrees)
+     *
+     * No hemisphere designator is allowed and no check is done on the range of
+     * the result.
+     **********************************************************************/
+    static Math::real DecodeAngle(const std::string& angstr);
+
+    /**
+     * Convert a string to an azimuth in degrees.
+     *
+     * @param[in] azistr input string.
+     * @exception GeographicErr if \e azistr is malformed.
+     * @exception GeographicErr if \e azistr includes a N/S designator.
+     * @return azimuth (degrees) reduced to the range [&minus;180&deg;,
+     *   180&deg;].
+     *
+     * A hemisphere designator E/W can be used; the result is multiplied by
+     * &minus;1 if W is present.
+     **********************************************************************/
+    static Math::real DecodeAzimuth(const std::string& azistr);
+
+    /**
+     * Convert angle (in degrees) into a DMS string (using d, ', and &quot;).
+     *
+     * @param[in] angle input angle (degrees)
+     * @param[in] trailing DMS::component value indicating the trailing units
+     *   of the string (this component is given as a decimal number if
+     *   necessary).
+     * @param[in] prec the number of digits after the decimal point for the
+     *   trailing component.
+     * @param[in] ind DMS::flag value indicating additional formatting.
+     * @param[in] dmssep if non-null, use as the DMS separator character
+     *   (instead of d, ', &quot; delimiters).
+     * @exception std::bad_alloc if memory for the string can't be allocated.
+     * @return formatted string
+     *
+     * The interpretation of \e ind is as follows:
+     * - ind == DMS::NONE, signed result no leading zeros on degrees except in
+     *   the units place, e.g., -8d03'.
+     * - ind == DMS::LATITUDE, trailing N or S hemisphere designator, no sign,
+     *   pad degrees to 2 digits, e.g., 08d03'S.
+     * - ind == DMS::LONGITUDE, trailing E or W hemisphere designator, no
+     *   sign, pad degrees to 3 digits, e.g., 008d03'W.
+     * - ind == DMS::AZIMUTH, convert to the range [0, 360&deg;), no
+     *   sign, pad degrees to 3 digits, e.g., 351d57'.
+     * .
+     * The integer parts of the minutes and seconds components are always given
+     * with 2 digits.
+     **********************************************************************/
+    static std::string Encode(real angle, component trailing, unsigned prec,
+                              flag ind = NONE, char dmssep = char(0));
+
+    /**
+     * Convert angle into a DMS string (using d, ', and &quot;) selecting the
+     * trailing component based on the precision.
+     *
+     * @param[in] angle input angle (degrees)
+     * @param[in] prec the precision relative to 1 degree.
+     * @param[in] ind DMS::flag value indicated additional formatting.
+     * @param[in] dmssep if non-null, use as the DMS separator character
+     *   (instead of d, ', &quot; delimiters).
+     * @exception std::bad_alloc if memory for the string can't be allocated.
+     * @return formatted string
+     *
+     * \e prec indicates the precision relative to 1 degree, e.g., \e prec = 3
+     * gives a result accurate to 0.1' and \e prec = 4 gives a result accurate
+     * to 1&quot;.  \e ind is interpreted as in DMS::Encode with the additional
+     * facility that DMS::NUMBER represents \e angle as a number in fixed
+     * format with precision \e prec.
+     **********************************************************************/
+    static std::string Encode(real angle, unsigned prec, flag ind = NONE,
+                              char dmssep = char(0)) {
+      return ind == NUMBER ? Utility::str(angle, int(prec)) :
+        Encode(angle,
+               prec < 2 ? DEGREE : (prec < 4 ? MINUTE : SECOND),
+               prec < 2 ? prec : (prec < 4 ? prec - 2 : prec - 4),
+               ind, dmssep);
+    }
+
+    /**
+     * Split angle into degrees and minutes
+     *
+     * @param[in] ang angle (degrees)
+     * @param[out] d degrees (an integer returned as a real)
+     * @param[out] m arc minutes.
+     **********************************************************************/
+    static void Encode(real ang, real& d, real& m) {
+      d = int(ang); m = 60 * (ang - d);
+    }
+
+    /**
+     * Split angle into degrees and minutes and seconds.
+     *
+     * @param[in] ang angle (degrees)
+     * @param[out] d degrees (an integer returned as a real)
+     * @param[out] m arc minutes (an integer returned as a real)
+     * @param[out] s arc seconds.
+     **********************************************************************/
+    static void Encode(real ang, real& d, real& m, real& s) {
+      d = int(ang); ang = 60 * (ang - d);
+      m = int(ang); s = 60 * (ang - m);
+    }
+
+  };
+
+} // namespace GeographicLib
+
+#if defined(_MSC_VER)
+#  pragma warning (pop)
+#endif
+
+#endif  // GEOGRAPHICLIB_DMS_HPP

+ 542 - 0
external/include/GeographicLib/Ellipsoid.hpp

@@ -0,0 +1,542 @@
+/**
+ * \file Ellipsoid.hpp
+ * \brief Header for GeographicLib::Ellipsoid class
+ *
+ * Copyright (c) Charles Karney (2012-2020) <charles@karney.com> and licensed
+ * under the MIT/X11 License.  For more information, see
+ * https://geographiclib.sourceforge.io/
+ **********************************************************************/
+
+#if !defined(GEOGRAPHICLIB_ELLIPSOID_HPP)
+#define GEOGRAPHICLIB_ELLIPSOID_HPP 1
+
+#include <GeographicLib/Constants.hpp>
+#include <GeographicLib/TransverseMercator.hpp>
+#include <GeographicLib/EllipticFunction.hpp>
+#include <GeographicLib/AlbersEqualArea.hpp>
+
+namespace GeographicLib {
+
+  /**
+   * \brief Properties of an ellipsoid
+   *
+   * This class returns various properties of the ellipsoid and converts
+   * between various types of latitudes.  The latitude conversions are also
+   * possible using the various projections supported by %GeographicLib; but
+   * Ellipsoid provides more direct access (sometimes using private functions
+   * of the projection classes).  Ellipsoid::RectifyingLatitude,
+   * Ellipsoid::InverseRectifyingLatitude, and Ellipsoid::MeridianDistance
+   * provide functionality which can be provided by the Geodesic class.
+   * However Geodesic uses a series approximation (valid for abs \e f < 1/150),
+   * whereas Ellipsoid computes these quantities using EllipticFunction which
+   * provides accurate results even when \e f is large.  Use of this class
+   * should be limited to &minus;3 < \e f < 3/4 (i.e., 1/4 < b/a < 4).
+   *
+   * Example of use:
+   * \include example-Ellipsoid.cpp
+   **********************************************************************/
+
+  class GEOGRAPHICLIB_EXPORT Ellipsoid {
+  private:
+    typedef Math::real real;
+    static const int numit_ = 10;
+    real stol_;
+    real _a, _f, _f1, _f12, _e2, _es, _e12, _n, _b;
+    TransverseMercator _tm;
+    EllipticFunction _ell;
+    AlbersEqualArea _au;
+
+    // These are the alpha and beta coefficients in the Krueger series from
+    // TransverseMercator.  Thy are used by RhumbSolve to compute
+    // (psi2-psi1)/(mu2-mu1).
+    const Math::real* ConformalToRectifyingCoeffs() const { return _tm._alp; }
+    const Math::real* RectifyingToConformalCoeffs() const { return _tm._bet; }
+    friend class Rhumb; friend class RhumbLine;
+  public:
+    /** \name Constructor
+     **********************************************************************/
+    ///@{
+
+    /**
+     * Constructor for a ellipsoid with
+     *
+     * @param[in] a equatorial radius (meters).
+     * @param[in] f flattening of ellipsoid.  Setting \e f = 0 gives a sphere.
+     *   Negative \e f gives a prolate ellipsoid.
+     * @exception GeographicErr if \e a or (1 &minus; \e f) \e a is not
+     *   positive.
+     **********************************************************************/
+    Ellipsoid(real a, real f);
+    ///@}
+
+    /** \name %Ellipsoid dimensions.
+     **********************************************************************/
+    ///@{
+
+    /**
+     * @return \e a the equatorial radius of the ellipsoid (meters).  This is
+     *   the value used in the constructor.
+     **********************************************************************/
+    Math::real EquatorialRadius() const { return _a; }
+
+    /**
+     * @return \e b the polar semi-axis (meters).
+     **********************************************************************/
+    Math::real MinorRadius() const { return _b; }
+
+    /**
+     * @return \e L the distance between the equator and a pole along a
+     *   meridian (meters).  For a sphere \e L = (&pi;/2) \e a.  The radius
+     *   of a sphere with the same meridian length is \e L / (&pi;/2).
+     **********************************************************************/
+    Math::real QuarterMeridian() const;
+
+    /**
+     * @return \e A the total area of the ellipsoid (meters<sup>2</sup>).  For
+     *   a sphere \e A = 4&pi; <i>a</i><sup>2</sup>.  The radius of a sphere
+     *   with the same area is sqrt(\e A / (4&pi;)).
+     **********************************************************************/
+    Math::real Area() const;
+
+    /**
+     * @return \e V the total volume of the ellipsoid (meters<sup>3</sup>).
+     *   For a sphere \e V = (4&pi; / 3) <i>a</i><sup>3</sup>.  The radius of
+     *   a sphere with the same volume is cbrt(\e V / (4&pi;/3)).
+     **********************************************************************/
+    Math::real Volume() const
+    { return (4 * Math::pi()) * Math::sq(_a) * _b / 3; }
+
+    /**
+     * \deprecated An old name for EquatorialRadius().
+     **********************************************************************/
+    GEOGRAPHICLIB_DEPRECATED("Use EquatorialRadius()")
+    Math::real MajorRadius() const { return EquatorialRadius(); }
+    ///@}
+
+    /** \name %Ellipsoid shape
+     **********************************************************************/
+    ///@{
+
+    /**
+     * @return \e f = (\e a &minus; \e b) / \e a, the flattening of the
+     *   ellipsoid.  This is the value used in the constructor.  This is zero,
+     *   positive, or negative for a sphere, oblate ellipsoid, or prolate
+     *   ellipsoid.
+     **********************************************************************/
+    Math::real Flattening() const { return _f; }
+
+    /**
+     * @return \e f ' = (\e a &minus; \e b) / \e b, the second flattening of
+     *   the ellipsoid.  This is zero, positive, or negative for a sphere,
+     *   oblate ellipsoid, or prolate ellipsoid.
+     **********************************************************************/
+    Math::real SecondFlattening() const { return _f / (1 - _f); }
+
+    /**
+     * @return \e n = (\e a &minus; \e b) / (\e a + \e b), the third flattening
+     *   of the ellipsoid.  This is zero, positive, or negative for a sphere,
+     *   oblate ellipsoid, or prolate ellipsoid.
+     **********************************************************************/
+    Math::real ThirdFlattening() const { return _n; }
+
+    /**
+     * @return <i>e</i><sup>2</sup> = (<i>a</i><sup>2</sup> &minus;
+     *   <i>b</i><sup>2</sup>) / <i>a</i><sup>2</sup>, the eccentricity squared
+     *   of the ellipsoid.  This is zero, positive, or negative for a sphere,
+     *   oblate ellipsoid, or prolate ellipsoid.
+     **********************************************************************/
+    Math::real EccentricitySq() const { return _e2; }
+
+    /**
+     * @return <i>e'</i> <sup>2</sup> = (<i>a</i><sup>2</sup> &minus;
+     *   <i>b</i><sup>2</sup>) / <i>b</i><sup>2</sup>, the second eccentricity
+     *   squared of the ellipsoid.  This is zero, positive, or negative for a
+     *   sphere, oblate ellipsoid, or prolate ellipsoid.
+     **********************************************************************/
+    Math::real SecondEccentricitySq() const { return _e12; }
+
+    /**
+     * @return <i>e''</i> <sup>2</sup> = (<i>a</i><sup>2</sup> &minus;
+     *   <i>b</i><sup>2</sup>) / (<i>a</i><sup>2</sup> + <i>b</i><sup>2</sup>),
+     *   the third eccentricity squared of the ellipsoid.  This is zero,
+     *   positive, or negative for a sphere, oblate ellipsoid, or prolate
+     *   ellipsoid.
+     **********************************************************************/
+    Math::real ThirdEccentricitySq() const { return _e2 / (2 - _e2); }
+    ///@}
+
+    /** \name Latitude conversion.
+     **********************************************************************/
+    ///@{
+
+    /**
+     * @param[in] phi the geographic latitude (degrees).
+     * @return &beta; the parametric latitude (degrees).
+     *
+     * The geographic latitude, &phi;, is the angle between the equatorial
+     * plane and a vector normal to the surface of the ellipsoid.
+     *
+     * The parametric latitude (also called the reduced latitude), &beta;,
+     * allows the cartesian coordinated of a meridian to be expressed
+     * conveniently in parametric form as
+     * - \e R = \e a cos &beta;
+     * - \e Z = \e b sin &beta;
+     * .
+     * where \e a and \e b are the equatorial radius and the polar semi-axis.
+     * For a sphere &beta; = &phi;.
+     *
+     * &phi; must lie in the range [&minus;90&deg;, 90&deg;]; the
+     * result is undefined if this condition does not hold.  The returned value
+     * &beta; lies in [&minus;90&deg;, 90&deg;].
+     **********************************************************************/
+    Math::real ParametricLatitude(real phi) const;
+
+    /**
+     * @param[in] beta the parametric latitude (degrees).
+     * @return &phi; the geographic latitude (degrees).
+     *
+     * &beta; must lie in the range [&minus;90&deg;, 90&deg;]; the
+     * result is undefined if this condition does not hold.  The returned value
+     * &phi; lies in [&minus;90&deg;, 90&deg;].
+     **********************************************************************/
+    Math::real InverseParametricLatitude(real beta) const;
+
+    /**
+     * @param[in] phi the geographic latitude (degrees).
+     * @return &theta; the geocentric latitude (degrees).
+     *
+     * The geocentric latitude, &theta;, is the angle between the equatorial
+     * plane and a line between the center of the ellipsoid and a point on the
+     * ellipsoid.  For a sphere &theta; = &phi;.
+     *
+     * &phi; must lie in the range [&minus;90&deg;, 90&deg;]; the
+     * result is undefined if this condition does not hold.  The returned value
+     * &theta; lies in [&minus;90&deg;, 90&deg;].
+     **********************************************************************/
+    Math::real GeocentricLatitude(real phi) const;
+
+    /**
+     * @param[in] theta the geocentric latitude (degrees).
+     * @return &phi; the geographic latitude (degrees).
+     *
+     * &theta; must lie in the range [&minus;90&deg;, 90&deg;]; the
+     * result is undefined if this condition does not hold.  The returned value
+     * &phi; lies in [&minus;90&deg;, 90&deg;].
+     **********************************************************************/
+    Math::real InverseGeocentricLatitude(real theta) const;
+
+    /**
+     * @param[in] phi the geographic latitude (degrees).
+     * @return &mu; the rectifying latitude (degrees).
+     *
+     * The rectifying latitude, &mu;, has the property that the distance along
+     * a meridian of the ellipsoid between two points with rectifying latitudes
+     * &mu;<sub>1</sub> and &mu;<sub>2</sub> is equal to
+     * (&mu;<sub>2</sub> - &mu;<sub>1</sub>) \e L / 90&deg;,
+     * where \e L = QuarterMeridian().  For a sphere &mu; = &phi;.
+     *
+     * &phi; must lie in the range [&minus;90&deg;, 90&deg;]; the
+     * result is undefined if this condition does not hold.  The returned value
+     * &mu; lies in [&minus;90&deg;, 90&deg;].
+     **********************************************************************/
+    Math::real RectifyingLatitude(real phi) const;
+
+    /**
+     * @param[in] mu the rectifying latitude (degrees).
+     * @return &phi; the geographic latitude (degrees).
+     *
+     * &mu; must lie in the range [&minus;90&deg;, 90&deg;]; the
+     * result is undefined if this condition does not hold.  The returned value
+     * &phi; lies in [&minus;90&deg;, 90&deg;].
+     **********************************************************************/
+    Math::real InverseRectifyingLatitude(real mu) const;
+
+    /**
+     * @param[in] phi the geographic latitude (degrees).
+     * @return &xi; the authalic latitude (degrees).
+     *
+     * The authalic latitude, &xi;, has the property that the area of the
+     * ellipsoid between two circles with authalic latitudes
+     * &xi;<sub>1</sub> and &xi;<sub>2</sub> is equal to (sin
+     * &xi;<sub>2</sub> - sin &xi;<sub>1</sub>) \e A / 2, where \e A
+     * = Area().  For a sphere &xi; = &phi;.
+     *
+     * &phi; must lie in the range [&minus;90&deg;, 90&deg;]; the
+     * result is undefined if this condition does not hold.  The returned value
+     * &xi; lies in [&minus;90&deg;, 90&deg;].
+     **********************************************************************/
+    Math::real AuthalicLatitude(real phi) const;
+
+    /**
+     * @param[in] xi the authalic latitude (degrees).
+     * @return &phi; the geographic latitude (degrees).
+     *
+     * &xi; must lie in the range [&minus;90&deg;, 90&deg;]; the
+     * result is undefined if this condition does not hold.  The returned value
+     * &phi; lies in [&minus;90&deg;, 90&deg;].
+     **********************************************************************/
+    Math::real InverseAuthalicLatitude(real xi) const;
+
+    /**
+     * @param[in] phi the geographic latitude (degrees).
+     * @return &chi; the conformal latitude (degrees).
+     *
+     * The conformal latitude, &chi;, gives the mapping of the ellipsoid to a
+     * sphere which which is conformal (angles are preserved) and in which the
+     * equator of the ellipsoid maps to the equator of the sphere.  For a
+     * sphere &chi; = &phi;.
+     *
+     * &phi; must lie in the range [&minus;90&deg;, 90&deg;]; the
+     * result is undefined if this condition does not hold.  The returned value
+     * &chi; lies in [&minus;90&deg;, 90&deg;].
+     **********************************************************************/
+    Math::real ConformalLatitude(real phi) const;
+
+    /**
+     * @param[in] chi the conformal latitude (degrees).
+     * @return &phi; the geographic latitude (degrees).
+     *
+     * &chi; must lie in the range [&minus;90&deg;, 90&deg;]; the
+     * result is undefined if this condition does not hold.  The returned value
+     * &phi; lies in [&minus;90&deg;, 90&deg;].
+     **********************************************************************/
+    Math::real InverseConformalLatitude(real chi) const;
+
+    /**
+     * @param[in] phi the geographic latitude (degrees).
+     * @return &psi; the isometric latitude (degrees).
+     *
+     * The isometric latitude gives the mapping of the ellipsoid to a plane
+     * which which is conformal (angles are preserved) and in which the equator
+     * of the ellipsoid maps to a straight line of constant scale; this mapping
+     * defines the Mercator projection.  For a sphere &psi; =
+     * sinh<sup>&minus;1</sup> tan &phi;.
+     *
+     * &phi; must lie in the range [&minus;90&deg;, 90&deg;]; the result is
+     * undefined if this condition does not hold.  The value returned for &phi;
+     * = &plusmn;90&deg; is some (positive or negative) large but finite value,
+     * such that InverseIsometricLatitude returns the original value of &phi;.
+     **********************************************************************/
+    Math::real IsometricLatitude(real phi) const;
+
+    /**
+     * @param[in] psi the isometric latitude (degrees).
+     * @return &phi; the geographic latitude (degrees).
+     *
+     * The returned value &phi; lies in [&minus;90&deg;, 90&deg;].  For a
+     * sphere &phi; = tan<sup>&minus;1</sup> sinh &psi;.
+     **********************************************************************/
+    Math::real InverseIsometricLatitude(real psi) const;
+    ///@}
+
+    /** \name Other quantities.
+     **********************************************************************/
+    ///@{
+
+    /**
+     * @param[in] phi the geographic latitude (degrees).
+     * @return \e R = \e a cos &beta; the radius of a circle of latitude
+     *   &phi; (meters).  \e R (&pi;/180&deg;) gives meters per degree
+     *   longitude measured along a circle of latitude.
+     *
+     * &phi; must lie in the range [&minus;90&deg;, 90&deg;]; the
+     * result is undefined if this condition does not hold.
+     **********************************************************************/
+    Math::real CircleRadius(real phi) const;
+
+    /**
+     * @param[in] phi the geographic latitude (degrees).
+     * @return \e Z = \e b sin &beta; the distance of a circle of latitude
+     *   &phi; from the equator measured parallel to the ellipsoid axis
+     *   (meters).
+     *
+     * &phi; must lie in the range [&minus;90&deg;, 90&deg;]; the
+     * result is undefined if this condition does not hold.
+     **********************************************************************/
+    Math::real CircleHeight(real phi) const;
+
+    /**
+     * @param[in] phi the geographic latitude (degrees).
+     * @return \e s the distance along a meridian
+     *   between the equator and a point of latitude &phi; (meters).  \e s is
+     *   given by \e s = &mu; \e L / 90&deg;, where \e L =
+     *   QuarterMeridian()).
+     *
+     * &phi; must lie in the range [&minus;90&deg;, 90&deg;]; the
+     * result is undefined if this condition does not hold.
+     **********************************************************************/
+    Math::real MeridianDistance(real phi) const;
+
+    /**
+     * @param[in] phi the geographic latitude (degrees).
+     * @return &rho; the meridional radius of curvature of the ellipsoid at
+     *   latitude &phi; (meters); this is the curvature of the meridian.  \e
+     *   rho is given by &rho; = (180&deg;/&pi;) d\e s / d&phi;,
+     *   where \e s = MeridianDistance(); thus &rho; (&pi;/180&deg;)
+     *   gives meters per degree latitude measured along a meridian.
+     *
+     * &phi; must lie in the range [&minus;90&deg;, 90&deg;]; the
+     * result is undefined if this condition does not hold.
+     **********************************************************************/
+    Math::real MeridionalCurvatureRadius(real phi) const;
+
+    /**
+     * @param[in] phi the geographic latitude (degrees).
+     * @return &nu; the transverse radius of curvature of the ellipsoid at
+     *   latitude &phi; (meters); this is the curvature of a curve on the
+     *   ellipsoid which also lies in a plane perpendicular to the ellipsoid
+     *   and to the meridian.  &nu; is related to \e R = CircleRadius() by \e
+     *   R = &nu; cos &phi;.
+     *
+     * &phi; must lie in the range [&minus;90&deg;, 90&deg;]; the
+     * result is undefined if this condition does not hold.
+     **********************************************************************/
+    Math::real TransverseCurvatureRadius(real phi) const;
+
+    /**
+     * @param[in] phi the geographic latitude (degrees).
+     * @param[in] azi the angle between the meridian and the normal section
+     *   (degrees).
+     * @return the radius of curvature of the ellipsoid in the normal
+     *   section at latitude &phi; inclined at an angle \e azi to the
+     *   meridian (meters).
+     *
+     * &phi; must lie in the range [&minus;90&deg;, 90&deg;]; the result is
+     * undefined this condition does not hold.
+     **********************************************************************/
+    Math::real NormalCurvatureRadius(real phi, real azi) const;
+    ///@}
+
+    /** \name Eccentricity conversions.
+     **********************************************************************/
+    ///@{
+
+    /**
+     * @param[in] fp = \e f ' = (\e a &minus; \e b) / \e b, the second
+     *   flattening.
+     * @return \e f = (\e a &minus; \e b) / \e a, the flattening.
+     *
+     * \e f ' should lie in (&minus;1, &infin;).
+     * The returned value \e f lies in (&minus;&infin;, 1).
+     **********************************************************************/
+    static Math::real SecondFlatteningToFlattening(real fp)
+    { return fp / (1 + fp); }
+
+    /**
+     * @param[in] f = (\e a &minus; \e b) / \e a, the flattening.
+     * @return \e f ' = (\e a &minus; \e b) / \e b, the second flattening.
+     *
+     * \e f should lie in (&minus;&infin;, 1).
+     * The returned value \e f ' lies in (&minus;1, &infin;).
+     **********************************************************************/
+    static Math::real FlatteningToSecondFlattening(real f)
+    { return f / (1 - f); }
+
+    /**
+     * @param[in] n = (\e a &minus; \e b) / (\e a + \e b), the third
+     *   flattening.
+     * @return \e f = (\e a &minus; \e b) / \e a, the flattening.
+     *
+     * \e n should lie in (&minus;1, 1).
+     * The returned value \e f lies in (&minus;&infin;, 1).
+     **********************************************************************/
+    static Math::real ThirdFlatteningToFlattening(real n)
+    { return 2 * n / (1 + n); }
+
+    /**
+     * @param[in] f = (\e a &minus; \e b) / \e a, the flattening.
+     * @return \e n = (\e a &minus; \e b) / (\e a + \e b), the third
+     *   flattening.
+     *
+     * \e f should lie in (&minus;&infin;, 1).
+     * The returned value \e n lies in (&minus;1, 1).
+     **********************************************************************/
+    static Math::real FlatteningToThirdFlattening(real f)
+    { return f / (2 - f); }
+
+    /**
+     * @param[in] e2 = <i>e</i><sup>2</sup> = (<i>a</i><sup>2</sup> &minus;
+     *   <i>b</i><sup>2</sup>) / <i>a</i><sup>2</sup>, the eccentricity
+     *   squared.
+     * @return \e f = (\e a &minus; \e b) / \e a, the flattening.
+     *
+     * <i>e</i><sup>2</sup> should lie in (&minus;&infin;, 1).
+     * The returned value \e f lies in (&minus;&infin;, 1).
+     **********************************************************************/
+    static Math::real EccentricitySqToFlattening(real e2)
+    { using std::sqrt; return e2 / (sqrt(1 - e2) + 1); }
+
+    /**
+     * @param[in] f = (\e a &minus; \e b) / \e a, the flattening.
+     * @return <i>e</i><sup>2</sup> = (<i>a</i><sup>2</sup> &minus;
+     *   <i>b</i><sup>2</sup>) / <i>a</i><sup>2</sup>, the eccentricity
+     *   squared.
+     *
+     * \e f should lie in (&minus;&infin;, 1).
+     * The returned value <i>e</i><sup>2</sup> lies in (&minus;&infin;, 1).
+     **********************************************************************/
+    static Math::real FlatteningToEccentricitySq(real f)
+    { return f * (2 - f); }
+
+    /**
+     * @param[in] ep2 = <i>e'</i> <sup>2</sup> = (<i>a</i><sup>2</sup> &minus;
+     *   <i>b</i><sup>2</sup>) / <i>b</i><sup>2</sup>, the second eccentricity
+     *   squared.
+     * @return \e f = (\e a &minus; \e b) / \e a, the flattening.
+     *
+     * <i>e'</i> <sup>2</sup> should lie in (&minus;1, &infin;).
+     * The returned value \e f lies in (&minus;&infin;, 1).
+     **********************************************************************/
+    static Math::real SecondEccentricitySqToFlattening(real ep2)
+    { using std::sqrt; return ep2 / (sqrt(1 + ep2) + 1 + ep2); }
+
+    /**
+     * @param[in] f = (\e a &minus; \e b) / \e a, the flattening.
+     * @return <i>e'</i> <sup>2</sup> = (<i>a</i><sup>2</sup> &minus;
+     *   <i>b</i><sup>2</sup>) / <i>b</i><sup>2</sup>, the second eccentricity
+     *   squared.
+     *
+     * \e f should lie in (&minus;&infin;, 1).
+     * The returned value <i>e'</i> <sup>2</sup> lies in (&minus;1, &infin;).
+     **********************************************************************/
+    static Math::real FlatteningToSecondEccentricitySq(real f)
+    { return f * (2 - f) / Math::sq(1 - f); }
+
+    /**
+     * @param[in] epp2 = <i>e''</i> <sup>2</sup> = (<i>a</i><sup>2</sup>
+     *   &minus; <i>b</i><sup>2</sup>) / (<i>a</i><sup>2</sup> +
+     *   <i>b</i><sup>2</sup>), the third eccentricity squared.
+     * @return \e f = (\e a &minus; \e b) / \e a, the flattening.
+     *
+     * <i>e''</i> <sup>2</sup> should lie in (&minus;1, 1).
+     * The returned value \e f lies in (&minus;&infin;, 1).
+     **********************************************************************/
+    static Math::real ThirdEccentricitySqToFlattening(real epp2) {
+      using std::sqrt;
+      return 2 * epp2 / (sqrt((1 - epp2) * (1 + epp2)) + 1 + epp2);
+    }
+
+    /**
+     * @param[in] f = (\e a &minus; \e b) / \e a, the flattening.
+     * @return <i>e''</i> <sup>2</sup> = (<i>a</i><sup>2</sup> &minus;
+     *   <i>b</i><sup>2</sup>) / (<i>a</i><sup>2</sup> + <i>b</i><sup>2</sup>),
+     *   the third eccentricity squared.
+     *
+     * \e f should lie in (&minus;&infin;, 1).
+     * The returned value <i>e''</i> <sup>2</sup> lies in (&minus;1, 1).
+     **********************************************************************/
+    static Math::real FlatteningToThirdEccentricitySq(real f)
+    { return f * (2 - f) / (1 + Math::sq(1 - f)); }
+
+    ///@}
+
+    /**
+     * A global instantiation of Ellipsoid with the parameters for the WGS84
+     * ellipsoid.
+     **********************************************************************/
+    static const Ellipsoid& WGS84();
+  };
+
+} // namespace GeographicLib
+
+#endif  // GEOGRAPHICLIB_ELLIPSOID_HPP

+ 702 - 0
external/include/GeographicLib/EllipticFunction.hpp

@@ -0,0 +1,702 @@
+/**
+ * \file EllipticFunction.hpp
+ * \brief Header for GeographicLib::EllipticFunction class
+ *
+ * Copyright (c) Charles Karney (2008-2021) <charles@karney.com> and licensed
+ * under the MIT/X11 License.  For more information, see
+ * https://geographiclib.sourceforge.io/
+ **********************************************************************/
+
+#if !defined(GEOGRAPHICLIB_ELLIPTICFUNCTION_HPP)
+#define GEOGRAPHICLIB_ELLIPTICFUNCTION_HPP 1
+
+#include <GeographicLib/Constants.hpp>
+
+namespace GeographicLib {
+
+  /**
+   * \brief Elliptic integrals and functions
+   *
+   * This provides the elliptic functions and integrals needed for Ellipsoid,
+   * GeodesicExact, and TransverseMercatorExact.  Two categories of function
+   * are provided:
+   * - \e static functions to compute symmetric elliptic integrals
+   *   (https://dlmf.nist.gov/19.16.i)
+   * - \e member functions to compute Legrendre's elliptic
+   *   integrals (https://dlmf.nist.gov/19.2.ii) and the
+   *   Jacobi elliptic functions (https://dlmf.nist.gov/22.2).
+   * .
+   * In the latter case, an object is constructed giving the modulus \e k (and
+   * optionally the parameter &alpha;<sup>2</sup>).  The modulus is always
+   * passed as its square <i>k</i><sup>2</sup> which allows \e k to be pure
+   * imaginary (<i>k</i><sup>2</sup> &lt; 0).  (Confusingly, Abramowitz and
+   * Stegun call \e m = <i>k</i><sup>2</sup> the "parameter" and \e n =
+   * &alpha;<sup>2</sup> the "characteristic".)
+   *
+   * In geodesic applications, it is convenient to separate the incomplete
+   * integrals into secular and periodic components, e.g.,
+   * \f[
+   *   E(\phi, k) = (2 E(k) / \pi) [ \phi + \delta E(\phi, k) ]
+   * \f]
+   * where &delta;\e E(&phi;, \e k) is an odd periodic function with period
+   * &pi;.
+   *
+   * The computation of the elliptic integrals uses the algorithms given in
+   * - B. C. Carlson,
+   *   <a href="https://doi.org/10.1007/BF02198293"> Computation of real or
+   *   complex elliptic integrals</a>, Numerical Algorithms 10, 13--26 (1995)
+   * .
+   * with the additional optimizations given in https://dlmf.nist.gov/19.36.i.
+   * The computation of the Jacobi elliptic functions uses the algorithm given
+   * in
+   * - R. Bulirsch,
+   *   <a href="https://doi.org/10.1007/BF01397975"> Numerical Calculation of
+   *   Elliptic Integrals and Elliptic Functions</a>, Numericshe Mathematik 7,
+   *   78--90 (1965).
+   * .
+   * The notation follows https://dlmf.nist.gov/19 and https://dlmf.nist.gov/22
+   *
+   * Example of use:
+   * \include example-EllipticFunction.cpp
+   **********************************************************************/
+  class GEOGRAPHICLIB_EXPORT EllipticFunction {
+  private:
+    typedef Math::real real;
+
+    enum { num_ = 13 }; // Max depth required for sncndn; probably 5 is enough.
+    real _k2, _kp2, _alpha2, _alphap2, _eps;
+    real _Kc, _Ec, _Dc, _Pic, _Gc, _Hc;
+  public:
+    /** \name Constructor
+     **********************************************************************/
+    ///@{
+    /**
+     * Constructor specifying the modulus and parameter.
+     *
+     * @param[in] k2 the square of the modulus <i>k</i><sup>2</sup>.
+     *   <i>k</i><sup>2</sup> must lie in (&minus;&infin;, 1].
+     * @param[in] alpha2 the parameter &alpha;<sup>2</sup>.
+     *   &alpha;<sup>2</sup> must lie in (&minus;&infin;, 1].
+     * @exception GeographicErr if \e k2 or \e alpha2 is out of its legal
+     *   range.
+     *
+     * If only elliptic integrals of the first and second kinds are needed,
+     * then set &alpha;<sup>2</sup> = 0 (the default value); in this case, we
+     * have &Pi;(&phi;, 0, \e k) = \e F(&phi;, \e k), \e G(&phi;, 0, \e k) = \e
+     * E(&phi;, \e k), and \e H(&phi;, 0, \e k) = \e F(&phi;, \e k) - \e
+     * D(&phi;, \e k).
+     **********************************************************************/
+    EllipticFunction(real k2 = 0, real alpha2 = 0)
+      { Reset(k2, alpha2); }
+
+    /**
+     * Constructor specifying the modulus and parameter and their complements.
+     *
+     * @param[in] k2 the square of the modulus <i>k</i><sup>2</sup>.
+     *   <i>k</i><sup>2</sup> must lie in (&minus;&infin;, 1].
+     * @param[in] alpha2 the parameter &alpha;<sup>2</sup>.
+     *   &alpha;<sup>2</sup> must lie in (&minus;&infin;, 1].
+     * @param[in] kp2 the complementary modulus squared <i>k'</i><sup>2</sup> =
+     *   1 &minus; <i>k</i><sup>2</sup>.  This must lie in [0, &infin;).
+     * @param[in] alphap2 the complementary parameter &alpha;'<sup>2</sup> = 1
+     *   &minus; &alpha;<sup>2</sup>.  This must lie in [0, &infin;).
+     * @exception GeographicErr if \e k2, \e alpha2, \e kp2, or \e alphap2 is
+     *   out of its legal range.
+     *
+     * The arguments must satisfy \e k2 + \e kp2 = 1 and \e alpha2 + \e alphap2
+     * = 1.  (No checking is done that these conditions are met.)  This
+     * constructor is provided to enable accuracy to be maintained, e.g., when
+     * \e k is very close to unity.
+     **********************************************************************/
+    EllipticFunction(real k2, real alpha2, real kp2, real alphap2)
+      { Reset(k2, alpha2, kp2, alphap2); }
+
+    /**
+     * Reset the modulus and parameter.
+     *
+     * @param[in] k2 the new value of square of the modulus
+     *   <i>k</i><sup>2</sup> which must lie in (&minus;&infin;, ].
+     *   done.)
+     * @param[in] alpha2 the new value of parameter &alpha;<sup>2</sup>.
+     *   &alpha;<sup>2</sup> must lie in (&minus;&infin;, 1].
+     * @exception GeographicErr if \e k2 or \e alpha2 is out of its legal
+     *   range.
+     **********************************************************************/
+    void Reset(real k2 = 0, real alpha2 = 0)
+    { Reset(k2, alpha2, 1 - k2, 1 - alpha2); }
+
+    /**
+     * Reset the modulus and parameter supplying also their complements.
+     *
+     * @param[in] k2 the square of the modulus <i>k</i><sup>2</sup>.
+     *   <i>k</i><sup>2</sup> must lie in (&minus;&infin;, 1].
+     * @param[in] alpha2 the parameter &alpha;<sup>2</sup>.
+     *   &alpha;<sup>2</sup> must lie in (&minus;&infin;, 1].
+     * @param[in] kp2 the complementary modulus squared <i>k'</i><sup>2</sup> =
+     *   1 &minus; <i>k</i><sup>2</sup>.  This must lie in [0, &infin;).
+     * @param[in] alphap2 the complementary parameter &alpha;'<sup>2</sup> = 1
+     *   &minus; &alpha;<sup>2</sup>.  This must lie in [0, &infin;).
+     * @exception GeographicErr if \e k2, \e alpha2, \e kp2, or \e alphap2 is
+     *   out of its legal range.
+     *
+     * The arguments must satisfy \e k2 + \e kp2 = 1 and \e alpha2 + \e alphap2
+     * = 1.  (No checking is done that these conditions are met.)  This
+     * constructor is provided to enable accuracy to be maintained, e.g., when
+     * is very small.
+     **********************************************************************/
+    void Reset(real k2, real alpha2, real kp2, real alphap2);
+
+    ///@}
+
+    /** \name Inspector functions.
+     **********************************************************************/
+    ///@{
+    /**
+     * @return the square of the modulus <i>k</i><sup>2</sup>.
+     **********************************************************************/
+    Math::real k2() const { return _k2; }
+
+    /**
+     * @return the square of the complementary modulus <i>k'</i><sup>2</sup> =
+     *   1 &minus; <i>k</i><sup>2</sup>.
+     **********************************************************************/
+    Math::real kp2() const { return _kp2; }
+
+    /**
+     * @return the parameter &alpha;<sup>2</sup>.
+     **********************************************************************/
+    Math::real alpha2() const { return _alpha2; }
+
+    /**
+     * @return the complementary parameter &alpha;'<sup>2</sup> = 1 &minus;
+     *   &alpha;<sup>2</sup>.
+     **********************************************************************/
+    Math::real alphap2() const { return _alphap2; }
+    ///@}
+
+    /** \name Complete elliptic integrals.
+     **********************************************************************/
+    ///@{
+    /**
+     * The complete integral of the first kind.
+     *
+     * @return \e K(\e k).
+     *
+     * \e K(\e k) is defined in https://dlmf.nist.gov/19.2.E4
+     * \f[
+     *   K(k) = \int_0^{\pi/2} \frac1{\sqrt{1-k^2\sin^2\phi}}\,d\phi.
+     * \f]
+     **********************************************************************/
+    Math::real K() const { return _Kc; }
+
+    /**
+     * The complete integral of the second kind.
+     *
+     * @return \e E(\e k).
+     *
+     * \e E(\e k) is defined in https://dlmf.nist.gov/19.2.E5
+     * \f[
+     *   E(k) = \int_0^{\pi/2} \sqrt{1-k^2\sin^2\phi}\,d\phi.
+     * \f]
+     **********************************************************************/
+    Math::real E() const { return _Ec; }
+
+    /**
+     * Jahnke's complete integral.
+     *
+     * @return \e D(\e k).
+     *
+     * \e D(\e k) is defined in https://dlmf.nist.gov/19.2.E6
+     * \f[
+     *   D(k) =
+     *   \int_0^{\pi/2} \frac{\sin^2\phi}{\sqrt{1-k^2\sin^2\phi}}\,d\phi.
+     * \f]
+     **********************************************************************/
+    Math::real D() const { return _Dc; }
+
+    /**
+     * The difference between the complete integrals of the first and second
+     * kinds.
+     *
+     * @return \e K(\e k) &minus; \e E(\e k).
+     **********************************************************************/
+    Math::real KE() const { return _k2 * _Dc; }
+
+    /**
+     * The complete integral of the third kind.
+     *
+     * @return &Pi;(&alpha;<sup>2</sup>, \e k).
+     *
+     * &Pi;(&alpha;<sup>2</sup>, \e k) is defined in
+     * https://dlmf.nist.gov/19.2.E7
+     * \f[
+     *   \Pi(\alpha^2, k) = \int_0^{\pi/2}
+     *     \frac1{\sqrt{1-k^2\sin^2\phi}(1 - \alpha^2\sin^2\phi)}\,d\phi.
+     * \f]
+     **********************************************************************/
+    Math::real Pi() const { return _Pic; }
+
+    /**
+     * Legendre's complete geodesic longitude integral.
+     *
+     * @return \e G(&alpha;<sup>2</sup>, \e k).
+     *
+     * \e G(&alpha;<sup>2</sup>, \e k) is given by
+     * \f[
+     *   G(\alpha^2, k) = \int_0^{\pi/2}
+     *     \frac{\sqrt{1-k^2\sin^2\phi}}{1 - \alpha^2\sin^2\phi}\,d\phi.
+     * \f]
+     **********************************************************************/
+    Math::real G() const { return _Gc; }
+
+    /**
+     * Cayley's complete geodesic longitude difference integral.
+     *
+     * @return \e H(&alpha;<sup>2</sup>, \e k).
+     *
+     * \e H(&alpha;<sup>2</sup>, \e k) is given by
+     * \f[
+     *   H(\alpha^2, k) = \int_0^{\pi/2}
+     *     \frac{\cos^2\phi}{(1-\alpha^2\sin^2\phi)\sqrt{1-k^2\sin^2\phi}}
+     *     \,d\phi.
+     * \f]
+     **********************************************************************/
+    Math::real H() const { return _Hc; }
+    ///@}
+
+    /** \name Incomplete elliptic integrals.
+     **********************************************************************/
+    ///@{
+    /**
+     * The incomplete integral of the first kind.
+     *
+     * @param[in] phi
+     * @return \e F(&phi;, \e k).
+     *
+     * \e F(&phi;, \e k) is defined in https://dlmf.nist.gov/19.2.E4
+     * \f[
+     *   F(\phi, k) = \int_0^\phi \frac1{\sqrt{1-k^2\sin^2\theta}}\,d\theta.
+     * \f]
+     **********************************************************************/
+    Math::real F(real phi) const;
+
+    /**
+     * The incomplete integral of the second kind.
+     *
+     * @param[in] phi
+     * @return \e E(&phi;, \e k).
+     *
+     * \e E(&phi;, \e k) is defined in https://dlmf.nist.gov/19.2.E5
+     * \f[
+     *   E(\phi, k) = \int_0^\phi \sqrt{1-k^2\sin^2\theta}\,d\theta.
+     * \f]
+     **********************************************************************/
+    Math::real E(real phi) const;
+
+    /**
+     * The incomplete integral of the second kind with the argument given in
+     * degrees.
+     *
+     * @param[in] ang in <i>degrees</i>.
+     * @return \e E(&pi; <i>ang</i>/180, \e k).
+     **********************************************************************/
+    Math::real Ed(real ang) const;
+
+    /**
+     * The inverse of the incomplete integral of the second kind.
+     *
+     * @param[in] x
+     * @return &phi; = <i>E</i><sup>&minus;1</sup>(\e x, \e k); i.e., the
+     *   solution of such that \e E(&phi;, \e k) = \e x.
+     **********************************************************************/
+    Math::real Einv(real x) const;
+
+    /**
+     * The incomplete integral of the third kind.
+     *
+     * @param[in] phi
+     * @return &Pi;(&phi;, &alpha;<sup>2</sup>, \e k).
+     *
+     * &Pi;(&phi;, &alpha;<sup>2</sup>, \e k) is defined in
+     * https://dlmf.nist.gov/19.2.E7
+     * \f[
+     *   \Pi(\phi, \alpha^2, k) = \int_0^\phi
+     *     \frac1{\sqrt{1-k^2\sin^2\theta}(1 - \alpha^2\sin^2\theta)}\,d\theta.
+     * \f]
+     **********************************************************************/
+    Math::real Pi(real phi) const;
+
+    /**
+     * Jahnke's incomplete elliptic integral.
+     *
+     * @param[in] phi
+     * @return \e D(&phi;, \e k).
+     *
+     * \e D(&phi;, \e k) is defined in https://dlmf.nist.gov/19.2.E4
+     * \f[
+     *   D(\phi, k) = \int_0^\phi
+     *    \frac{\sin^2\theta}{\sqrt{1-k^2\sin^2\theta}}\,d\theta.
+     * \f]
+     **********************************************************************/
+    Math::real D(real phi) const;
+
+    /**
+     * Legendre's geodesic longitude integral.
+     *
+     * @param[in] phi
+     * @return \e G(&phi;, &alpha;<sup>2</sup>, \e k).
+     *
+     * \e G(&phi;, &alpha;<sup>2</sup>, \e k) is defined by
+     * \f[
+     *   \begin{align}
+     *   G(\phi, \alpha^2, k) &=
+     *   \frac{k^2}{\alpha^2} F(\phi, k) +
+     *      \biggl(1 - \frac{k^2}{\alpha^2}\biggr) \Pi(\phi, \alpha^2, k) \\
+     *    &= \int_0^\phi
+     *     \frac{\sqrt{1-k^2\sin^2\theta}}{1 - \alpha^2\sin^2\theta}\,d\theta.
+     *   \end{align}
+     * \f]
+     *
+     * Legendre expresses the longitude of a point on the geodesic in terms of
+     * this combination of elliptic integrals in Exercices de Calcul
+     * Int&eacute;gral, Vol. 1 (1811), p. 181,
+     * https://books.google.com/books?id=riIOAAAAQAAJ&pg=PA181.
+     *
+     * See \ref geodellip for the expression for the longitude in terms of this
+     * function.
+     **********************************************************************/
+    Math::real G(real phi) const;
+
+    /**
+     * Cayley's geodesic longitude difference integral.
+     *
+     * @param[in] phi
+     * @return \e H(&phi;, &alpha;<sup>2</sup>, \e k).
+     *
+     * \e H(&phi;, &alpha;<sup>2</sup>, \e k) is defined by
+     * \f[
+     *   \begin{align}
+     *   H(\phi, \alpha^2, k) &=
+     *   \frac1{\alpha^2} F(\phi, k) +
+     *        \biggl(1 - \frac1{\alpha^2}\biggr) \Pi(\phi, \alpha^2, k) \\
+     *   &= \int_0^\phi
+     *     \frac{\cos^2\theta}
+     *          {(1-\alpha^2\sin^2\theta)\sqrt{1-k^2\sin^2\theta}}
+     *     \,d\theta.
+     *   \end{align}
+     * \f]
+     *
+     * Cayley expresses the longitude difference of a point on the geodesic in
+     * terms of this combination of elliptic integrals in Phil. Mag. <b>40</b>
+     * (1870), p. 333, https://books.google.com/books?id=Zk0wAAAAIAAJ&pg=PA333.
+     *
+     * See \ref geodellip for the expression for the longitude in terms of this
+     * function.
+     **********************************************************************/
+    Math::real H(real phi) const;
+    ///@}
+
+    /** \name Incomplete integrals in terms of Jacobi elliptic functions.
+     **********************************************************************/
+    ///@{
+    /**
+     * The incomplete integral of the first kind in terms of Jacobi elliptic
+     * functions.
+     *
+     * @param[in] sn = sin&phi;.
+     * @param[in] cn = cos&phi;.
+     * @param[in] dn = sqrt(1 &minus; <i>k</i><sup>2</sup>
+     *   sin<sup>2</sup>&phi;).
+     * @return \e F(&phi;, \e k) as though &phi; &isin; (&minus;&pi;, &pi;].
+     **********************************************************************/
+    Math::real F(real sn, real cn, real dn) const;
+
+    /**
+     * The incomplete integral of the second kind in terms of Jacobi elliptic
+     * functions.
+     *
+     * @param[in] sn = sin&phi;.
+     * @param[in] cn = cos&phi;.
+     * @param[in] dn = sqrt(1 &minus; <i>k</i><sup>2</sup>
+     *   sin<sup>2</sup>&phi;).
+     * @return \e E(&phi;, \e k) as though &phi; &isin; (&minus;&pi;, &pi;].
+     **********************************************************************/
+    Math::real E(real sn, real cn, real dn) const;
+
+    /**
+     * The incomplete integral of the third kind in terms of Jacobi elliptic
+     * functions.
+     *
+     * @param[in] sn = sin&phi;.
+     * @param[in] cn = cos&phi;.
+     * @param[in] dn = sqrt(1 &minus; <i>k</i><sup>2</sup>
+     *   sin<sup>2</sup>&phi;).
+     * @return &Pi;(&phi;, &alpha;<sup>2</sup>, \e k) as though &phi; &isin;
+     *   (&minus;&pi;, &pi;].
+     **********************************************************************/
+    Math::real Pi(real sn, real cn, real dn) const;
+
+    /**
+     * Jahnke's incomplete elliptic integral in terms of Jacobi elliptic
+     * functions.
+     *
+     * @param[in] sn = sin&phi;.
+     * @param[in] cn = cos&phi;.
+     * @param[in] dn = sqrt(1 &minus; <i>k</i><sup>2</sup>
+     *   sin<sup>2</sup>&phi;).
+     * @return \e D(&phi;, \e k) as though &phi; &isin; (&minus;&pi;, &pi;].
+     **********************************************************************/
+    Math::real D(real sn, real cn, real dn) const;
+
+    /**
+     * Legendre's geodesic longitude integral in terms of Jacobi elliptic
+     * functions.
+     *
+     * @param[in] sn = sin&phi;.
+     * @param[in] cn = cos&phi;.
+     * @param[in] dn = sqrt(1 &minus; <i>k</i><sup>2</sup>
+     *   sin<sup>2</sup>&phi;).
+     * @return \e G(&phi;, &alpha;<sup>2</sup>, \e k) as though &phi; &isin;
+     *   (&minus;&pi;, &pi;].
+     **********************************************************************/
+    Math::real G(real sn, real cn, real dn) const;
+
+    /**
+     * Cayley's geodesic longitude difference integral in terms of Jacobi
+     * elliptic functions.
+     *
+     * @param[in] sn = sin&phi;.
+     * @param[in] cn = cos&phi;.
+     * @param[in] dn = sqrt(1 &minus; <i>k</i><sup>2</sup>
+     *   sin<sup>2</sup>&phi;).
+     * @return \e H(&phi;, &alpha;<sup>2</sup>, \e k) as though &phi; &isin;
+     *   (&minus;&pi;, &pi;].
+     **********************************************************************/
+    Math::real H(real sn, real cn, real dn) const;
+    ///@}
+
+    /** \name Periodic versions of incomplete elliptic integrals.
+     **********************************************************************/
+    ///@{
+    /**
+     * The periodic incomplete integral of the first kind.
+     *
+     * @param[in] sn = sin&phi;.
+     * @param[in] cn = cos&phi;.
+     * @param[in] dn = sqrt(1 &minus; <i>k</i><sup>2</sup>
+     *   sin<sup>2</sup>&phi;).
+     * @return the periodic function &pi; \e F(&phi;, \e k) / (2 \e K(\e k)) -
+     *   &phi;.
+     **********************************************************************/
+    Math::real deltaF(real sn, real cn, real dn) const;
+
+    /**
+     * The periodic incomplete integral of the second kind.
+     *
+     * @param[in] sn = sin&phi;.
+     * @param[in] cn = cos&phi;.
+     * @param[in] dn = sqrt(1 &minus; <i>k</i><sup>2</sup>
+     *   sin<sup>2</sup>&phi;).
+     * @return the periodic function &pi; \e E(&phi;, \e k) / (2 \e E(\e k)) -
+     *   &phi;.
+     **********************************************************************/
+    Math::real deltaE(real sn, real cn, real dn) const;
+
+    /**
+     * The periodic inverse of the incomplete integral of the second kind.
+     *
+     * @param[in] stau = sin&tau;.
+     * @param[in] ctau = sin&tau;.
+     * @return the periodic function <i>E</i><sup>&minus;1</sup>(&tau; (2 \e
+     *   E(\e k)/&pi;), \e k) - &tau;.
+     **********************************************************************/
+    Math::real deltaEinv(real stau, real ctau) const;
+
+    /**
+     * The periodic incomplete integral of the third kind.
+     *
+     * @param[in] sn = sin&phi;.
+     * @param[in] cn = cos&phi;.
+     * @param[in] dn = sqrt(1 &minus; <i>k</i><sup>2</sup>
+     *   sin<sup>2</sup>&phi;).
+     * @return the periodic function &pi; &Pi;(&phi;, &alpha;<sup>2</sup>,
+     *   \e k) / (2 &Pi;(&alpha;<sup>2</sup>, \e k)) - &phi;.
+     **********************************************************************/
+    Math::real deltaPi(real sn, real cn, real dn) const;
+
+    /**
+     * The periodic Jahnke's incomplete elliptic integral.
+     *
+     * @param[in] sn = sin&phi;.
+     * @param[in] cn = cos&phi;.
+     * @param[in] dn = sqrt(1 &minus; <i>k</i><sup>2</sup>
+     *   sin<sup>2</sup>&phi;).
+     * @return the periodic function &pi; \e D(&phi;, \e k) / (2 \e D(\e k)) -
+     *   &phi;.
+     **********************************************************************/
+    Math::real deltaD(real sn, real cn, real dn) const;
+
+    /**
+     * Legendre's periodic geodesic longitude integral.
+     *
+     * @param[in] sn = sin&phi;.
+     * @param[in] cn = cos&phi;.
+     * @param[in] dn = sqrt(1 &minus; <i>k</i><sup>2</sup>
+     *   sin<sup>2</sup>&phi;).
+     * @return the periodic function &pi; \e G(&phi;, \e k) / (2 \e G(\e k)) -
+     *   &phi;.
+     **********************************************************************/
+    Math::real deltaG(real sn, real cn, real dn) const;
+
+    /**
+     * Cayley's periodic geodesic longitude difference integral.
+     *
+     * @param[in] sn = sin&phi;.
+     * @param[in] cn = cos&phi;.
+     * @param[in] dn = sqrt(1 &minus; <i>k</i><sup>2</sup>
+     *   sin<sup>2</sup>&phi;).
+     * @return the periodic function &pi; \e H(&phi;, \e k) / (2 \e H(\e k)) -
+     *   &phi;.
+     **********************************************************************/
+    Math::real deltaH(real sn, real cn, real dn) const;
+    ///@}
+
+    /** \name Elliptic functions.
+     **********************************************************************/
+    ///@{
+    /**
+     * The Jacobi elliptic functions.
+     *
+     * @param[in] x the argument.
+     * @param[out] sn sn(\e x, \e k).
+     * @param[out] cn cn(\e x, \e k).
+     * @param[out] dn dn(\e x, \e k).
+     **********************************************************************/
+    void sncndn(real x, real& sn, real& cn, real& dn) const;
+
+    /**
+     * The &Delta; amplitude function.
+     *
+     * @param[in] sn sin&phi;.
+     * @param[in] cn cos&phi;.
+     * @return &Delta; = sqrt(1 &minus; <i>k</i><sup>2</sup>
+     *   sin<sup>2</sup>&phi;).
+     **********************************************************************/
+    Math::real Delta(real sn, real cn) const {
+      using std::sqrt;
+      return sqrt(_k2 < 0 ? 1 - _k2 * sn*sn : _kp2 + _k2 * cn*cn);
+    }
+    ///@}
+
+    /** \name Symmetric elliptic integrals.
+     **********************************************************************/
+    ///@{
+    /**
+     * Symmetric integral of the first kind <i>R</i><sub><i>F</i></sub>.
+     *
+     * @param[in] x
+     * @param[in] y
+     * @param[in] z
+     * @return <i>R</i><sub><i>F</i></sub>(\e x, \e y, \e z).
+     *
+     * <i>R</i><sub><i>F</i></sub> is defined in https://dlmf.nist.gov/19.16.E1
+     * \f[ R_F(x, y, z) = \frac12
+     *       \int_0^\infty\frac1{\sqrt{(t + x) (t + y) (t + z)}}\, dt \f]
+     * If one of the arguments is zero, it is more efficient to call the
+     * two-argument version of this function with the non-zero arguments.
+     **********************************************************************/
+    static real RF(real x, real y, real z);
+
+    /**
+     * Complete symmetric integral of the first kind,
+     * <i>R</i><sub><i>F</i></sub> with one argument zero.
+     *
+     * @param[in] x
+     * @param[in] y
+     * @return <i>R</i><sub><i>F</i></sub>(\e x, \e y, 0).
+     **********************************************************************/
+    static real RF(real x, real y);
+
+    /**
+     * Degenerate symmetric integral of the first kind
+     * <i>R</i><sub><i>C</i></sub>.
+     *
+     * @param[in] x
+     * @param[in] y
+     * @return <i>R</i><sub><i>C</i></sub>(\e x, \e y) =
+     *   <i>R</i><sub><i>F</i></sub>(\e x, \e y, \e y).
+     *
+     * <i>R</i><sub><i>C</i></sub> is defined in https://dlmf.nist.gov/19.2.E17
+     * \f[ R_C(x, y) = \frac12
+     *       \int_0^\infty\frac1{\sqrt{t + x}(t + y)}\,dt \f]
+     **********************************************************************/
+    static real RC(real x, real y);
+
+    /**
+     * Symmetric integral of the second kind <i>R</i><sub><i>G</i></sub>.
+     *
+     * @param[in] x
+     * @param[in] y
+     * @param[in] z
+     * @return <i>R</i><sub><i>G</i></sub>(\e x, \e y, \e z).
+     *
+     * <i>R</i><sub><i>G</i></sub> is defined in Carlson, eq 1.5
+     * \f[ R_G(x, y, z) = \frac14
+     *       \int_0^\infty[(t + x) (t + y) (t + z)]^{-1/2}
+     *        \biggl(
+     *             \frac x{t + x} + \frac y{t + y} + \frac z{t + z}
+     *        \biggr)t\,dt \f]
+     * See also https://dlmf.nist.gov/19.16.E3.
+     * If one of the arguments is zero, it is more efficient to call the
+     * two-argument version of this function with the non-zero arguments.
+     **********************************************************************/
+    static real RG(real x, real y, real z);
+
+    /**
+     * Complete symmetric integral of the second kind,
+     * <i>R</i><sub><i>G</i></sub> with one argument zero.
+     *
+     * @param[in] x
+     * @param[in] y
+     * @return <i>R</i><sub><i>G</i></sub>(\e x, \e y, 0).
+     **********************************************************************/
+    static real RG(real x, real y);
+
+    /**
+     * Symmetric integral of the third kind <i>R</i><sub><i>J</i></sub>.
+     *
+     * @param[in] x
+     * @param[in] y
+     * @param[in] z
+     * @param[in] p
+     * @return <i>R</i><sub><i>J</i></sub>(\e x, \e y, \e z, \e p).
+     *
+     * <i>R</i><sub><i>J</i></sub> is defined in https://dlmf.nist.gov/19.16.E2
+     * \f[ R_J(x, y, z, p) = \frac32
+     *       \int_0^\infty
+     *       [(t + x) (t + y) (t + z)]^{-1/2} (t + p)^{-1}\, dt \f]
+     **********************************************************************/
+    static real RJ(real x, real y, real z, real p);
+
+    /**
+     * Degenerate symmetric integral of the third kind
+     * <i>R</i><sub><i>D</i></sub>.
+     *
+     * @param[in] x
+     * @param[in] y
+     * @param[in] z
+     * @return <i>R</i><sub><i>D</i></sub>(\e x, \e y, \e z) =
+     *   <i>R</i><sub><i>J</i></sub>(\e x, \e y, \e z, \e z).
+     *
+     * <i>R</i><sub><i>D</i></sub> is defined in https://dlmf.nist.gov/19.16.E5
+     * \f[ R_D(x, y, z) = \frac32
+     *       \int_0^\infty[(t + x) (t + y)]^{-1/2} (t + z)^{-3/2}\, dt \f]
+     **********************************************************************/
+    static real RD(real x, real y, real z);
+    ///@}
+
+  };
+
+} // namespace GeographicLib
+
+#endif  // GEOGRAPHICLIB_ELLIPTICFUNCTION_HPP

+ 143 - 0
external/include/GeographicLib/GARS.hpp

@@ -0,0 +1,143 @@
+/**
+ * \file GARS.hpp
+ * \brief Header for GeographicLib::GARS class
+ *
+ * Copyright (c) Charles Karney (2015-2021) <charles@karney.com> and licensed
+ * under the MIT/X11 License.  For more information, see
+ * https://geographiclib.sourceforge.io/
+ **********************************************************************/
+
+#if !defined(GEOGRAPHICLIB_GARS_HPP)
+#define GEOGRAPHICLIB_GARS_HPP 1
+
+#include <GeographicLib/Constants.hpp>
+
+#if defined(_MSC_VER)
+// Squelch warnings about dll vs string
+#  pragma warning (push)
+#  pragma warning (disable: 4251)
+#endif
+
+namespace GeographicLib {
+
+  /**
+   * \brief Conversions for the Global Area Reference System (GARS)
+   *
+   * The Global Area Reference System is described in
+   * - https://en.wikipedia.org/wiki/Global_Area_Reference_System
+   * - https://earth-info.nga.mil/index.php?dir=coordsys&action=coordsys#tab_gars
+   * .
+   * It provides a compact string representation of a geographic area
+   * (expressed as latitude and longitude).  The classes Georef and Geohash
+   * implement similar compact representations.
+   *
+   * Example of use:
+   * \include example-GARS.cpp
+   **********************************************************************/
+
+  class GEOGRAPHICLIB_EXPORT GARS {
+  private:
+    typedef Math::real real;
+    static const char* const digits_;
+    static const char* const letters_;
+    enum {
+      lonorig_ = -180,          // Origin for longitude
+      latorig_ = -90,           // Origin for latitude
+      baselon_ = 10,            // Base for longitude tiles
+      baselat_ = 24,            // Base for latitude tiles
+      lonlen_ = 3,
+      latlen_ = 2,
+      baselen_ = lonlen_ + latlen_,
+      mult1_ = 2,               // base precision = 1/2 degree
+      mult2_ = 2,               // 6th char gives 2x more precision
+      mult3_ = 3,               // 7th char gives 3x more precision
+      m_ = mult1_ * mult2_ * mult3_,
+      maxprec_ = 2,
+      maxlen_ = baselen_ + maxprec_,
+    };
+    GARS();                     // Disable constructor
+
+  public:
+
+    /**
+     * Convert from geographic coordinates to GARS.
+     *
+     * @param[in] lat latitude of point (degrees).
+     * @param[in] lon longitude of point (degrees).
+     * @param[in] prec the precision of the resulting GARS.
+     * @param[out] gars the GARS string.
+     * @exception GeographicErr if \e lat is not in [&minus;90&deg;,
+     *   90&deg;].
+     * @exception std::bad_alloc if memory for \e gars can't be allocated.
+     *
+     * \e prec specifies the precision of \e gars as follows:
+     * - \e prec = 0 (min), 30' precision, e.g., 006AG;
+     * - \e prec = 1, 15' precision, e.g., 006AG3;
+     * - \e prec = 2 (max), 5' precision, e.g., 006AG39.
+     *
+     * If \e lat or \e lon is NaN, then \e gars is set to "INVALID".
+     **********************************************************************/
+    static void Forward(real lat, real lon, int prec, std::string& gars);
+
+    /**
+     * Convert from GARS to geographic coordinates.
+     *
+     * @param[in] gars the GARS.
+     * @param[out] lat latitude of point (degrees).
+     * @param[out] lon longitude of point (degrees).
+     * @param[out] prec the precision of \e gars.
+     * @param[in] centerp if true (the default) return the center of the
+     *   \e gars, otherwise return the south-west corner.
+     * @exception GeographicErr if \e gars is illegal.
+     *
+     * The case of the letters in \e gars is ignored.  \e prec is in the range
+     * [0, 2] and gives the precision of \e gars as follows:
+     * - \e prec = 0 (min), 30' precision, e.g., 006AG;
+     * - \e prec = 1, 15' precision, e.g., 006AG3;
+     * - \e prec = 2 (max), 5' precision, e.g., 006AG39.
+     *
+     * If the first 3 characters of \e gars are "INV", then \e lat and \e lon
+     * are set to NaN and \e prec is unchanged.
+     **********************************************************************/
+    static void Reverse(const std::string& gars, real& lat, real& lon,
+                        int& prec, bool centerp = true);
+
+    /**
+     * The angular resolution of a GARS.
+     *
+     * @param[in] prec the precision of the GARS.
+     * @return the latitude-longitude resolution (degrees).
+     *
+     * Internally, \e prec is first put in the range [0, 2].
+     **********************************************************************/
+    static Math::real Resolution(int prec) {
+      return 1/real(prec <= 0 ? mult1_ : (prec == 1 ? mult1_ * mult2_ :
+                                          mult1_ * mult2_ * mult3_));
+    }
+
+    /**
+     * The GARS precision required to meet a given geographic resolution.
+     *
+     * @param[in] res the minimum of resolution in latitude and longitude
+     *   (degrees).
+     * @return GARS precision.
+     *
+     * The returned length is in the range [0, 2].
+     **********************************************************************/
+    static int Precision(real res) {
+      using std::abs; res = abs(res);
+      for (int prec = 0; prec < maxprec_; ++prec)
+        if (Resolution(prec) <= res)
+          return prec;
+      return maxprec_;
+    }
+
+  };
+
+} // namespace GeographicLib
+
+#if defined(_MSC_VER)
+#  pragma warning (pop)
+#endif
+
+#endif  // GEOGRAPHICLIB_GARS_HPP

+ 553 - 0
external/include/GeographicLib/GeoCoords.hpp

@@ -0,0 +1,553 @@
+/**
+ * \file GeoCoords.hpp
+ * \brief Header for GeographicLib::GeoCoords class
+ *
+ * Copyright (c) Charles Karney (2008-2020) <charles@karney.com> and licensed
+ * under the MIT/X11 License.  For more information, see
+ * https://geographiclib.sourceforge.io/
+ **********************************************************************/
+
+#if !defined(GEOGRAPHICLIB_GEOCOORDS_HPP)
+#define GEOGRAPHICLIB_GEOCOORDS_HPP 1
+
+#include <GeographicLib/UTMUPS.hpp>
+#include <GeographicLib/Constants.hpp>
+
+namespace GeographicLib {
+
+  /**
+   * \brief Conversion between geographic coordinates
+   *
+   * This class stores a geographic position which may be set via the
+   * constructors or Reset via
+   * - latitude and longitude
+   * - UTM or UPS coordinates
+   * - a string representation of these or an MGRS coordinate string
+   *
+   * The state consists of the latitude and longitude and the supplied UTM or
+   * UPS coordinates (possibly derived from the MGRS coordinates).  If latitude
+   * and longitude were given then the UTM/UPS coordinates follows the standard
+   * conventions.
+   *
+   * The mutable state consists of the UTM or UPS coordinates for a alternate
+   * zone.  A method SetAltZone is provided to set the alternate UPS/UTM zone.
+   *
+   * Methods are provided to return the geographic coordinates, the input UTM
+   * or UPS coordinates (and associated meridian convergence and scale), or
+   * alternate UTM or UPS coordinates (and their associated meridian
+   * convergence and scale).
+   *
+   * Once the input string has been parsed, you can print the result out in any
+   * of the formats, decimal degrees, degrees minutes seconds, MGRS, UTM/UPS.
+   *
+   * Example of use:
+   * \include example-GeoCoords.cpp
+   *
+   * <a href="GeoConvert.1.html">GeoConvert</a> is a command-line utility
+   * providing access to the functionality of GeoCoords.
+   **********************************************************************/
+  class GEOGRAPHICLIB_EXPORT GeoCoords {
+  private:
+    typedef Math::real real;
+    real _lat, _long, _easting, _northing, _gamma, _k;
+    bool _northp;
+    int _zone;                  // See UTMUPS::zonespec
+    mutable real _alt_easting, _alt_northing, _alt_gamma, _alt_k;
+    mutable int _alt_zone;
+
+    void CopyToAlt() const {
+      _alt_easting = _easting;
+      _alt_northing = _northing;
+      _alt_gamma = _gamma;
+      _alt_k = _k;
+      _alt_zone = _zone;
+    }
+    static void UTMUPSString(int zone, bool northp,
+                             real easting, real northing,
+                             int prec, bool abbrev, std::string& utm);
+    void FixHemisphere();
+  public:
+
+    /** \name Initializing the GeoCoords object
+     **********************************************************************/
+    ///@{
+    /**
+     * The default constructor sets the coordinate as undefined.
+     **********************************************************************/
+    GeoCoords()
+      : _lat(Math::NaN())
+      , _long(Math::NaN())
+      , _easting(Math::NaN())
+      , _northing(Math::NaN())
+      , _gamma(Math::NaN())
+      , _k(Math::NaN())
+      , _northp(false)
+      , _zone(UTMUPS::INVALID)
+    { CopyToAlt(); }
+
+    /**
+     * Construct from a string.
+     *
+     * @param[in] s 1-element, 2-element, or 3-element string representation of
+     *   the position.
+     * @param[in] centerp governs the interpretation of MGRS coordinates (see
+     *   below).
+     * @param[in] longfirst governs the interpretation of geographic
+     *   coordinates (see below).
+     * @exception GeographicErr if the \e s is malformed (see below).
+     *
+     * Parse as a string and interpret it as a geographic position.  The input
+     * string is broken into space (or comma) separated pieces and Basic
+     * decision on which format is based on number of components
+     * -# MGRS
+     * -# "Lat Long" or "Long Lat"
+     * -# "Zone Easting Northing" or "Easting Northing Zone"
+     *
+     * The following inputs are approximately the same (Ar Ramadi Bridge, Iraq)
+     * - Latitude and Longitude
+     *   -  33.44      43.27
+     *   -  N33d26.4'  E43d16.2'
+     *   -  43d16'12&quot;E 33d26'24&quot;N
+     *   -  43:16:12E  33:26:24
+     * - MGRS
+     *   -  38SLC30
+     *   -  38SLC391014
+     *   -  38SLC3918701405
+     *   -  37SHT9708
+     * - UTM
+     *   -  38n 339188 3701405
+     *   -  897039 3708229 37n
+     *
+     * <b>Latitude and Longitude parsing</b>: Latitude precedes longitude,
+     * unless a N, S, E, W hemisphere designator is used on one or both
+     * coordinates.  If \e longfirst = true (default is false), then
+     * longitude precedes latitude in the absence of a hemisphere designator.
+     * Thus (with \e longfirst = false)
+     * - 40 -75
+     * - N40 W75
+     * - -75 N40
+     * - 75W 40N
+     * - E-75 -40S
+     * .
+     * are all the same position.  The coordinates may be given in
+     * decimal degrees, degrees and decimal minutes, degrees, minutes,
+     * seconds, etc.  Use d, ', and &quot; to mark off the degrees,
+     * minutes and seconds.  Various alternative symbols for degrees, minutes,
+     * and seconds are allowed.  Alternatively, use : to separate these
+     * components.  A single addition or subtraction is allowed.  (See
+     * DMS::Decode for details.)  Thus
+     * - 40d30'30&quot;
+     * - 40d30'30
+     * - 40&deg;30'30
+     * - 40d30.5'
+     * - 40d30.5
+     * - 40:30:30
+     * - 40:30.5
+     * - 40.508333333
+     * - 40:30+0:0:30
+     * - 40:31-0:0.5
+     * .
+     * all specify the same angle.  The leading sign applies to the following
+     * components so -1d30 is -(1+30/60) = &minus;1.5.  However, note
+     * that -1:30-0:0:15 is parsed as (-1:30) + (-0:0:15) = &minus;(1+30/60)
+     * &minus; (15/3600).  Latitudes must be in the range [&minus;90&deg;,
+     * 90&deg;].  Internally longitudes are reduced to the range
+     * [&minus;180&deg;, 180&deg;].
+     *
+     * <b>UTM/UPS parsing</b>: For UTM zones (&minus;80&deg; &le; Lat <
+     * 84&deg;), the zone designator is made up of a zone number (for 1 to 60)
+     * and a hemisphere letter (n or s), e.g., 38n (38north can also be used).
+     * The latitude band designer ([C--M] in the southern hemisphere and [N--X]
+     * in the northern) should NOT be used.  (This is part of the MGRS
+     * coordinate.)  The zone designator for the poles (where UPS is employed)
+     * is a hemisphere letter by itself, i.e., n or s (north or south can also
+     * be used).
+     *
+     * <b>MGRS parsing</b> interprets the grid references as square area at the
+     * specified precision (1m, 10m, 100m, etc.).  If \e centerp = true (the
+     * default), the center of this square is then taken to be the precise
+     * position; thus:
+     * - 38SMB           = 38n 450000 3650000
+     * - 38SMB4484       = 38n 444500 3684500
+     * - 38SMB44148470   = 38n 444145 3684705
+     * .
+     * Otherwise, the "south-west" corner of the square is used, i.e.,
+     * - 38SMB           = 38n 400000 3600000
+     * - 38SMB4484       = 38n 444000 3684000
+     * - 38SMB44148470   = 38n 444140 3684700
+     **********************************************************************/
+    explicit GeoCoords(const std::string& s,
+                       bool centerp = true, bool longfirst = false)
+    { Reset(s, centerp, longfirst); }
+
+    /**
+     * Construct from geographic coordinates.
+     *
+     * @param[in] latitude (degrees).
+     * @param[in] longitude (degrees).
+     * @param[in] zone if specified, force the UTM/UPS representation to use a
+     *   specified zone using the rules given in UTMUPS::zonespec.
+     * @exception GeographicErr if \e latitude is not in [&minus;90&deg;,
+     *   90&deg;].
+     * @exception GeographicErr if \e zone cannot be used for this location.
+     **********************************************************************/
+    GeoCoords(real latitude, real longitude, int zone = UTMUPS::STANDARD) {
+      Reset(latitude, longitude, zone);
+    }
+
+    /**
+     * Construct from UTM/UPS coordinates.
+     *
+     * @param[in] zone UTM zone (zero means UPS).
+     * @param[in] northp hemisphere (true means north, false means south).
+     * @param[in] easting (meters).
+     * @param[in] northing (meters).
+     * @exception GeographicErr if \e zone, \e easting, or \e northing is
+     *   outside its allowed range.
+     **********************************************************************/
+    GeoCoords(int zone, bool northp, real easting, real northing) {
+      Reset(zone, northp, easting, northing);
+    }
+
+    /**
+     * Reset the location from a string.  See
+     * GeoCoords(const std::string& s, bool centerp, bool longfirst).
+     *
+     * @param[in] s 1-element, 2-element, or 3-element string representation of
+     *   the position.
+     * @param[in] centerp governs the interpretation of MGRS coordinates.
+     * @param[in] longfirst governs the interpretation of geographic
+     *   coordinates.
+     * @exception GeographicErr if the \e s is malformed.
+     **********************************************************************/
+    void Reset(const std::string& s,
+               bool centerp = true, bool longfirst = false);
+
+    /**
+     * Reset the location in terms of geographic coordinates.  See
+     * GeoCoords(real latitude, real longitude, int zone).
+     *
+     * @param[in] latitude (degrees).
+     * @param[in] longitude (degrees).
+     * @param[in] zone if specified, force the UTM/UPS representation to use a
+     *   specified zone using the rules given in UTMUPS::zonespec.
+     * @exception GeographicErr if \e latitude is not in [&minus;90&deg;,
+     *   90&deg;].
+     * @exception GeographicErr if \e zone cannot be used for this location.
+     **********************************************************************/
+    void Reset(real latitude, real longitude, int zone = UTMUPS::STANDARD) {
+      UTMUPS::Forward(latitude, longitude,
+                      _zone, _northp, _easting, _northing, _gamma, _k,
+                      zone);
+      _lat = latitude;
+      _long = longitude;
+      if (_long >= 180) _long -= 360;
+      else if (_long < -180) _long += 360;
+      CopyToAlt();
+    }
+
+    /**
+     * Reset the location in terms of UPS/UPS coordinates.  See
+     * GeoCoords(int zone, bool northp, real easting, real northing).
+     *
+     * @param[in] zone UTM zone (zero means UPS).
+     * @param[in] northp hemisphere (true means north, false means south).
+     * @param[in] easting (meters).
+     * @param[in] northing (meters).
+     * @exception GeographicErr if \e zone, \e easting, or \e northing is
+     *   outside its allowed range.
+     **********************************************************************/
+    void Reset(int zone, bool northp, real easting, real northing) {
+      UTMUPS::Reverse(zone, northp, easting, northing,
+                      _lat, _long, _gamma, _k);
+      _zone = zone;
+      _northp = northp;
+      _easting = easting;
+      _northing = northing;
+      FixHemisphere();
+      CopyToAlt();
+    }
+    ///@}
+
+    /** \name Querying the GeoCoords object
+     **********************************************************************/
+    ///@{
+    /**
+     * @return latitude (degrees)
+     **********************************************************************/
+    Math::real Latitude() const { return _lat; }
+
+    /**
+     * @return longitude (degrees)
+     **********************************************************************/
+    Math::real Longitude() const { return _long; }
+
+    /**
+     * @return easting (meters)
+     **********************************************************************/
+    Math::real Easting() const { return _easting; }
+
+    /**
+     * @return northing (meters)
+     **********************************************************************/
+    Math::real Northing() const { return _northing; }
+
+    /**
+     * @return meridian convergence (degrees) for the UTM/UPS projection.
+     **********************************************************************/
+    Math::real Convergence() const { return _gamma; }
+
+    /**
+     * @return scale for the UTM/UPS projection.
+     **********************************************************************/
+    Math::real Scale() const { return _k; }
+
+    /**
+     * @return hemisphere (false means south, true means north).
+     **********************************************************************/
+    bool Northp() const { return _northp; }
+
+    /**
+     * @return hemisphere letter n or s.
+     **********************************************************************/
+    char Hemisphere() const { return _northp ? 'n' : 's'; }
+
+    /**
+     * @return the zone corresponding to the input (return 0 for UPS).
+     **********************************************************************/
+    int Zone() const { return _zone; }
+
+    ///@}
+
+    /** \name Setting and querying the alternate zone
+     **********************************************************************/
+    ///@{
+    /**
+     * Specify alternate zone number.
+     *
+     * @param[in] zone zone number for the alternate representation.
+     * @exception GeographicErr if \e zone cannot be used for this location.
+     *
+     * See UTMUPS::zonespec for more information on the interpretation of \e
+     * zone.  Note that \e zone == UTMUPS::STANDARD (the default) use the
+     * standard UPS or UTM zone, UTMUPS::MATCH does nothing retaining the
+     * existing alternate representation.  Before this is called the alternate
+     * zone is the input zone.
+     **********************************************************************/
+    void SetAltZone(int zone = UTMUPS::STANDARD) const {
+      if (zone == UTMUPS::MATCH)
+        return;
+      zone = UTMUPS::StandardZone(_lat, _long, zone);
+      if (zone == _zone)
+        CopyToAlt();
+      else {
+        bool northp;
+        UTMUPS::Forward(_lat, _long,
+                        _alt_zone, northp,
+                        _alt_easting, _alt_northing, _alt_gamma, _alt_k,
+                        zone);
+      }
+    }
+
+    /**
+     * @return current alternate zone (return 0 for UPS).
+     **********************************************************************/
+    int AltZone() const { return _alt_zone; }
+
+    /**
+     * @return easting (meters) for alternate zone.
+     **********************************************************************/
+    Math::real AltEasting() const { return _alt_easting; }
+
+    /**
+     * @return northing (meters) for alternate zone.
+     **********************************************************************/
+    Math::real AltNorthing() const { return _alt_northing; }
+
+    /**
+     * @return meridian convergence (degrees) for alternate zone.
+     **********************************************************************/
+    Math::real AltConvergence() const { return _alt_gamma; }
+
+    /**
+     * @return scale for alternate zone.
+     **********************************************************************/
+    Math::real AltScale() const { return _alt_k; }
+    ///@}
+
+    /** \name String representations of the GeoCoords object
+     **********************************************************************/
+    ///@{
+    /**
+     * String representation with latitude and longitude as signed decimal
+     * degrees.
+     *
+     * @param[in] prec precision (relative to about 1m).
+     * @param[in] longfirst if true give longitude first (default = false)
+     * @exception std::bad_alloc if memory for the string can't be allocated.
+     * @return decimal latitude/longitude string representation.
+     *
+     * Precision specifies accuracy of representation as follows:
+     * - prec = &minus;5 (min), 1&deg;
+     * - prec = 0, 10<sup>&minus;5</sup>&deg; (about 1m)
+     * - prec = 3, 10<sup>&minus;8</sup>&deg;
+     * - prec = 9 (max), 10<sup>&minus;14</sup>&deg;
+     **********************************************************************/
+    std::string GeoRepresentation(int prec = 0, bool longfirst = false) const;
+
+    /**
+     * String representation with latitude and longitude as degrees, minutes,
+     * seconds, and hemisphere.
+     *
+     * @param[in] prec precision (relative to about 1m)
+     * @param[in] longfirst if true give longitude first (default = false)
+     * @param[in] dmssep if non-null, use as the DMS separator character
+     *   (instead of d, ', &quot; delimiters).
+     * @exception std::bad_alloc if memory for the string can't be allocated.
+     * @return DMS latitude/longitude string representation.
+     *
+     * Precision specifies accuracy of representation as follows:
+     * - prec = &minus;5 (min), 1&deg;
+     * - prec = &minus;4, 0.1&deg;
+     * - prec = &minus;3, 1'
+     * - prec = &minus;2, 0.1'
+     * - prec = &minus;1, 1&quot;
+     * - prec = 0, 0.1&quot; (about 3m)
+     * - prec = 1, 0.01&quot;
+     * - prec = 10 (max), 10<sup>&minus;11</sup>&quot;
+     **********************************************************************/
+    std::string DMSRepresentation(int prec = 0, bool longfirst = false,
+                                  char dmssep = char(0))
+      const;
+
+    /**
+     * MGRS string.
+     *
+     * @param[in] prec precision (relative to about 1m).
+     * @exception std::bad_alloc if memory for the string can't be allocated.
+     * @return MGRS string.
+     *
+     * This gives the coordinates of the enclosing grid square with size given
+     * by the precision.  Thus 38n 444180 3684790 converted to a MGRS
+     * coordinate at precision &minus;2 (100m) is 38SMB441847 and not
+     * 38SMB442848.  \e prec specifies the precision of the MGRS string as
+     * follows:
+     * - prec = &minus;6 (min), only the grid zone is returned, e.g., 38S
+     * - prec = &minus;5, 100km, e.g., 38SMB
+     * - prec = &minus;4, 10km
+     * - prec = &minus;3, 1km
+     * - prec = &minus;2, 100m
+     * - prec = &minus;1, 10m
+     * - prec = 0, 1m
+     * - prec = 1, 0.1m
+     * - prec = 6 (max), 1&mu;m
+     **********************************************************************/
+    std::string MGRSRepresentation(int prec = 0) const;
+
+    /**
+     * UTM/UPS string.
+     *
+     * @param[in] prec precision (relative to about 1m)
+     * @param[in] abbrev if true (the default) use abbreviated (n/s) notation
+     *   for hemisphere; otherwise spell out the hemisphere (north/south)
+     * @exception std::bad_alloc if memory for the string can't be allocated.
+     * @return UTM/UPS string representation: zone designator, easting, and
+     *   northing.
+     *
+     * Precision specifies accuracy of representation as follows:
+     * - prec = &minus;5 (min), 100km
+     * - prec = &minus;3, 1km
+     * - prec = 0, 1m
+     * - prec = 3, 1mm
+     * - prec = 6, 1&mu;m
+     * - prec = 9 (max), 1nm
+     **********************************************************************/
+    std::string UTMUPSRepresentation(int prec = 0, bool abbrev = true) const;
+
+    /**
+     * UTM/UPS string with hemisphere override.
+     *
+     * @param[in] northp hemisphere override
+     * @param[in] prec precision (relative to about 1m)
+     * @param[in] abbrev if true (the default) use abbreviated (n/s) notation
+     *   for hemisphere; otherwise spell out the hemisphere (north/south)
+     * @exception GeographicErr if the hemisphere override attempts to change
+     *   UPS N to UPS S or vice versa.
+     * @exception std::bad_alloc if memory for the string can't be allocated.
+     * @return UTM/UPS string representation: zone designator, easting, and
+     *   northing.
+     **********************************************************************/
+    std::string UTMUPSRepresentation(bool northp, int prec = 0,
+                                     bool abbrev = true) const;
+
+    /**
+     * MGRS string for the alternate zone.  See GeoCoords::MGRSRepresentation.
+     *
+     * @param[in] prec precision (relative to about 1m).
+     * @exception std::bad_alloc if memory for the string can't be allocated.
+     * @return MGRS string.
+     **********************************************************************/
+    std::string AltMGRSRepresentation(int prec = 0) const;
+
+    /**
+     * UTM/UPS string for the alternate zone.  See
+     * GeoCoords::UTMUPSRepresentation.
+     *
+     * @param[in] prec precision (relative to about 1m)
+     * @param[in] abbrev if true (the default) use abbreviated (n/s) notation
+     *   for hemisphere; otherwise spell out the hemisphere (north/south)
+     * @exception std::bad_alloc if memory for the string can't be allocated.
+     * @return UTM/UPS string representation: zone designator, easting, and
+     *   northing.
+     **********************************************************************/
+    std::string AltUTMUPSRepresentation(int prec = 0, bool abbrev = true)
+      const;
+
+    /**
+     * UTM/UPS string for the alternate zone, with hemisphere override.
+     *
+     * @param[in] northp hemisphere override
+     * @param[in] prec precision (relative to about 1m)
+     * @param[in] abbrev if true (the default) use abbreviated (n/s) notation
+     *   for hemisphere; otherwise spell out the hemisphere (north/south)
+     * @exception GeographicErr if the hemisphere override attempts to change
+     *   UPS n to UPS s or vice verse.
+     * @exception std::bad_alloc if memory for the string can't be allocated.
+     * @return UTM/UPS string representation: zone designator, easting, and
+     *   northing.
+     **********************************************************************/
+    std::string AltUTMUPSRepresentation(bool northp, int prec = 0,
+                                        bool abbrev = true) const;
+    ///@}
+
+    /** \name Inspector functions
+     **********************************************************************/
+    ///@{
+    /**
+     * @return \e a the equatorial radius of the WGS84 ellipsoid (meters).
+     *
+     * (The WGS84 value is returned because the UTM and UPS projections are
+     * based on this ellipsoid.)
+     **********************************************************************/
+    Math::real EquatorialRadius() const { return UTMUPS::EquatorialRadius(); }
+
+    /**
+     * @return \e f the flattening of the WGS84 ellipsoid.
+     *
+     * (The WGS84 value is returned because the UTM and UPS projections are
+     * based on this ellipsoid.)
+     **********************************************************************/
+    Math::real Flattening() const { return UTMUPS::Flattening(); }
+
+    /**
+     * \deprecated An old name for EquatorialRadius().
+     **********************************************************************/
+    GEOGRAPHICLIB_DEPRECATED("Use EquatorialRadius()")
+    Math::real MajorRadius() const { return EquatorialRadius(); }
+    ///@}
+
+  };
+
+} // namespace GeographicLib
+
+#endif  // GEOGRAPHICLIB_GEOCOORDS_HPP

+ 274 - 0
external/include/GeographicLib/Geocentric.hpp

@@ -0,0 +1,274 @@
+/**
+ * \file Geocentric.hpp
+ * \brief Header for GeographicLib::Geocentric class
+ *
+ * Copyright (c) Charles Karney (2008-2020) <charles@karney.com> and licensed
+ * under the MIT/X11 License.  For more information, see
+ * https://geographiclib.sourceforge.io/
+ **********************************************************************/
+
+#if !defined(GEOGRAPHICLIB_GEOCENTRIC_HPP)
+#define GEOGRAPHICLIB_GEOCENTRIC_HPP 1
+
+#include <vector>
+#include <GeographicLib/Constants.hpp>
+
+namespace GeographicLib {
+
+  /**
+   * \brief %Geocentric coordinates
+   *
+   * Convert between geodetic coordinates latitude = \e lat, longitude = \e
+   * lon, height = \e h (measured vertically from the surface of the ellipsoid)
+   * to geocentric coordinates (\e X, \e Y, \e Z).  The origin of geocentric
+   * coordinates is at the center of the earth.  The \e Z axis goes thru the
+   * north pole, \e lat = 90&deg;.  The \e X axis goes thru \e lat = 0,
+   * \e lon = 0.  %Geocentric coordinates are also known as earth centered,
+   * earth fixed (ECEF) coordinates.
+   *
+   * The conversion from geographic to geocentric coordinates is
+   * straightforward.  For the reverse transformation we use
+   * - H. Vermeille,
+   *   <a href="https://doi.org/10.1007/s00190-002-0273-6"> Direct
+   *   transformation from geocentric coordinates to geodetic coordinates</a>,
+   *   J. Geodesy 76, 451--454 (2002).
+   * .
+   * Several changes have been made to ensure that the method returns accurate
+   * results for all finite inputs (even if \e h is infinite).  The changes are
+   * described in Appendix B of
+   * - C. F. F. Karney,
+   *   <a href="https://arxiv.org/abs/1102.1215v1">Geodesics
+   *   on an ellipsoid of revolution</a>,
+   *   Feb. 2011;
+   *   preprint
+   *   <a href="https://arxiv.org/abs/1102.1215v1">arxiv:1102.1215v1</a>.
+   * .
+   * Vermeille similarly updated his method in
+   * - H. Vermeille,
+   *   <a href="https://doi.org/10.1007/s00190-010-0419-x">
+   *   An analytical method to transform geocentric into
+   *   geodetic coordinates</a>, J. Geodesy 85, 105--117 (2011).
+   * .
+   * See \ref geocentric for more information.
+   *
+   * The errors in these routines are close to round-off.  Specifically, for
+   * points within 5000 km of the surface of the ellipsoid (either inside or
+   * outside the ellipsoid), the error is bounded by 7 nm (7 nanometers) for
+   * the WGS84 ellipsoid.  See \ref geocentric for further information on the
+   * errors.
+   *
+   * Example of use:
+   * \include example-Geocentric.cpp
+   *
+   * <a href="CartConvert.1.html">CartConvert</a> is a command-line utility
+   * providing access to the functionality of Geocentric and LocalCartesian.
+   **********************************************************************/
+
+  class GEOGRAPHICLIB_EXPORT Geocentric {
+  private:
+    typedef Math::real real;
+    friend class LocalCartesian;
+    friend class MagneticCircle; // MagneticCircle uses Rotation
+    friend class MagneticModel;  // MagneticModel uses IntForward
+    friend class GravityCircle;  // GravityCircle uses Rotation
+    friend class GravityModel;   // GravityModel uses IntForward
+    friend class NormalGravity;  // NormalGravity uses IntForward
+    static const size_t dim_ = 3;
+    static const size_t dim2_ = dim_ * dim_;
+    real _a, _f, _e2, _e2m, _e2a, _e4a, _maxrad;
+    static void Rotation(real sphi, real cphi, real slam, real clam,
+                         real M[dim2_]);
+    static void Rotate(const real M[dim2_], real x, real y, real z,
+                       real& X, real& Y, real& Z) {
+      // Perform [X,Y,Z]^t = M.[x,y,z]^t
+      // (typically local cartesian to geocentric)
+      X = M[0] * x + M[1] * y + M[2] * z;
+      Y = M[3] * x + M[4] * y + M[5] * z;
+      Z = M[6] * x + M[7] * y + M[8] * z;
+    }
+    static void Unrotate(const real M[dim2_], real X, real Y, real Z,
+                         real& x, real& y, real& z)  {
+      // Perform [x,y,z]^t = M^t.[X,Y,Z]^t
+      // (typically geocentric to local cartesian)
+      x = M[0] * X + M[3] * Y + M[6] * Z;
+      y = M[1] * X + M[4] * Y + M[7] * Z;
+      z = M[2] * X + M[5] * Y + M[8] * Z;
+    }
+    void IntForward(real lat, real lon, real h, real& X, real& Y, real& Z,
+                    real M[dim2_]) const;
+    void IntReverse(real X, real Y, real Z, real& lat, real& lon, real& h,
+                    real M[dim2_]) const;
+
+  public:
+
+    /**
+     * Constructor for a ellipsoid with
+     *
+     * @param[in] a equatorial radius (meters).
+     * @param[in] f flattening of ellipsoid.  Setting \e f = 0 gives a sphere.
+     *   Negative \e f gives a prolate ellipsoid.
+     * @exception GeographicErr if \e a or (1 &minus; \e f) \e a is not
+     *   positive.
+     **********************************************************************/
+    Geocentric(real a, real f);
+
+    /**
+     * A default constructor (for use by NormalGravity).
+     **********************************************************************/
+    Geocentric() : _a(-1) {}
+
+    /**
+     * Convert from geodetic to geocentric coordinates.
+     *
+     * @param[in] lat latitude of point (degrees).
+     * @param[in] lon longitude of point (degrees).
+     * @param[in] h height of point above the ellipsoid (meters).
+     * @param[out] X geocentric coordinate (meters).
+     * @param[out] Y geocentric coordinate (meters).
+     * @param[out] Z geocentric coordinate (meters).
+     *
+     * \e lat should be in the range [&minus;90&deg;, 90&deg;].
+     **********************************************************************/
+    void Forward(real lat, real lon, real h, real& X, real& Y, real& Z)
+      const {
+      if (Init())
+        IntForward(lat, lon, h, X, Y, Z, NULL);
+    }
+
+    /**
+     * Convert from geodetic to geocentric coordinates and return rotation
+     * matrix.
+     *
+     * @param[in] lat latitude of point (degrees).
+     * @param[in] lon longitude of point (degrees).
+     * @param[in] h height of point above the ellipsoid (meters).
+     * @param[out] X geocentric coordinate (meters).
+     * @param[out] Y geocentric coordinate (meters).
+     * @param[out] Z geocentric coordinate (meters).
+     * @param[out] M if the length of the vector is 9, fill with the rotation
+     *   matrix in row-major order.
+     *
+     * Let \e v be a unit vector located at (\e lat, \e lon, \e h).  We can
+     * express \e v as \e column vectors in one of two ways
+     * - in east, north, up coordinates (where the components are relative to a
+     *   local coordinate system at (\e lat, \e lon, \e h)); call this
+     *   representation \e v1.
+     * - in geocentric \e X, \e Y, \e Z coordinates; call this representation
+     *   \e v0.
+     * .
+     * Then we have \e v0 = \e M &sdot; \e v1.
+     **********************************************************************/
+    void Forward(real lat, real lon, real h, real& X, real& Y, real& Z,
+                 std::vector<real>& M)
+      const {
+      if (!Init())
+        return;
+      if (M.end() == M.begin() + dim2_) {
+        real t[dim2_];
+        IntForward(lat, lon, h, X, Y, Z, t);
+        std::copy(t, t + dim2_, M.begin());
+      } else
+        IntForward(lat, lon, h, X, Y, Z, NULL);
+    }
+
+    /**
+     * Convert from geocentric to geodetic to coordinates.
+     *
+     * @param[in] X geocentric coordinate (meters).
+     * @param[in] Y geocentric coordinate (meters).
+     * @param[in] Z geocentric coordinate (meters).
+     * @param[out] lat latitude of point (degrees).
+     * @param[out] lon longitude of point (degrees).
+     * @param[out] h height of point above the ellipsoid (meters).
+     *
+     * In general, there are multiple solutions and the result which minimizes
+     * |<i>h</i> |is returned, i.e., (<i>lat</i>, <i>lon</i>) corresponds to
+     * the closest point on the ellipsoid.  If there are still multiple
+     * solutions with different latitudes (applies only if \e Z = 0), then the
+     * solution with \e lat > 0 is returned.  If there are still multiple
+     * solutions with different longitudes (applies only if \e X = \e Y = 0)
+     * then \e lon = 0 is returned.  The value of \e h returned satisfies \e h
+     * &ge; &minus; \e a (1 &minus; <i>e</i><sup>2</sup>) / sqrt(1 &minus;
+     * <i>e</i><sup>2</sup> sin<sup>2</sup>\e lat).  The value of \e lon
+     * returned is in the range [&minus;180&deg;, 180&deg;].
+     **********************************************************************/
+    void Reverse(real X, real Y, real Z, real& lat, real& lon, real& h)
+      const {
+      if (Init())
+        IntReverse(X, Y, Z, lat, lon, h, NULL);
+    }
+
+    /**
+     * Convert from geocentric to geodetic to coordinates.
+     *
+     * @param[in] X geocentric coordinate (meters).
+     * @param[in] Y geocentric coordinate (meters).
+     * @param[in] Z geocentric coordinate (meters).
+     * @param[out] lat latitude of point (degrees).
+     * @param[out] lon longitude of point (degrees).
+     * @param[out] h height of point above the ellipsoid (meters).
+     * @param[out] M if the length of the vector is 9, fill with the rotation
+     *   matrix in row-major order.
+     *
+     * Let \e v be a unit vector located at (\e lat, \e lon, \e h).  We can
+     * express \e v as \e column vectors in one of two ways
+     * - in east, north, up coordinates (where the components are relative to a
+     *   local coordinate system at (\e lat, \e lon, \e h)); call this
+     *   representation \e v1.
+     * - in geocentric \e X, \e Y, \e Z coordinates; call this representation
+     *   \e v0.
+     * .
+     * Then we have \e v1 = <i>M</i><sup>T</sup> &sdot; \e v0, where
+     * <i>M</i><sup>T</sup> is the transpose of \e M.
+     **********************************************************************/
+    void Reverse(real X, real Y, real Z, real& lat, real& lon, real& h,
+                 std::vector<real>& M)
+      const {
+      if (!Init())
+        return;
+      if (M.end() == M.begin() + dim2_) {
+        real t[dim2_];
+        IntReverse(X, Y, Z, lat, lon, h, t);
+        std::copy(t, t + dim2_, M.begin());
+      } else
+        IntReverse(X, Y, Z, lat, lon, h, NULL);
+    }
+
+    /** \name Inspector functions
+     **********************************************************************/
+    ///@{
+    /**
+     * @return true if the object has been initialized.
+     **********************************************************************/
+    bool Init() const { return _a > 0; }
+    /**
+     * @return \e a the equatorial radius of the ellipsoid (meters).  This is
+     *   the value used in the constructor.
+     **********************************************************************/
+    Math::real EquatorialRadius() const
+    { return Init() ? _a : Math::NaN(); }
+
+    /**
+     * @return \e f the  flattening of the ellipsoid.  This is the
+     *   value used in the constructor.
+     **********************************************************************/
+    Math::real Flattening() const
+    { return Init() ? _f : Math::NaN(); }
+
+    /**
+     * \deprecated An old name for EquatorialRadius().
+     **********************************************************************/
+    GEOGRAPHICLIB_DEPRECATED("Use EquatorialRadius()")
+    Math::real MajorRadius() const { return EquatorialRadius(); }
+    ///@}
+
+    /**
+     * A global instantiation of Geocentric with the parameters for the WGS84
+     * ellipsoid.
+     **********************************************************************/
+    static const Geocentric& WGS84();
+  };
+
+} // namespace GeographicLib
+
+#endif  // GEOGRAPHICLIB_GEOCENTRIC_HPP

+ 977 - 0
external/include/GeographicLib/Geodesic.hpp

@@ -0,0 +1,977 @@
+/**
+ * \file Geodesic.hpp
+ * \brief Header for GeographicLib::Geodesic class
+ *
+ * Copyright (c) Charles Karney (2009-2020) <charles@karney.com> and licensed
+ * under the MIT/X11 License.  For more information, see
+ * https://geographiclib.sourceforge.io/
+ **********************************************************************/
+
+#if !defined(GEOGRAPHICLIB_GEODESIC_HPP)
+#define GEOGRAPHICLIB_GEODESIC_HPP 1
+
+#include <GeographicLib/Constants.hpp>
+
+#if !defined(GEOGRAPHICLIB_GEODESIC_ORDER)
+/**
+ * The order of the expansions used by Geodesic.
+ * GEOGRAPHICLIB_GEODESIC_ORDER can be set to any integer in [3, 8].
+ **********************************************************************/
+#  define GEOGRAPHICLIB_GEODESIC_ORDER \
+  (GEOGRAPHICLIB_PRECISION == 2 ? 6 : \
+   (GEOGRAPHICLIB_PRECISION == 1 ? 3 : \
+    (GEOGRAPHICLIB_PRECISION == 3 ? 7 : 8)))
+#endif
+
+namespace GeographicLib {
+
+  class GeodesicLine;
+
+  /**
+   * \brief %Geodesic calculations
+   *
+   * The shortest path between two points on a ellipsoid at (\e lat1, \e lon1)
+   * and (\e lat2, \e lon2) is called the geodesic.  Its length is \e s12 and
+   * the geodesic from point 1 to point 2 has azimuths \e azi1 and \e azi2 at
+   * the two end points.  (The azimuth is the heading measured clockwise from
+   * north.  \e azi2 is the "forward" azimuth, i.e., the heading that takes you
+   * beyond point 2 not back to point 1.)  In the figure below, latitude if
+   * labeled &phi;, longitude &lambda; (with &lambda;<sub>12</sub> =
+   * &lambda;<sub>2</sub> &minus; &lambda;<sub>1</sub>), and azimuth &alpha;.
+   *
+   * <img src="https://upload.wikimedia.org/wikipedia/commons/c/cb/Geodesic_problem_on_an_ellipsoid.svg" width=250 alt="spheroidal triangle">
+   *
+   * Given \e lat1, \e lon1, \e azi1, and \e s12, we can determine \e lat2, \e
+   * lon2, and \e azi2.  This is the \e direct geodesic problem and its
+   * solution is given by the function Geodesic::Direct.  (If \e s12 is
+   * sufficiently large that the geodesic wraps more than halfway around the
+   * earth, there will be another geodesic between the points with a smaller \e
+   * s12.)
+   *
+   * Given \e lat1, \e lon1, \e lat2, and \e lon2, we can determine \e azi1, \e
+   * azi2, and \e s12.  This is the \e inverse geodesic problem, whose solution
+   * is given by Geodesic::Inverse.  Usually, the solution to the inverse
+   * problem is unique.  In cases where there are multiple solutions (all with
+   * the same \e s12, of course), all the solutions can be easily generated
+   * once a particular solution is provided.
+   *
+   * The standard way of specifying the direct problem is the specify the
+   * distance \e s12 to the second point.  However it is sometimes useful
+   * instead to specify the arc length \e a12 (in degrees) on the auxiliary
+   * sphere.  This is a mathematical construct used in solving the geodesic
+   * problems.  The solution of the direct problem in this form is provided by
+   * Geodesic::ArcDirect.  An arc length in excess of 180&deg; indicates that
+   * the geodesic is not a shortest path.  In addition, the arc length between
+   * an equatorial crossing and the next extremum of latitude for a geodesic is
+   * 90&deg;.
+   *
+   * This class can also calculate several other quantities related to
+   * geodesics.  These are:
+   * - <i>reduced length</i>.  If we fix the first point and increase \e azi1
+   *   by \e dazi1 (radians), the second point is displaced \e m12 \e dazi1 in
+   *   the direction \e azi2 + 90&deg;.  The quantity \e m12 is called
+   *   the "reduced length" and is symmetric under interchange of the two
+   *   points.  On a curved surface the reduced length obeys a symmetry
+   *   relation, \e m12 + \e m21 = 0.  On a flat surface, we have \e m12 = \e
+   *   s12.  The ratio <i>s12</i>/\e m12 gives the azimuthal scale for an
+   *   azimuthal equidistant projection.
+   * - <i>geodesic scale</i>.  Consider a reference geodesic and a second
+   *   geodesic parallel to this one at point 1 and separated by a small
+   *   distance \e dt.  The separation of the two geodesics at point 2 is \e
+   *   M12 \e dt where \e M12 is called the "geodesic scale".  \e M21 is
+   *   defined similarly (with the geodesics being parallel at point 2).  On a
+   *   flat surface, we have \e M12 = \e M21 = 1.  The quantity 1/\e M12 gives
+   *   the scale of the Cassini-Soldner projection.
+   * - <i>area</i>.  The area between the geodesic from point 1 to point 2 and
+   *   the equation is represented by \e S12; it is the area, measured
+   *   counter-clockwise, of the geodesic quadrilateral with corners
+   *   (<i>lat1</i>,<i>lon1</i>), (0,<i>lon1</i>), (0,<i>lon2</i>), and
+   *   (<i>lat2</i>,<i>lon2</i>).  It can be used to compute the area of any
+   *   geodesic polygon.
+   *
+   * Overloaded versions of Geodesic::Direct, Geodesic::ArcDirect, and
+   * Geodesic::Inverse allow these quantities to be returned.  In addition
+   * there are general functions Geodesic::GenDirect, and Geodesic::GenInverse
+   * which allow an arbitrary set of results to be computed.  The quantities \e
+   * m12, \e M12, \e M21 which all specify the behavior of nearby geodesics
+   * obey addition rules.  If points 1, 2, and 3 all lie on a single geodesic,
+   * then the following rules hold:
+   * - \e s13 = \e s12 + \e s23
+   * - \e a13 = \e a12 + \e a23
+   * - \e S13 = \e S12 + \e S23
+   * - \e m13 = \e m12 \e M23 + \e m23 \e M21
+   * - \e M13 = \e M12 \e M23 &minus; (1 &minus; \e M12 \e M21) \e m23 / \e m12
+   * - \e M31 = \e M32 \e M21 &minus; (1 &minus; \e M23 \e M32) \e m12 / \e m23
+   *
+   * Additional functionality is provided by the GeodesicLine class, which
+   * allows a sequence of points along a geodesic to be computed.
+   *
+   * The shortest distance returned by the solution of the inverse problem is
+   * (obviously) uniquely defined.  However, in a few special cases there are
+   * multiple azimuths which yield the same shortest distance.  Here is a
+   * catalog of those cases:
+   * - \e lat1 = &minus;\e lat2 (with neither point at a pole).  If \e azi1 =
+   *   \e azi2, the geodesic is unique.  Otherwise there are two geodesics and
+   *   the second one is obtained by setting [\e azi1, \e azi2] &rarr; [\e
+   *   azi2, \e azi1], [\e M12, \e M21] &rarr; [\e M21, \e M12], \e S12 &rarr;
+   *   &minus;\e S12.  (This occurs when the longitude difference is near
+   *   &plusmn;180&deg; for oblate ellipsoids.)
+   * - \e lon2 = \e lon1 &plusmn; 180&deg; (with neither point at a pole).  If
+   *   \e azi1 = 0&deg; or &plusmn;180&deg;, the geodesic is unique.  Otherwise
+   *   there are two geodesics and the second one is obtained by setting [\e
+   *   azi1, \e azi2] &rarr; [&minus;\e azi1, &minus;\e azi2], \e S12 &rarr;
+   *   &minus;\e S12.  (This occurs when \e lat2 is near &minus;\e lat1 for
+   *   prolate ellipsoids.)
+   * - Points 1 and 2 at opposite poles.  There are infinitely many geodesics
+   *   which can be generated by setting [\e azi1, \e azi2] &rarr; [\e azi1, \e
+   *   azi2] + [\e d, &minus;\e d], for arbitrary \e d.  (For spheres, this
+   *   prescription applies when points 1 and 2 are antipodal.)
+   * - \e s12 = 0 (coincident points).  There are infinitely many geodesics
+   *   which can be generated by setting [\e azi1, \e azi2] &rarr;
+   *   [\e azi1, \e azi2] + [\e d, \e d], for arbitrary \e d.
+   *
+   * The calculations are accurate to better than 15 nm (15 nanometers) for the
+   * WGS84 ellipsoid.  See Sec. 9 of
+   * <a href="https://arxiv.org/abs/1102.1215v1">arXiv:1102.1215v1</a> for
+   * details.  The algorithms used by this class are based on series expansions
+   * using the flattening \e f as a small parameter.  These are only accurate
+   * for |<i>f</i>| &lt; 0.02; however reasonably accurate results will be
+   * obtained for |<i>f</i>| &lt; 0.2.  Here is a table of the approximate
+   * maximum error (expressed as a distance) for an ellipsoid with the same
+   * equatorial radius as the WGS84 ellipsoid and different values of the
+   * flattening.<pre>
+   *     |f|      error
+   *     0.01     25 nm
+   *     0.02     30 nm
+   *     0.05     10 um
+   *     0.1     1.5 mm
+   *     0.2     300 mm
+   * </pre>
+   * For very eccentric ellipsoids, use GeodesicExact instead.
+   *
+   * The algorithms are described in
+   * - C. F. F. Karney,
+   *   <a href="https://doi.org/10.1007/s00190-012-0578-z">
+   *   Algorithms for geodesics</a>,
+   *   J. Geodesy <b>87</b>, 43--55 (2013);
+   *   DOI: <a href="https://doi.org/10.1007/s00190-012-0578-z">
+   *   10.1007/s00190-012-0578-z</a>;
+   *   addenda:
+   *   <a href="https://geographiclib.sourceforge.io/geod-addenda.html">
+   *   geod-addenda.html</a>.
+   * .
+   * For more information on geodesics see \ref geodesic.
+   *
+   * Example of use:
+   * \include example-Geodesic.cpp
+   *
+   * <a href="GeodSolve.1.html">GeodSolve</a> is a command-line utility
+   * providing access to the functionality of Geodesic and GeodesicLine.
+   **********************************************************************/
+
+  class GEOGRAPHICLIB_EXPORT Geodesic {
+  private:
+    typedef Math::real real;
+    friend class GeodesicLine;
+    static const int nA1_ = GEOGRAPHICLIB_GEODESIC_ORDER;
+    static const int nC1_ = GEOGRAPHICLIB_GEODESIC_ORDER;
+    static const int nC1p_ = GEOGRAPHICLIB_GEODESIC_ORDER;
+    static const int nA2_ = GEOGRAPHICLIB_GEODESIC_ORDER;
+    static const int nC2_ = GEOGRAPHICLIB_GEODESIC_ORDER;
+    static const int nA3_ = GEOGRAPHICLIB_GEODESIC_ORDER;
+    static const int nA3x_ = nA3_;
+    static const int nC3_ = GEOGRAPHICLIB_GEODESIC_ORDER;
+    static const int nC3x_ = (nC3_ * (nC3_ - 1)) / 2;
+    static const int nC4_ = GEOGRAPHICLIB_GEODESIC_ORDER;
+    static const int nC4x_ = (nC4_ * (nC4_ + 1)) / 2;
+    // Size for temporary array
+    // nC = max(max(nC1_, nC1p_, nC2_) + 1, max(nC3_, nC4_))
+    static const int nC_ = GEOGRAPHICLIB_GEODESIC_ORDER + 1;
+    static const unsigned maxit1_ = 20;
+    unsigned maxit2_;
+    real tiny_, tol0_, tol1_, tol2_, tolb_, xthresh_;
+
+    enum captype {
+      CAP_NONE = 0U,
+      CAP_C1   = 1U<<0,
+      CAP_C1p  = 1U<<1,
+      CAP_C2   = 1U<<2,
+      CAP_C3   = 1U<<3,
+      CAP_C4   = 1U<<4,
+      CAP_ALL  = 0x1FU,
+      CAP_MASK = CAP_ALL,
+      OUT_ALL  = 0x7F80U,
+      OUT_MASK = 0xFF80U,       // Includes LONG_UNROLL
+    };
+
+    static real SinCosSeries(bool sinp,
+                             real sinx, real cosx, const real c[], int n);
+    static real Astroid(real x, real y);
+
+    real _a, _f, _f1, _e2, _ep2, _n, _b, _c2, _etol2;
+    real _A3x[nA3x_], _C3x[nC3x_], _C4x[nC4x_];
+
+    void Lengths(real eps, real sig12,
+                 real ssig1, real csig1, real dn1,
+                 real ssig2, real csig2, real dn2,
+                 real cbet1, real cbet2, unsigned outmask,
+                 real& s12s, real& m12a, real& m0,
+                 real& M12, real& M21, real Ca[]) const;
+    real InverseStart(real sbet1, real cbet1, real dn1,
+                      real sbet2, real cbet2, real dn2,
+                      real lam12, real slam12, real clam12,
+                      real& salp1, real& calp1,
+                      real& salp2, real& calp2, real& dnm,
+                      real Ca[]) const;
+    real Lambda12(real sbet1, real cbet1, real dn1,
+                  real sbet2, real cbet2, real dn2,
+                  real salp1, real calp1, real slam120, real clam120,
+                  real& salp2, real& calp2, real& sig12,
+                  real& ssig1, real& csig1, real& ssig2, real& csig2,
+                  real& eps, real& domg12,
+                  bool diffp, real& dlam12, real Ca[]) const;
+    real GenInverse(real lat1, real lon1, real lat2, real lon2,
+                    unsigned outmask, real& s12,
+                    real& salp1, real& calp1, real& salp2, real& calp2,
+                    real& m12, real& M12, real& M21, real& S12) const;
+
+    // These are Maxima generated functions to provide series approximations to
+    // the integrals for the ellipsoidal geodesic.
+    static real A1m1f(real eps);
+    static void C1f(real eps, real c[]);
+    static void C1pf(real eps, real c[]);
+    static real A2m1f(real eps);
+    static void C2f(real eps, real c[]);
+
+    void A3coeff();
+    real A3f(real eps) const;
+    void C3coeff();
+    void C3f(real eps, real c[]) const;
+    void C4coeff();
+    void C4f(real k2, real c[]) const;
+
+  public:
+
+    /**
+     * Bit masks for what calculations to do.  These masks do double duty.
+     * They signify to the GeodesicLine::GeodesicLine constructor and to
+     * Geodesic::Line what capabilities should be included in the GeodesicLine
+     * object.  They also specify which results to return in the general
+     * routines Geodesic::GenDirect and Geodesic::GenInverse routines.
+     * GeodesicLine::mask is a duplication of this enum.
+     **********************************************************************/
+    enum mask {
+      /**
+       * No capabilities, no output.
+       * @hideinitializer
+       **********************************************************************/
+      NONE          = 0U,
+      /**
+       * Calculate latitude \e lat2.  (It's not necessary to include this as a
+       * capability to GeodesicLine because this is included by default.)
+       * @hideinitializer
+       **********************************************************************/
+      LATITUDE      = 1U<<7  | CAP_NONE,
+      /**
+       * Calculate longitude \e lon2.
+       * @hideinitializer
+       **********************************************************************/
+      LONGITUDE     = 1U<<8  | CAP_C3,
+      /**
+       * Calculate azimuths \e azi1 and \e azi2.  (It's not necessary to
+       * include this as a capability to GeodesicLine because this is included
+       * by default.)
+       * @hideinitializer
+       **********************************************************************/
+      AZIMUTH       = 1U<<9  | CAP_NONE,
+      /**
+       * Calculate distance \e s12.
+       * @hideinitializer
+       **********************************************************************/
+      DISTANCE      = 1U<<10 | CAP_C1,
+      /**
+       * Allow distance \e s12 to be used as input in the direct geodesic
+       * problem.
+       * @hideinitializer
+       **********************************************************************/
+      DISTANCE_IN   = 1U<<11 | CAP_C1 | CAP_C1p,
+      /**
+       * Calculate reduced length \e m12.
+       * @hideinitializer
+       **********************************************************************/
+      REDUCEDLENGTH = 1U<<12 | CAP_C1 | CAP_C2,
+      /**
+       * Calculate geodesic scales \e M12 and \e M21.
+       * @hideinitializer
+       **********************************************************************/
+      GEODESICSCALE = 1U<<13 | CAP_C1 | CAP_C2,
+      /**
+       * Calculate area \e S12.
+       * @hideinitializer
+       **********************************************************************/
+      AREA          = 1U<<14 | CAP_C4,
+      /**
+       * Unroll \e lon2 in the direct calculation.
+       * @hideinitializer
+       **********************************************************************/
+      LONG_UNROLL   = 1U<<15,
+      /**
+       * All capabilities, calculate everything.  (LONG_UNROLL is not
+       * included in this mask.)
+       * @hideinitializer
+       **********************************************************************/
+      ALL           = OUT_ALL| CAP_ALL,
+    };
+
+    /** \name Constructor
+     **********************************************************************/
+    ///@{
+    /**
+     * Constructor for a ellipsoid with
+     *
+     * @param[in] a equatorial radius (meters).
+     * @param[in] f flattening of ellipsoid.  Setting \e f = 0 gives a sphere.
+     *   Negative \e f gives a prolate ellipsoid.
+     * @exception GeographicErr if \e a or (1 &minus; \e f) \e a is not
+     *   positive.
+     **********************************************************************/
+    Geodesic(real a, real f);
+    ///@}
+
+    /** \name Direct geodesic problem specified in terms of distance.
+     **********************************************************************/
+    ///@{
+    /**
+     * Solve the direct geodesic problem where the length of the geodesic
+     * is specified in terms of distance.
+     *
+     * @param[in] lat1 latitude of point 1 (degrees).
+     * @param[in] lon1 longitude of point 1 (degrees).
+     * @param[in] azi1 azimuth at point 1 (degrees).
+     * @param[in] s12 distance between point 1 and point 2 (meters); it can be
+     *   negative.
+     * @param[out] lat2 latitude of point 2 (degrees).
+     * @param[out] lon2 longitude of point 2 (degrees).
+     * @param[out] azi2 (forward) azimuth at point 2 (degrees).
+     * @param[out] m12 reduced length of geodesic (meters).
+     * @param[out] M12 geodesic scale of point 2 relative to point 1
+     *   (dimensionless).
+     * @param[out] M21 geodesic scale of point 1 relative to point 2
+     *   (dimensionless).
+     * @param[out] S12 area under the geodesic (meters<sup>2</sup>).
+     * @return \e a12 arc length of between point 1 and point 2 (degrees).
+     *
+     * \e lat1 should be in the range [&minus;90&deg;, 90&deg;].  The values of
+     * \e lon2 and \e azi2 returned are in the range [&minus;180&deg;,
+     * 180&deg;].
+     *
+     * If either point is at a pole, the azimuth is defined by keeping the
+     * longitude fixed, writing \e lat = &plusmn;(90&deg; &minus; &epsilon;),
+     * and taking the limit &epsilon; &rarr; 0+.  An arc length greater that
+     * 180&deg; signifies a geodesic which is not a shortest path.  (For a
+     * prolate ellipsoid, an additional condition is necessary for a shortest
+     * path: the longitudinal extent must not exceed of 180&deg;.)
+     *
+     * The following functions are overloaded versions of Geodesic::Direct
+     * which omit some of the output parameters.  Note, however, that the arc
+     * length is always computed and returned as the function value.
+     **********************************************************************/
+    Math::real Direct(real lat1, real lon1, real azi1, real s12,
+                      real& lat2, real& lon2, real& azi2,
+                      real& m12, real& M12, real& M21, real& S12)
+      const {
+      real t;
+      return GenDirect(lat1, lon1, azi1, false, s12,
+                       LATITUDE | LONGITUDE | AZIMUTH |
+                       REDUCEDLENGTH | GEODESICSCALE | AREA,
+                       lat2, lon2, azi2, t, m12, M12, M21, S12);
+    }
+
+    /**
+     * See the documentation for Geodesic::Direct.
+     **********************************************************************/
+    Math::real Direct(real lat1, real lon1, real azi1, real s12,
+                      real& lat2, real& lon2)
+      const {
+      real t;
+      return GenDirect(lat1, lon1, azi1, false, s12,
+                       LATITUDE | LONGITUDE,
+                       lat2, lon2, t, t, t, t, t, t);
+    }
+
+    /**
+     * See the documentation for Geodesic::Direct.
+     **********************************************************************/
+    Math::real Direct(real lat1, real lon1, real azi1, real s12,
+                      real& lat2, real& lon2, real& azi2)
+      const {
+      real t;
+      return GenDirect(lat1, lon1, azi1, false, s12,
+                       LATITUDE | LONGITUDE | AZIMUTH,
+                       lat2, lon2, azi2, t, t, t, t, t);
+    }
+
+    /**
+     * See the documentation for Geodesic::Direct.
+     **********************************************************************/
+    Math::real Direct(real lat1, real lon1, real azi1, real s12,
+                      real& lat2, real& lon2, real& azi2, real& m12)
+      const {
+      real t;
+      return GenDirect(lat1, lon1, azi1, false, s12,
+                       LATITUDE | LONGITUDE | AZIMUTH | REDUCEDLENGTH,
+                       lat2, lon2, azi2, t, m12, t, t, t);
+    }
+
+    /**
+     * See the documentation for Geodesic::Direct.
+     **********************************************************************/
+    Math::real Direct(real lat1, real lon1, real azi1, real s12,
+                      real& lat2, real& lon2, real& azi2,
+                      real& M12, real& M21)
+      const {
+      real t;
+      return GenDirect(lat1, lon1, azi1, false, s12,
+                       LATITUDE | LONGITUDE | AZIMUTH | GEODESICSCALE,
+                       lat2, lon2, azi2, t, t, M12, M21, t);
+    }
+
+    /**
+     * See the documentation for Geodesic::Direct.
+     **********************************************************************/
+    Math::real Direct(real lat1, real lon1, real azi1, real s12,
+                      real& lat2, real& lon2, real& azi2,
+                      real& m12, real& M12, real& M21)
+      const {
+      real t;
+      return GenDirect(lat1, lon1, azi1, false, s12,
+                       LATITUDE | LONGITUDE | AZIMUTH |
+                       REDUCEDLENGTH | GEODESICSCALE,
+                       lat2, lon2, azi2, t, m12, M12, M21, t);
+    }
+    ///@}
+
+    /** \name Direct geodesic problem specified in terms of arc length.
+     **********************************************************************/
+    ///@{
+    /**
+     * Solve the direct geodesic problem where the length of the geodesic
+     * is specified in terms of arc length.
+     *
+     * @param[in] lat1 latitude of point 1 (degrees).
+     * @param[in] lon1 longitude of point 1 (degrees).
+     * @param[in] azi1 azimuth at point 1 (degrees).
+     * @param[in] a12 arc length between point 1 and point 2 (degrees); it can
+     *   be negative.
+     * @param[out] lat2 latitude of point 2 (degrees).
+     * @param[out] lon2 longitude of point 2 (degrees).
+     * @param[out] azi2 (forward) azimuth at point 2 (degrees).
+     * @param[out] s12 distance between point 1 and point 2 (meters).
+     * @param[out] m12 reduced length of geodesic (meters).
+     * @param[out] M12 geodesic scale of point 2 relative to point 1
+     *   (dimensionless).
+     * @param[out] M21 geodesic scale of point 1 relative to point 2
+     *   (dimensionless).
+     * @param[out] S12 area under the geodesic (meters<sup>2</sup>).
+     *
+     * \e lat1 should be in the range [&minus;90&deg;, 90&deg;].  The values of
+     * \e lon2 and \e azi2 returned are in the range [&minus;180&deg;,
+     * 180&deg;].
+     *
+     * If either point is at a pole, the azimuth is defined by keeping the
+     * longitude fixed, writing \e lat = &plusmn;(90&deg; &minus; &epsilon;),
+     * and taking the limit &epsilon; &rarr; 0+.  An arc length greater that
+     * 180&deg; signifies a geodesic which is not a shortest path.  (For a
+     * prolate ellipsoid, an additional condition is necessary for a shortest
+     * path: the longitudinal extent must not exceed of 180&deg;.)
+     *
+     * The following functions are overloaded versions of Geodesic::Direct
+     * which omit some of the output parameters.
+     **********************************************************************/
+    void ArcDirect(real lat1, real lon1, real azi1, real a12,
+                   real& lat2, real& lon2, real& azi2, real& s12,
+                   real& m12, real& M12, real& M21, real& S12)
+      const {
+      GenDirect(lat1, lon1, azi1, true, a12,
+                LATITUDE | LONGITUDE | AZIMUTH | DISTANCE |
+                REDUCEDLENGTH | GEODESICSCALE | AREA,
+                lat2, lon2, azi2, s12, m12, M12, M21, S12);
+    }
+
+    /**
+     * See the documentation for Geodesic::ArcDirect.
+     **********************************************************************/
+    void ArcDirect(real lat1, real lon1, real azi1, real a12,
+                   real& lat2, real& lon2) const {
+      real t;
+      GenDirect(lat1, lon1, azi1, true, a12,
+                LATITUDE | LONGITUDE,
+                lat2, lon2, t, t, t, t, t, t);
+    }
+
+    /**
+     * See the documentation for Geodesic::ArcDirect.
+     **********************************************************************/
+    void ArcDirect(real lat1, real lon1, real azi1, real a12,
+                   real& lat2, real& lon2, real& azi2) const {
+      real t;
+      GenDirect(lat1, lon1, azi1, true, a12,
+                LATITUDE | LONGITUDE | AZIMUTH,
+                lat2, lon2, azi2, t, t, t, t, t);
+    }
+
+    /**
+     * See the documentation for Geodesic::ArcDirect.
+     **********************************************************************/
+    void ArcDirect(real lat1, real lon1, real azi1, real a12,
+                   real& lat2, real& lon2, real& azi2, real& s12)
+      const {
+      real t;
+      GenDirect(lat1, lon1, azi1, true, a12,
+                LATITUDE | LONGITUDE | AZIMUTH | DISTANCE,
+                lat2, lon2, azi2, s12, t, t, t, t);
+    }
+
+    /**
+     * See the documentation for Geodesic::ArcDirect.
+     **********************************************************************/
+    void ArcDirect(real lat1, real lon1, real azi1, real a12,
+                   real& lat2, real& lon2, real& azi2,
+                   real& s12, real& m12) const {
+      real t;
+      GenDirect(lat1, lon1, azi1, true, a12,
+                LATITUDE | LONGITUDE | AZIMUTH | DISTANCE |
+                REDUCEDLENGTH,
+                lat2, lon2, azi2, s12, m12, t, t, t);
+    }
+
+    /**
+     * See the documentation for Geodesic::ArcDirect.
+     **********************************************************************/
+    void ArcDirect(real lat1, real lon1, real azi1, real a12,
+                   real& lat2, real& lon2, real& azi2, real& s12,
+                   real& M12, real& M21) const {
+      real t;
+      GenDirect(lat1, lon1, azi1, true, a12,
+                LATITUDE | LONGITUDE | AZIMUTH | DISTANCE |
+                GEODESICSCALE,
+                lat2, lon2, azi2, s12, t, M12, M21, t);
+    }
+
+    /**
+     * See the documentation for Geodesic::ArcDirect.
+     **********************************************************************/
+    void ArcDirect(real lat1, real lon1, real azi1, real a12,
+                   real& lat2, real& lon2, real& azi2, real& s12,
+                   real& m12, real& M12, real& M21) const {
+      real t;
+      GenDirect(lat1, lon1, azi1, true, a12,
+                LATITUDE | LONGITUDE | AZIMUTH | DISTANCE |
+                REDUCEDLENGTH | GEODESICSCALE,
+                lat2, lon2, azi2, s12, m12, M12, M21, t);
+    }
+    ///@}
+
+    /** \name General version of the direct geodesic solution.
+     **********************************************************************/
+    ///@{
+
+    /**
+     * The general direct geodesic problem.  Geodesic::Direct and
+     * Geodesic::ArcDirect are defined in terms of this function.
+     *
+     * @param[in] lat1 latitude of point 1 (degrees).
+     * @param[in] lon1 longitude of point 1 (degrees).
+     * @param[in] azi1 azimuth at point 1 (degrees).
+     * @param[in] arcmode boolean flag determining the meaning of the \e
+     *   s12_a12.
+     * @param[in] s12_a12 if \e arcmode is false, this is the distance between
+     *   point 1 and point 2 (meters); otherwise it is the arc length between
+     *   point 1 and point 2 (degrees); it can be negative.
+     * @param[in] outmask a bitor'ed combination of Geodesic::mask values
+     *   specifying which of the following parameters should be set.
+     * @param[out] lat2 latitude of point 2 (degrees).
+     * @param[out] lon2 longitude of point 2 (degrees).
+     * @param[out] azi2 (forward) azimuth at point 2 (degrees).
+     * @param[out] s12 distance between point 1 and point 2 (meters).
+     * @param[out] m12 reduced length of geodesic (meters).
+     * @param[out] M12 geodesic scale of point 2 relative to point 1
+     *   (dimensionless).
+     * @param[out] M21 geodesic scale of point 1 relative to point 2
+     *   (dimensionless).
+     * @param[out] S12 area under the geodesic (meters<sup>2</sup>).
+     * @return \e a12 arc length of between point 1 and point 2 (degrees).
+     *
+     * The Geodesic::mask values possible for \e outmask are
+     * - \e outmask |= Geodesic::LATITUDE for the latitude \e lat2;
+     * - \e outmask |= Geodesic::LONGITUDE for the latitude \e lon2;
+     * - \e outmask |= Geodesic::AZIMUTH for the latitude \e azi2;
+     * - \e outmask |= Geodesic::DISTANCE for the distance \e s12;
+     * - \e outmask |= Geodesic::REDUCEDLENGTH for the reduced length \e
+     *   m12;
+     * - \e outmask |= Geodesic::GEODESICSCALE for the geodesic scales \e
+     *   M12 and \e M21;
+     * - \e outmask |= Geodesic::AREA for the area \e S12;
+     * - \e outmask |= Geodesic::ALL for all of the above;
+     * - \e outmask |= Geodesic::LONG_UNROLL to unroll \e lon2 instead of
+     *   wrapping it into the range [&minus;180&deg;, 180&deg;].
+     * .
+     * The function value \e a12 is always computed and returned and this
+     * equals \e s12_a12 is \e arcmode is true.  If \e outmask includes
+     * Geodesic::DISTANCE and \e arcmode is false, then \e s12 = \e s12_a12.
+     * It is not necessary to include Geodesic::DISTANCE_IN in \e outmask; this
+     * is automatically included is \e arcmode is false.
+     *
+     * With the Geodesic::LONG_UNROLL bit set, the quantity \e lon2 &minus; \e
+     * lon1 indicates how many times and in what sense the geodesic encircles
+     * the ellipsoid.
+     **********************************************************************/
+    Math::real GenDirect(real lat1, real lon1, real azi1,
+                         bool arcmode, real s12_a12, unsigned outmask,
+                         real& lat2, real& lon2, real& azi2,
+                         real& s12, real& m12, real& M12, real& M21,
+                         real& S12) const;
+    ///@}
+
+    /** \name Inverse geodesic problem.
+     **********************************************************************/
+    ///@{
+    /**
+     * Solve the inverse geodesic problem.
+     *
+     * @param[in] lat1 latitude of point 1 (degrees).
+     * @param[in] lon1 longitude of point 1 (degrees).
+     * @param[in] lat2 latitude of point 2 (degrees).
+     * @param[in] lon2 longitude of point 2 (degrees).
+     * @param[out] s12 distance between point 1 and point 2 (meters).
+     * @param[out] azi1 azimuth at point 1 (degrees).
+     * @param[out] azi2 (forward) azimuth at point 2 (degrees).
+     * @param[out] m12 reduced length of geodesic (meters).
+     * @param[out] M12 geodesic scale of point 2 relative to point 1
+     *   (dimensionless).
+     * @param[out] M21 geodesic scale of point 1 relative to point 2
+     *   (dimensionless).
+     * @param[out] S12 area under the geodesic (meters<sup>2</sup>).
+     * @return \e a12 arc length of between point 1 and point 2 (degrees).
+     *
+     * \e lat1 and \e lat2 should be in the range [&minus;90&deg;, 90&deg;].
+     * The values of \e azi1 and \e azi2 returned are in the range
+     * [&minus;180&deg;, 180&deg;].
+     *
+     * If either point is at a pole, the azimuth is defined by keeping the
+     * longitude fixed, writing \e lat = &plusmn;(90&deg; &minus; &epsilon;),
+     * and taking the limit &epsilon; &rarr; 0+.
+     *
+     * The solution to the inverse problem is found using Newton's method.  If
+     * this fails to converge (this is very unlikely in geodetic applications
+     * but does occur for very eccentric ellipsoids), then the bisection method
+     * is used to refine the solution.
+     *
+     * The following functions are overloaded versions of Geodesic::Inverse
+     * which omit some of the output parameters.  Note, however, that the arc
+     * length is always computed and returned as the function value.
+     **********************************************************************/
+    Math::real Inverse(real lat1, real lon1, real lat2, real lon2,
+                       real& s12, real& azi1, real& azi2, real& m12,
+                       real& M12, real& M21, real& S12) const {
+      return GenInverse(lat1, lon1, lat2, lon2,
+                        DISTANCE | AZIMUTH |
+                        REDUCEDLENGTH | GEODESICSCALE | AREA,
+                        s12, azi1, azi2, m12, M12, M21, S12);
+    }
+
+    /**
+     * See the documentation for Geodesic::Inverse.
+     **********************************************************************/
+    Math::real Inverse(real lat1, real lon1, real lat2, real lon2,
+                       real& s12) const {
+      real t;
+      return GenInverse(lat1, lon1, lat2, lon2,
+                        DISTANCE,
+                        s12, t, t, t, t, t, t);
+    }
+
+    /**
+     * See the documentation for Geodesic::Inverse.
+     **********************************************************************/
+    Math::real Inverse(real lat1, real lon1, real lat2, real lon2,
+                       real& azi1, real& azi2) const {
+      real t;
+      return GenInverse(lat1, lon1, lat2, lon2,
+                        AZIMUTH,
+                        t, azi1, azi2, t, t, t, t);
+    }
+
+    /**
+     * See the documentation for Geodesic::Inverse.
+     **********************************************************************/
+    Math::real Inverse(real lat1, real lon1, real lat2, real lon2,
+                       real& s12, real& azi1, real& azi2)
+      const {
+      real t;
+      return GenInverse(lat1, lon1, lat2, lon2,
+                        DISTANCE | AZIMUTH,
+                        s12, azi1, azi2, t, t, t, t);
+    }
+
+    /**
+     * See the documentation for Geodesic::Inverse.
+     **********************************************************************/
+    Math::real Inverse(real lat1, real lon1, real lat2, real lon2,
+                       real& s12, real& azi1, real& azi2, real& m12)
+      const {
+      real t;
+      return GenInverse(lat1, lon1, lat2, lon2,
+                        DISTANCE | AZIMUTH | REDUCEDLENGTH,
+                        s12, azi1, azi2, m12, t, t, t);
+    }
+
+    /**
+     * See the documentation for Geodesic::Inverse.
+     **********************************************************************/
+    Math::real Inverse(real lat1, real lon1, real lat2, real lon2,
+                       real& s12, real& azi1, real& azi2,
+                       real& M12, real& M21) const {
+      real t;
+      return GenInverse(lat1, lon1, lat2, lon2,
+                        DISTANCE | AZIMUTH | GEODESICSCALE,
+                        s12, azi1, azi2, t, M12, M21, t);
+    }
+
+    /**
+     * See the documentation for Geodesic::Inverse.
+     **********************************************************************/
+    Math::real Inverse(real lat1, real lon1, real lat2, real lon2,
+                       real& s12, real& azi1, real& azi2, real& m12,
+                       real& M12, real& M21) const {
+      real t;
+      return GenInverse(lat1, lon1, lat2, lon2,
+                        DISTANCE | AZIMUTH |
+                        REDUCEDLENGTH | GEODESICSCALE,
+                        s12, azi1, azi2, m12, M12, M21, t);
+    }
+    ///@}
+
+    /** \name General version of inverse geodesic solution.
+     **********************************************************************/
+    ///@{
+    /**
+     * The general inverse geodesic calculation.  Geodesic::Inverse is defined
+     * in terms of this function.
+     *
+     * @param[in] lat1 latitude of point 1 (degrees).
+     * @param[in] lon1 longitude of point 1 (degrees).
+     * @param[in] lat2 latitude of point 2 (degrees).
+     * @param[in] lon2 longitude of point 2 (degrees).
+     * @param[in] outmask a bitor'ed combination of Geodesic::mask values
+     *   specifying which of the following parameters should be set.
+     * @param[out] s12 distance between point 1 and point 2 (meters).
+     * @param[out] azi1 azimuth at point 1 (degrees).
+     * @param[out] azi2 (forward) azimuth at point 2 (degrees).
+     * @param[out] m12 reduced length of geodesic (meters).
+     * @param[out] M12 geodesic scale of point 2 relative to point 1
+     *   (dimensionless).
+     * @param[out] M21 geodesic scale of point 1 relative to point 2
+     *   (dimensionless).
+     * @param[out] S12 area under the geodesic (meters<sup>2</sup>).
+     * @return \e a12 arc length of between point 1 and point 2 (degrees).
+     *
+     * The Geodesic::mask values possible for \e outmask are
+     * - \e outmask |= Geodesic::DISTANCE for the distance \e s12;
+     * - \e outmask |= Geodesic::AZIMUTH for the latitude \e azi2;
+     * - \e outmask |= Geodesic::REDUCEDLENGTH for the reduced length \e
+     *   m12;
+     * - \e outmask |= Geodesic::GEODESICSCALE for the geodesic scales \e
+     *   M12 and \e M21;
+     * - \e outmask |= Geodesic::AREA for the area \e S12;
+     * - \e outmask |= Geodesic::ALL for all of the above.
+     * .
+     * The arc length is always computed and returned as the function value.
+     **********************************************************************/
+    Math::real GenInverse(real lat1, real lon1, real lat2, real lon2,
+                          unsigned outmask,
+                          real& s12, real& azi1, real& azi2,
+                          real& m12, real& M12, real& M21, real& S12) const;
+    ///@}
+
+    /** \name Interface to GeodesicLine.
+     **********************************************************************/
+    ///@{
+
+    /**
+     * Set up to compute several points on a single geodesic.
+     *
+     * @param[in] lat1 latitude of point 1 (degrees).
+     * @param[in] lon1 longitude of point 1 (degrees).
+     * @param[in] azi1 azimuth at point 1 (degrees).
+     * @param[in] caps bitor'ed combination of Geodesic::mask values
+     *   specifying the capabilities the GeodesicLine object should possess,
+     *   i.e., which quantities can be returned in calls to
+     *   GeodesicLine::Position.
+     * @return a GeodesicLine object.
+     *
+     * \e lat1 should be in the range [&minus;90&deg;, 90&deg;].
+     *
+     * The Geodesic::mask values are
+     * - \e caps |= Geodesic::LATITUDE for the latitude \e lat2; this is
+     *   added automatically;
+     * - \e caps |= Geodesic::LONGITUDE for the latitude \e lon2;
+     * - \e caps |= Geodesic::AZIMUTH for the azimuth \e azi2; this is
+     *   added automatically;
+     * - \e caps |= Geodesic::DISTANCE for the distance \e s12;
+     * - \e caps |= Geodesic::REDUCEDLENGTH for the reduced length \e m12;
+     * - \e caps |= Geodesic::GEODESICSCALE for the geodesic scales \e M12
+     *   and \e M21;
+     * - \e caps |= Geodesic::AREA for the area \e S12;
+     * - \e caps |= Geodesic::DISTANCE_IN permits the length of the
+     *   geodesic to be given in terms of \e s12; without this capability the
+     *   length can only be specified in terms of arc length;
+     * - \e caps |= Geodesic::ALL for all of the above.
+     * .
+     * The default value of \e caps is Geodesic::ALL.
+     *
+     * If the point is at a pole, the azimuth is defined by keeping \e lon1
+     * fixed, writing \e lat1 = &plusmn;(90 &minus; &epsilon;), and taking the
+     * limit &epsilon; &rarr; 0+.
+     **********************************************************************/
+    GeodesicLine Line(real lat1, real lon1, real azi1, unsigned caps = ALL)
+      const;
+
+    /**
+     * Define a GeodesicLine in terms of the inverse geodesic problem.
+     *
+     * @param[in] lat1 latitude of point 1 (degrees).
+     * @param[in] lon1 longitude of point 1 (degrees).
+     * @param[in] lat2 latitude of point 2 (degrees).
+     * @param[in] lon2 longitude of point 2 (degrees).
+     * @param[in] caps bitor'ed combination of Geodesic::mask values
+     *   specifying the capabilities the GeodesicLine object should possess,
+     *   i.e., which quantities can be returned in calls to
+     *   GeodesicLine::Position.
+     * @return a GeodesicLine object.
+     *
+     * This function sets point 3 of the GeodesicLine to correspond to point 2
+     * of the inverse geodesic problem.
+     *
+     * \e lat1 and \e lat2 should be in the range [&minus;90&deg;, 90&deg;].
+     **********************************************************************/
+    GeodesicLine InverseLine(real lat1, real lon1, real lat2, real lon2,
+                             unsigned caps = ALL) const;
+
+    /**
+     * Define a GeodesicLine in terms of the direct geodesic problem specified
+     * in terms of distance.
+     *
+     * @param[in] lat1 latitude of point 1 (degrees).
+     * @param[in] lon1 longitude of point 1 (degrees).
+     * @param[in] azi1 azimuth at point 1 (degrees).
+     * @param[in] s12 distance between point 1 and point 2 (meters); it can be
+     *   negative.
+     * @param[in] caps bitor'ed combination of Geodesic::mask values
+     *   specifying the capabilities the GeodesicLine object should possess,
+     *   i.e., which quantities can be returned in calls to
+     *   GeodesicLine::Position.
+     * @return a GeodesicLine object.
+     *
+     * This function sets point 3 of the GeodesicLine to correspond to point 2
+     * of the direct geodesic problem.
+     *
+     * \e lat1 should be in the range [&minus;90&deg;, 90&deg;].
+     **********************************************************************/
+    GeodesicLine DirectLine(real lat1, real lon1, real azi1, real s12,
+                            unsigned caps = ALL) const;
+
+    /**
+     * Define a GeodesicLine in terms of the direct geodesic problem specified
+     * in terms of arc length.
+     *
+     * @param[in] lat1 latitude of point 1 (degrees).
+     * @param[in] lon1 longitude of point 1 (degrees).
+     * @param[in] azi1 azimuth at point 1 (degrees).
+     * @param[in] a12 arc length between point 1 and point 2 (degrees); it can
+     *   be negative.
+     * @param[in] caps bitor'ed combination of Geodesic::mask values
+     *   specifying the capabilities the GeodesicLine object should possess,
+     *   i.e., which quantities can be returned in calls to
+     *   GeodesicLine::Position.
+     * @return a GeodesicLine object.
+     *
+     * This function sets point 3 of the GeodesicLine to correspond to point 2
+     * of the direct geodesic problem.
+     *
+     * \e lat1 should be in the range [&minus;90&deg;, 90&deg;].
+     **********************************************************************/
+    GeodesicLine ArcDirectLine(real lat1, real lon1, real azi1, real a12,
+                               unsigned caps = ALL) const;
+
+    /**
+     * Define a GeodesicLine in terms of the direct geodesic problem specified
+     * in terms of either distance or arc length.
+     *
+     * @param[in] lat1 latitude of point 1 (degrees).
+     * @param[in] lon1 longitude of point 1 (degrees).
+     * @param[in] azi1 azimuth at point 1 (degrees).
+     * @param[in] arcmode boolean flag determining the meaning of the \e
+     *   s12_a12.
+     * @param[in] s12_a12 if \e arcmode is false, this is the distance between
+     *   point 1 and point 2 (meters); otherwise it is the arc length between
+     *   point 1 and point 2 (degrees); it can be negative.
+     * @param[in] caps bitor'ed combination of Geodesic::mask values
+     *   specifying the capabilities the GeodesicLine object should possess,
+     *   i.e., which quantities can be returned in calls to
+     *   GeodesicLine::Position.
+     * @return a GeodesicLine object.
+     *
+     * This function sets point 3 of the GeodesicLine to correspond to point 2
+     * of the direct geodesic problem.
+     *
+     * \e lat1 should be in the range [&minus;90&deg;, 90&deg;].
+     **********************************************************************/
+    GeodesicLine GenDirectLine(real lat1, real lon1, real azi1,
+                               bool arcmode, real s12_a12,
+                               unsigned caps = ALL) const;
+    ///@}
+
+    /** \name Inspector functions.
+     **********************************************************************/
+    ///@{
+
+    /**
+     * @return \e a the equatorial radius of the ellipsoid (meters).  This is
+     *   the value used in the constructor.
+     **********************************************************************/
+    Math::real EquatorialRadius() const { return _a; }
+
+    /**
+     * @return \e f the  flattening of the ellipsoid.  This is the
+     *   value used in the constructor.
+     **********************************************************************/
+    Math::real Flattening() const { return _f; }
+
+    /**
+     * @return total area of ellipsoid in meters<sup>2</sup>.  The area of a
+     *   polygon encircling a pole can be found by adding
+     *   Geodesic::EllipsoidArea()/2 to the sum of \e S12 for each side of the
+     *   polygon.
+     **********************************************************************/
+    Math::real EllipsoidArea() const
+    { return 4 * Math::pi() * _c2; }
+
+    /**
+     * \deprecated An old name for EquatorialRadius().
+     **********************************************************************/
+    GEOGRAPHICLIB_DEPRECATED("Use EquatorialRadius()")
+    Math::real MajorRadius() const { return EquatorialRadius(); }
+    ///@}
+
+    /**
+     * A global instantiation of Geodesic with the parameters for the WGS84
+     * ellipsoid.
+     **********************************************************************/
+    static const Geodesic& WGS84();
+
+  };
+
+} // namespace GeographicLib
+
+#endif  // GEOGRAPHICLIB_GEODESIC_HPP

+ 869 - 0
external/include/GeographicLib/GeodesicExact.hpp

@@ -0,0 +1,869 @@
+/**
+ * \file GeodesicExact.hpp
+ * \brief Header for GeographicLib::GeodesicExact class
+ *
+ * Copyright (c) Charles Karney (2012-2020) <charles@karney.com> and licensed
+ * under the MIT/X11 License.  For more information, see
+ * https://geographiclib.sourceforge.io/
+ **********************************************************************/
+
+#if !defined(GEOGRAPHICLIB_GEODESICEXACT_HPP)
+#define GEOGRAPHICLIB_GEODESICEXACT_HPP 1
+
+#include <GeographicLib/Constants.hpp>
+#include <GeographicLib/EllipticFunction.hpp>
+
+#if !defined(GEOGRAPHICLIB_GEODESICEXACT_ORDER)
+/**
+ * The order of the expansions used by GeodesicExact.
+ **********************************************************************/
+#  define GEOGRAPHICLIB_GEODESICEXACT_ORDER 30
+#endif
+
+namespace GeographicLib {
+
+  class GeodesicLineExact;
+
+  /**
+   * \brief Exact geodesic calculations
+   *
+   * The equations for geodesics on an ellipsoid can be expressed in terms of
+   * incomplete elliptic integrals.  The Geodesic class expands these integrals
+   * in a series in the flattening \e f and this provides an accurate solution
+   * for \e f &isin; [-0.01, 0.01].  The GeodesicExact class computes the
+   * ellitpic integrals directly and so provides a solution which is valid for
+   * all \e f.  However, in practice, its use should be limited to about
+   * <i>b</i>/\e a &isin; [0.01, 100] or \e f &isin; [&minus;99, 0.99].
+   *
+   * For the WGS84 ellipsoid, these classes are 2--3 times \e slower than the
+   * series solution and 2--3 times \e less \e accurate (because it's less easy
+   * to control round-off errors with the elliptic integral formulation); i.e.,
+   * the error is about 40 nm (40 nanometers) instead of 15 nm.  However the
+   * error in the series solution scales as <i>f</i><sup>7</sup> while the
+   * error in the elliptic integral solution depends weakly on \e f.  If the
+   * quarter meridian distance is 10000 km and the ratio <i>b</i>/\e a = 1
+   * &minus; \e f is varied then the approximate maximum error (expressed as a
+   * distance) is <pre>
+   *       1 - f  error (nm)
+   *       1/128     387
+   *       1/64      345
+   *       1/32      269
+   *       1/16      210
+   *       1/8       115
+   *       1/4        69
+   *       1/2        36
+   *         1        15
+   *         2        25
+   *         4        96
+   *         8       318
+   *        16       985
+   *        32      2352
+   *        64      6008
+   *       128     19024
+   * </pre>
+   *
+   * The computation of the area in these classes is via a 30th order series.
+   * This gives accurate results for <i>b</i>/\e a &isin; [1/2, 2]; the
+   * accuracy is about 8 decimal digits for <i>b</i>/\e a &isin; [1/4, 4].
+   *
+   * See \ref geodellip for the formulation.  See the documentation on the
+   * Geodesic class for additional information on the geodesic problems.
+   *
+   * Example of use:
+   * \include example-GeodesicExact.cpp
+   *
+   * <a href="GeodSolve.1.html">GeodSolve</a> is a command-line utility
+   * providing access to the functionality of GeodesicExact and
+   * GeodesicLineExact (via the -E option).
+   **********************************************************************/
+
+  class GEOGRAPHICLIB_EXPORT GeodesicExact {
+  private:
+    typedef Math::real real;
+    friend class GeodesicLineExact;
+    static const int nC4_ = GEOGRAPHICLIB_GEODESICEXACT_ORDER;
+    static const int nC4x_ = (nC4_ * (nC4_ + 1)) / 2;
+    static const unsigned maxit1_ = 20;
+    unsigned maxit2_;
+    real tiny_, tol0_, tol1_, tol2_, tolb_, xthresh_;
+
+    enum captype {
+      CAP_NONE = 0U,
+      CAP_E    = 1U<<0,
+      // Skip 1U<<1 for compatibility with Geodesic (not required)
+      CAP_D    = 1U<<2,
+      CAP_H    = 1U<<3,
+      CAP_C4   = 1U<<4,
+      CAP_ALL  = 0x1FU,
+      CAP_MASK = CAP_ALL,
+      OUT_ALL  = 0x7F80U,
+      OUT_MASK = 0xFF80U,       // Includes LONG_UNROLL
+    };
+
+    static real CosSeries(real sinx, real cosx, const real c[], int n);
+    static real Astroid(real x, real y);
+
+    real _a, _f, _f1, _e2, _ep2, _n, _b, _c2, _etol2;
+    real _C4x[nC4x_];
+
+    void Lengths(const EllipticFunction& E,
+                 real sig12,
+                 real ssig1, real csig1, real dn1,
+                 real ssig2, real csig2, real dn2,
+                 real cbet1, real cbet2, unsigned outmask,
+                 real& s12s, real& m12a, real& m0,
+                 real& M12, real& M21) const;
+    real InverseStart(EllipticFunction& E,
+                      real sbet1, real cbet1, real dn1,
+                      real sbet2, real cbet2, real dn2,
+                      real lam12, real slam12, real clam12,
+                      real& salp1, real& calp1,
+                      real& salp2, real& calp2, real& dnm) const;
+    real Lambda12(real sbet1, real cbet1, real dn1,
+                  real sbet2, real cbet2, real dn2,
+                  real salp1, real calp1, real slam120, real clam120,
+                  real& salp2, real& calp2, real& sig12,
+                  real& ssig1, real& csig1, real& ssig2, real& csig2,
+                  EllipticFunction& E,
+                  real& domg12, bool diffp, real& dlam12) const;
+    real GenInverse(real lat1, real lon1, real lat2, real lon2,
+                    unsigned outmask, real& s12,
+                    real& salp1, real& calp1, real& salp2, real& calp2,
+                    real& m12, real& M12, real& M21, real& S12) const;
+
+    // These are Maxima generated functions to provide series approximations to
+    // the integrals for the area.
+    void C4coeff();
+    void C4f(real k2, real c[]) const;
+    // Large coefficients are split so that lo contains the low 52 bits and hi
+    // the rest.  This choice avoids double rounding with doubles and higher
+    // precision types.  float coefficients will suffer double rounding;
+    // however the accuracy is already lousy for floats.
+    static Math::real reale(long long hi, long long lo) {
+      using std::ldexp;
+      return ldexp(real(hi), 52) + lo;
+    }
+
+  public:
+
+    /**
+     * Bit masks for what calculations to do.  These masks do double duty.
+     * They signify to the GeodesicLineExact::GeodesicLineExact constructor and
+     * to GeodesicExact::Line what capabilities should be included in the
+     * GeodesicLineExact object.  They also specify which results to return in
+     * the general routines GeodesicExact::GenDirect and
+     * GeodesicExact::GenInverse routines.  GeodesicLineExact::mask is a
+     * duplication of this enum.
+     **********************************************************************/
+    enum mask {
+      /**
+       * No capabilities, no output.
+       * @hideinitializer
+       **********************************************************************/
+      NONE          = 0U,
+      /**
+       * Calculate latitude \e lat2.  (It's not necessary to include this as a
+       * capability to GeodesicLineExact because this is included by default.)
+       * @hideinitializer
+       **********************************************************************/
+      LATITUDE      = 1U<<7  | CAP_NONE,
+      /**
+       * Calculate longitude \e lon2.
+       * @hideinitializer
+       **********************************************************************/
+      LONGITUDE     = 1U<<8  | CAP_H,
+      /**
+       * Calculate azimuths \e azi1 and \e azi2.  (It's not necessary to
+       * include this as a capability to GeodesicLineExact because this is
+       * included by default.)
+       * @hideinitializer
+       **********************************************************************/
+      AZIMUTH       = 1U<<9  | CAP_NONE,
+      /**
+       * Calculate distance \e s12.
+       * @hideinitializer
+       **********************************************************************/
+      DISTANCE      = 1U<<10 | CAP_E,
+      /**
+       * Allow distance \e s12 to be used as input in the direct geodesic
+       * problem.
+       * @hideinitializer
+       **********************************************************************/
+      DISTANCE_IN   = 1U<<11 | CAP_E,
+      /**
+       * Calculate reduced length \e m12.
+       * @hideinitializer
+       **********************************************************************/
+      REDUCEDLENGTH = 1U<<12 | CAP_D,
+      /**
+       * Calculate geodesic scales \e M12 and \e M21.
+       * @hideinitializer
+       **********************************************************************/
+      GEODESICSCALE = 1U<<13 | CAP_D,
+      /**
+       * Calculate area \e S12.
+       * @hideinitializer
+       **********************************************************************/
+      AREA          = 1U<<14 | CAP_C4,
+      /**
+       * Unroll \e lon2 in the direct calculation.
+       * @hideinitializer
+       **********************************************************************/
+      LONG_UNROLL   = 1U<<15,
+      /**
+       * All capabilities, calculate everything.  (LONG_UNROLL is not
+       * included in this mask.)
+       * @hideinitializer
+       **********************************************************************/
+      ALL           = OUT_ALL| CAP_ALL,
+    };
+
+    /** \name Constructor
+     **********************************************************************/
+    ///@{
+    /**
+     * Constructor for a ellipsoid with
+     *
+     * @param[in] a equatorial radius (meters).
+     * @param[in] f flattening of ellipsoid.  Setting \e f = 0 gives a sphere.
+     *   Negative \e f gives a prolate ellipsoid.
+     * @exception GeographicErr if \e a or (1 &minus; \e f) \e a is not
+     *   positive.
+     **********************************************************************/
+    GeodesicExact(real a, real f);
+    ///@}
+
+    /** \name Direct geodesic problem specified in terms of distance.
+     **********************************************************************/
+    ///@{
+    /**
+     * Perform the direct geodesic calculation where the length of the geodesic
+     * is specified in terms of distance.
+     *
+     * @param[in] lat1 latitude of point 1 (degrees).
+     * @param[in] lon1 longitude of point 1 (degrees).
+     * @param[in] azi1 azimuth at point 1 (degrees).
+     * @param[in] s12 distance between point 1 and point 2 (meters); it can be
+     *   signed.
+     * @param[out] lat2 latitude of point 2 (degrees).
+     * @param[out] lon2 longitude of point 2 (degrees).
+     * @param[out] azi2 (forward) azimuth at point 2 (degrees).
+     * @param[out] m12 reduced length of geodesic (meters).
+     * @param[out] M12 geodesic scale of point 2 relative to point 1
+     *   (dimensionless).
+     * @param[out] M21 geodesic scale of point 1 relative to point 2
+     *   (dimensionless).
+     * @param[out] S12 area under the geodesic (meters<sup>2</sup>).
+     * @return \e a12 arc length of between point 1 and point 2 (degrees).
+     *
+     * \e lat1 should be in the range [&minus;90&deg;, 90&deg;].  The values of
+     * \e lon2 and \e azi2 returned are in the range [&minus;180&deg;,
+     * 180&deg;].
+     *
+     * If either point is at a pole, the azimuth is defined by keeping the
+     * longitude fixed, writing \e lat = &plusmn;(90&deg; &minus; &epsilon;),
+     * and taking the limit &epsilon; &rarr; 0+.  An arc length greater that
+     * 180&deg; signifies a geodesic which is not a shortest path.  (For a
+     * prolate ellipsoid, an additional condition is necessary for a shortest
+     * path: the longitudinal extent must not exceed of 180&deg;.)
+     *
+     * The following functions are overloaded versions of GeodesicExact::Direct
+     * which omit some of the output parameters.  Note, however, that the arc
+     * length is always computed and returned as the function value.
+     **********************************************************************/
+    Math::real Direct(real lat1, real lon1, real azi1, real s12,
+                      real& lat2, real& lon2, real& azi2,
+                      real& m12, real& M12, real& M21, real& S12)
+      const {
+      real t;
+      return GenDirect(lat1, lon1, azi1, false, s12,
+                       LATITUDE | LONGITUDE | AZIMUTH |
+                       REDUCEDLENGTH | GEODESICSCALE | AREA,
+                       lat2, lon2, azi2, t, m12, M12, M21, S12);
+    }
+
+    /**
+     * See the documentation for GeodesicExact::Direct.
+     **********************************************************************/
+    Math::real Direct(real lat1, real lon1, real azi1, real s12,
+                      real& lat2, real& lon2)
+      const {
+      real t;
+      return GenDirect(lat1, lon1, azi1, false, s12,
+                       LATITUDE | LONGITUDE,
+                       lat2, lon2, t, t, t, t, t, t);
+    }
+
+    /**
+     * See the documentation for GeodesicExact::Direct.
+     **********************************************************************/
+    Math::real Direct(real lat1, real lon1, real azi1, real s12,
+                      real& lat2, real& lon2, real& azi2)
+      const {
+      real t;
+      return GenDirect(lat1, lon1, azi1, false, s12,
+                       LATITUDE | LONGITUDE | AZIMUTH,
+                       lat2, lon2, azi2, t, t, t, t, t);
+    }
+
+    /**
+     * See the documentation for GeodesicExact::Direct.
+     **********************************************************************/
+    Math::real Direct(real lat1, real lon1, real azi1, real s12,
+                      real& lat2, real& lon2, real& azi2, real& m12)
+      const {
+      real t;
+      return GenDirect(lat1, lon1, azi1, false, s12,
+                       LATITUDE | LONGITUDE | AZIMUTH | REDUCEDLENGTH,
+                       lat2, lon2, azi2, t, m12, t, t, t);
+    }
+
+    /**
+     * See the documentation for GeodesicExact::Direct.
+     **********************************************************************/
+    Math::real Direct(real lat1, real lon1, real azi1, real s12,
+                      real& lat2, real& lon2, real& azi2,
+                      real& M12, real& M21)
+      const {
+      real t;
+      return GenDirect(lat1, lon1, azi1, false, s12,
+                       LATITUDE | LONGITUDE | AZIMUTH | GEODESICSCALE,
+                       lat2, lon2, azi2, t, t, M12, M21, t);
+    }
+
+    /**
+     * See the documentation for GeodesicExact::Direct.
+     **********************************************************************/
+    Math::real Direct(real lat1, real lon1, real azi1, real s12,
+                      real& lat2, real& lon2, real& azi2,
+                      real& m12, real& M12, real& M21)
+      const {
+      real t;
+      return GenDirect(lat1, lon1, azi1, false, s12,
+                       LATITUDE | LONGITUDE | AZIMUTH |
+                       REDUCEDLENGTH | GEODESICSCALE,
+                       lat2, lon2, azi2, t, m12, M12, M21, t);
+    }
+    ///@}
+
+    /** \name Direct geodesic problem specified in terms of arc length.
+     **********************************************************************/
+    ///@{
+    /**
+     * Perform the direct geodesic calculation where the length of the geodesic
+     * is specified in terms of arc length.
+     *
+     * @param[in] lat1 latitude of point 1 (degrees).
+     * @param[in] lon1 longitude of point 1 (degrees).
+     * @param[in] azi1 azimuth at point 1 (degrees).
+     * @param[in] a12 arc length between point 1 and point 2 (degrees); it can
+     *   be signed.
+     * @param[out] lat2 latitude of point 2 (degrees).
+     * @param[out] lon2 longitude of point 2 (degrees).
+     * @param[out] azi2 (forward) azimuth at point 2 (degrees).
+     * @param[out] s12 distance between point 1 and point 2 (meters).
+     * @param[out] m12 reduced length of geodesic (meters).
+     * @param[out] M12 geodesic scale of point 2 relative to point 1
+     *   (dimensionless).
+     * @param[out] M21 geodesic scale of point 1 relative to point 2
+     *   (dimensionless).
+     * @param[out] S12 area under the geodesic (meters<sup>2</sup>).
+     *
+     * \e lat1 should be in the range [&minus;90&deg;, 90&deg;].  The values of
+     * \e lon2 and \e azi2 returned are in the range [&minus;180&deg;,
+     * 180&deg;].
+     *
+     * If either point is at a pole, the azimuth is defined by keeping the
+     * longitude fixed, writing \e lat = &plusmn;(90&deg; &minus; &epsilon;),
+     * and taking the limit &epsilon; &rarr; 0+.  An arc length greater that
+     * 180&deg; signifies a geodesic which is not a shortest path.  (For a
+     * prolate ellipsoid, an additional condition is necessary for a shortest
+     * path: the longitudinal extent must not exceed of 180&deg;.)
+     *
+     * The following functions are overloaded versions of GeodesicExact::Direct
+     * which omit some of the output parameters.
+     **********************************************************************/
+    void ArcDirect(real lat1, real lon1, real azi1, real a12,
+                   real& lat2, real& lon2, real& azi2, real& s12,
+                   real& m12, real& M12, real& M21, real& S12)
+      const {
+      GenDirect(lat1, lon1, azi1, true, a12,
+                LATITUDE | LONGITUDE | AZIMUTH | DISTANCE |
+                REDUCEDLENGTH | GEODESICSCALE | AREA,
+                lat2, lon2, azi2, s12, m12, M12, M21, S12);
+    }
+
+    /**
+     * See the documentation for GeodesicExact::ArcDirect.
+     **********************************************************************/
+    void ArcDirect(real lat1, real lon1, real azi1, real a12,
+                   real& lat2, real& lon2) const {
+      real t;
+      GenDirect(lat1, lon1, azi1, true, a12,
+                LATITUDE | LONGITUDE,
+                lat2, lon2, t, t, t, t, t, t);
+    }
+
+    /**
+     * See the documentation for GeodesicExact::ArcDirect.
+     **********************************************************************/
+    void ArcDirect(real lat1, real lon1, real azi1, real a12,
+                   real& lat2, real& lon2, real& azi2) const {
+      real t;
+      GenDirect(lat1, lon1, azi1, true, a12,
+                LATITUDE | LONGITUDE | AZIMUTH,
+                lat2, lon2, azi2, t, t, t, t, t);
+    }
+
+    /**
+     * See the documentation for GeodesicExact::ArcDirect.
+     **********************************************************************/
+    void ArcDirect(real lat1, real lon1, real azi1, real a12,
+                   real& lat2, real& lon2, real& azi2, real& s12)
+      const {
+      real t;
+      GenDirect(lat1, lon1, azi1, true, a12,
+                LATITUDE | LONGITUDE | AZIMUTH | DISTANCE,
+                lat2, lon2, azi2, s12, t, t, t, t);
+    }
+
+    /**
+     * See the documentation for GeodesicExact::ArcDirect.
+     **********************************************************************/
+    void ArcDirect(real lat1, real lon1, real azi1, real a12,
+                   real& lat2, real& lon2, real& azi2,
+                   real& s12, real& m12) const {
+      real t;
+      GenDirect(lat1, lon1, azi1, true, a12,
+                LATITUDE | LONGITUDE | AZIMUTH | DISTANCE |
+                REDUCEDLENGTH,
+                lat2, lon2, azi2, s12, m12, t, t, t);
+    }
+
+    /**
+     * See the documentation for GeodesicExact::ArcDirect.
+     **********************************************************************/
+    void ArcDirect(real lat1, real lon1, real azi1, real a12,
+                   real& lat2, real& lon2, real& azi2, real& s12,
+                   real& M12, real& M21) const {
+      real t;
+      GenDirect(lat1, lon1, azi1, true, a12,
+                LATITUDE | LONGITUDE | AZIMUTH | DISTANCE |
+                GEODESICSCALE,
+                lat2, lon2, azi2, s12, t, M12, M21, t);
+    }
+
+    /**
+     * See the documentation for GeodesicExact::ArcDirect.
+     **********************************************************************/
+    void ArcDirect(real lat1, real lon1, real azi1, real a12,
+                   real& lat2, real& lon2, real& azi2, real& s12,
+                   real& m12, real& M12, real& M21) const {
+      real t;
+      GenDirect(lat1, lon1, azi1, true, a12,
+                LATITUDE | LONGITUDE | AZIMUTH | DISTANCE |
+                REDUCEDLENGTH | GEODESICSCALE,
+                lat2, lon2, azi2, s12, m12, M12, M21, t);
+    }
+    ///@}
+
+    /** \name General version of the direct geodesic solution.
+     **********************************************************************/
+    ///@{
+
+    /**
+     * The general direct geodesic calculation.  GeodesicExact::Direct and
+     * GeodesicExact::ArcDirect are defined in terms of this function.
+     *
+     * @param[in] lat1 latitude of point 1 (degrees).
+     * @param[in] lon1 longitude of point 1 (degrees).
+     * @param[in] azi1 azimuth at point 1 (degrees).
+     * @param[in] arcmode boolean flag determining the meaning of the second
+     *   parameter.
+     * @param[in] s12_a12 if \e arcmode is false, this is the distance between
+     *   point 1 and point 2 (meters); otherwise it is the arc length between
+     *   point 1 and point 2 (degrees); it can be signed.
+     * @param[in] outmask a bitor'ed combination of GeodesicExact::mask values
+     *   specifying which of the following parameters should be set.
+     * @param[out] lat2 latitude of point 2 (degrees).
+     * @param[out] lon2 longitude of point 2 (degrees).
+     * @param[out] azi2 (forward) azimuth at point 2 (degrees).
+     * @param[out] s12 distance between point 1 and point 2 (meters).
+     * @param[out] m12 reduced length of geodesic (meters).
+     * @param[out] M12 geodesic scale of point 2 relative to point 1
+     *   (dimensionless).
+     * @param[out] M21 geodesic scale of point 1 relative to point 2
+     *   (dimensionless).
+     * @param[out] S12 area under the geodesic (meters<sup>2</sup>).
+     * @return \e a12 arc length of between point 1 and point 2 (degrees).
+     *
+     * The GeodesicExact::mask values possible for \e outmask are
+     * - \e outmask |= GeodesicExact::LATITUDE for the latitude \e lat2;
+     * - \e outmask |= GeodesicExact::LONGITUDE for the latitude \e lon2;
+     * - \e outmask |= GeodesicExact::AZIMUTH for the latitude \e azi2;
+     * - \e outmask |= GeodesicExact::DISTANCE for the distance \e s12;
+     * - \e outmask |= GeodesicExact::REDUCEDLENGTH for the reduced length \e
+     *   m12;
+     * - \e outmask |= GeodesicExact::GEODESICSCALE for the geodesic scales \e
+     *   M12 and \e M21;
+     * - \e outmask |= GeodesicExact::AREA for the area \e S12;
+     * - \e outmask |= GeodesicExact::ALL for all of the above;
+     * - \e outmask |= GeodesicExact::LONG_UNROLL to unroll \e lon2 instead of
+     *   wrapping it into the range [&minus;180&deg;, 180&deg;].
+     * .
+     * The function value \e a12 is always computed and returned and this
+     * equals \e s12_a12 is \e arcmode is true.  If \e outmask includes
+     * GeodesicExact::DISTANCE and \e arcmode is false, then \e s12 = \e
+     * s12_a12.  It is not necessary to include GeodesicExact::DISTANCE_IN in
+     * \e outmask; this is automatically included is \e arcmode is false.
+     *
+     * With the GeodesicExact::LONG_UNROLL bit set, the quantity \e lon2
+     * &minus; \e lon1 indicates how many times and in what sense the geodesic
+     * encircles the ellipsoid.
+     **********************************************************************/
+    Math::real GenDirect(real lat1, real lon1, real azi1,
+                         bool arcmode, real s12_a12, unsigned outmask,
+                         real& lat2, real& lon2, real& azi2,
+                         real& s12, real& m12, real& M12, real& M21,
+                         real& S12) const;
+    ///@}
+
+    /** \name Inverse geodesic problem.
+     **********************************************************************/
+    ///@{
+    /**
+     * Perform the inverse geodesic calculation.
+     *
+     * @param[in] lat1 latitude of point 1 (degrees).
+     * @param[in] lon1 longitude of point 1 (degrees).
+     * @param[in] lat2 latitude of point 2 (degrees).
+     * @param[in] lon2 longitude of point 2 (degrees).
+     * @param[out] s12 distance between point 1 and point 2 (meters).
+     * @param[out] azi1 azimuth at point 1 (degrees).
+     * @param[out] azi2 (forward) azimuth at point 2 (degrees).
+     * @param[out] m12 reduced length of geodesic (meters).
+     * @param[out] M12 geodesic scale of point 2 relative to point 1
+     *   (dimensionless).
+     * @param[out] M21 geodesic scale of point 1 relative to point 2
+     *   (dimensionless).
+     * @param[out] S12 area under the geodesic (meters<sup>2</sup>).
+     * @return \e a12 arc length of between point 1 and point 2 (degrees).
+     *
+     * \e lat1 and \e lat2 should be in the range [&minus;90&deg;, 90&deg;].
+     * The values of \e azi1 and \e azi2 returned are in the range
+     * [&minus;180&deg;, 180&deg;].
+     *
+     * If either point is at a pole, the azimuth is defined by keeping the
+     * longitude fixed, writing \e lat = &plusmn;(90&deg; &minus; &epsilon;),
+     * and taking the limit &epsilon; &rarr; 0+.
+     *
+     * The following functions are overloaded versions of
+     * GeodesicExact::Inverse which omit some of the output parameters.  Note,
+     * however, that the arc length is always computed and returned as the
+     * function value.
+     **********************************************************************/
+    Math::real Inverse(real lat1, real lon1, real lat2, real lon2,
+                       real& s12, real& azi1, real& azi2, real& m12,
+                       real& M12, real& M21, real& S12) const {
+      return GenInverse(lat1, lon1, lat2, lon2,
+                        DISTANCE | AZIMUTH |
+                        REDUCEDLENGTH | GEODESICSCALE | AREA,
+                        s12, azi1, azi2, m12, M12, M21, S12);
+    }
+
+    /**
+     * See the documentation for GeodesicExact::Inverse.
+     **********************************************************************/
+    Math::real Inverse(real lat1, real lon1, real lat2, real lon2,
+                       real& s12) const {
+      real t;
+      return GenInverse(lat1, lon1, lat2, lon2,
+                        DISTANCE,
+                        s12, t, t, t, t, t, t);
+    }
+
+    /**
+     * See the documentation for GeodesicExact::Inverse.
+     **********************************************************************/
+    Math::real Inverse(real lat1, real lon1, real lat2, real lon2,
+                       real& azi1, real& azi2) const {
+      real t;
+      return GenInverse(lat1, lon1, lat2, lon2,
+                        AZIMUTH,
+                        t, azi1, azi2, t, t, t, t);
+    }
+
+    /**
+     * See the documentation for GeodesicExact::Inverse.
+     **********************************************************************/
+    Math::real Inverse(real lat1, real lon1, real lat2, real lon2,
+                       real& s12, real& azi1, real& azi2)
+      const {
+      real t;
+      return GenInverse(lat1, lon1, lat2, lon2,
+                        DISTANCE | AZIMUTH,
+                        s12, azi1, azi2, t, t, t, t);
+    }
+
+    /**
+     * See the documentation for GeodesicExact::Inverse.
+     **********************************************************************/
+    Math::real Inverse(real lat1, real lon1, real lat2, real lon2,
+                       real& s12, real& azi1, real& azi2, real& m12)
+      const {
+      real t;
+      return GenInverse(lat1, lon1, lat2, lon2,
+                        DISTANCE | AZIMUTH | REDUCEDLENGTH,
+                        s12, azi1, azi2, m12, t, t, t);
+    }
+
+    /**
+     * See the documentation for GeodesicExact::Inverse.
+     **********************************************************************/
+    Math::real Inverse(real lat1, real lon1, real lat2, real lon2,
+                       real& s12, real& azi1, real& azi2,
+                       real& M12, real& M21) const {
+      real t;
+      return GenInverse(lat1, lon1, lat2, lon2,
+                        DISTANCE | AZIMUTH | GEODESICSCALE,
+                        s12, azi1, azi2, t, M12, M21, t);
+    }
+
+    /**
+     * See the documentation for GeodesicExact::Inverse.
+     **********************************************************************/
+    Math::real Inverse(real lat1, real lon1, real lat2, real lon2,
+                       real& s12, real& azi1, real& azi2, real& m12,
+                       real& M12, real& M21) const {
+      real t;
+      return GenInverse(lat1, lon1, lat2, lon2,
+                        DISTANCE | AZIMUTH |
+                        REDUCEDLENGTH | GEODESICSCALE,
+                        s12, azi1, azi2, m12, M12, M21, t);
+    }
+    ///@}
+
+    /** \name General version of inverse geodesic solution.
+     **********************************************************************/
+    ///@{
+    /**
+     * The general inverse geodesic calculation.  GeodesicExact::Inverse is
+     * defined in terms of this function.
+     *
+     * @param[in] lat1 latitude of point 1 (degrees).
+     * @param[in] lon1 longitude of point 1 (degrees).
+     * @param[in] lat2 latitude of point 2 (degrees).
+     * @param[in] lon2 longitude of point 2 (degrees).
+     * @param[in] outmask a bitor'ed combination of GeodesicExact::mask values
+     *   specifying which of the following parameters should be set.
+     * @param[out] s12 distance between point 1 and point 2 (meters).
+     * @param[out] azi1 azimuth at point 1 (degrees).
+     * @param[out] azi2 (forward) azimuth at point 2 (degrees).
+     * @param[out] m12 reduced length of geodesic (meters).
+     * @param[out] M12 geodesic scale of point 2 relative to point 1
+     *   (dimensionless).
+     * @param[out] M21 geodesic scale of point 1 relative to point 2
+     *   (dimensionless).
+     * @param[out] S12 area under the geodesic (meters<sup>2</sup>).
+     * @return \e a12 arc length of between point 1 and point 2 (degrees).
+     *
+     * The GeodesicExact::mask values possible for \e outmask are
+     * - \e outmask |= GeodesicExact::DISTANCE for the distance \e s12;
+     * - \e outmask |= GeodesicExact::AZIMUTH for the latitude \e azi2;
+     * - \e outmask |= GeodesicExact::REDUCEDLENGTH for the reduced length \e
+     *   m12;
+     * - \e outmask |= GeodesicExact::GEODESICSCALE for the geodesic scales \e
+     *   M12 and \e M21;
+     * - \e outmask |= GeodesicExact::AREA for the area \e S12;
+     * - \e outmask |= GeodesicExact::ALL for all of the above.
+     * .
+     * The arc length is always computed and returned as the function value.
+     **********************************************************************/
+    Math::real GenInverse(real lat1, real lon1, real lat2, real lon2,
+                          unsigned outmask,
+                          real& s12, real& azi1, real& azi2,
+                          real& m12, real& M12, real& M21, real& S12) const;
+    ///@}
+
+    /** \name Interface to GeodesicLineExact.
+     **********************************************************************/
+    ///@{
+
+    /**
+     * Set up to compute several points on a single geodesic.
+     *
+     * @param[in] lat1 latitude of point 1 (degrees).
+     * @param[in] lon1 longitude of point 1 (degrees).
+     * @param[in] azi1 azimuth at point 1 (degrees).
+     * @param[in] caps bitor'ed combination of GeodesicExact::mask values
+     *   specifying the capabilities the GeodesicLineExact object should
+     *   possess, i.e., which quantities can be returned in calls to
+     *   GeodesicLineExact::Position.
+     * @return a GeodesicLineExact object.
+     *
+     * \e lat1 should be in the range [&minus;90&deg;, 90&deg;].
+     *
+     * The GeodesicExact::mask values are
+     * - \e caps |= GeodesicExact::LATITUDE for the latitude \e lat2; this is
+     *   added automatically;
+     * - \e caps |= GeodesicExact::LONGITUDE for the latitude \e lon2;
+     * - \e caps |= GeodesicExact::AZIMUTH for the azimuth \e azi2; this is
+     *   added automatically;
+     * - \e caps |= GeodesicExact::DISTANCE for the distance \e s12;
+     * - \e caps |= GeodesicExact::REDUCEDLENGTH for the reduced length \e m12;
+     * - \e caps |= GeodesicExact::GEODESICSCALE for the geodesic scales \e M12
+     *   and \e M21;
+     * - \e caps |= GeodesicExact::AREA for the area \e S12;
+     * - \e caps |= GeodesicExact::DISTANCE_IN permits the length of the
+     *   geodesic to be given in terms of \e s12; without this capability the
+     *   length can only be specified in terms of arc length;
+     * - \e caps |= GeodesicExact::ALL for all of the above.
+     * .
+     * The default value of \e caps is GeodesicExact::ALL which turns on all
+     * the capabilities.
+     *
+     * If the point is at a pole, the azimuth is defined by keeping \e lon1
+     * fixed, writing \e lat1 = &plusmn;(90 &minus; &epsilon;), and taking the
+     * limit &epsilon; &rarr; 0+.
+     **********************************************************************/
+    GeodesicLineExact Line(real lat1, real lon1, real azi1,
+                           unsigned caps = ALL) const;
+
+    /**
+     * Define a GeodesicLineExact in terms of the inverse geodesic problem.
+     *
+     * @param[in] lat1 latitude of point 1 (degrees).
+     * @param[in] lon1 longitude of point 1 (degrees).
+     * @param[in] lat2 latitude of point 2 (degrees).
+     * @param[in] lon2 longitude of point 2 (degrees).
+     * @param[in] caps bitor'ed combination of GeodesicExact::mask values
+     *   specifying the capabilities the GeodesicLineExact object should
+     *   possess, i.e., which quantities can be returned in calls to
+     *   GeodesicLineExact::Position.
+     * @return a GeodesicLineExact object.
+     *
+     * This function sets point 3 of the GeodesicLineExact to correspond to
+     * point 2 of the inverse geodesic problem.
+     *
+     * \e lat1 and \e lat2 should be in the range [&minus;90&deg;, 90&deg;].
+     **********************************************************************/
+    GeodesicLineExact InverseLine(real lat1, real lon1, real lat2, real lon2,
+                                  unsigned caps = ALL) const;
+
+    /**
+     * Define a GeodesicLineExact in terms of the direct geodesic problem
+     * specified in terms of distance.
+     *
+     * @param[in] lat1 latitude of point 1 (degrees).
+     * @param[in] lon1 longitude of point 1 (degrees).
+     * @param[in] azi1 azimuth at point 1 (degrees).
+     * @param[in] s12 distance between point 1 and point 2 (meters); it can be
+     *   negative.
+     * @param[in] caps bitor'ed combination of GeodesicExact::mask values
+     *   specifying the capabilities the GeodesicLineExact object should
+     *   possess, i.e., which quantities can be returned in calls to
+     *   GeodesicLineExact::Position.
+     * @return a GeodesicLineExact object.
+     *
+     * This function sets point 3 of the GeodesicLineExact to correspond to
+     * point 2 of the direct geodesic problem.
+     *
+     * \e lat1 should be in the range [&minus;90&deg;, 90&deg;].
+     **********************************************************************/
+    GeodesicLineExact DirectLine(real lat1, real lon1, real azi1, real s12,
+                                 unsigned caps = ALL) const;
+
+    /**
+     * Define a GeodesicLineExact in terms of the direct geodesic problem
+     * specified in terms of arc length.
+     *
+     * @param[in] lat1 latitude of point 1 (degrees).
+     * @param[in] lon1 longitude of point 1 (degrees).
+     * @param[in] azi1 azimuth at point 1 (degrees).
+     * @param[in] a12 arc length between point 1 and point 2 (degrees); it can
+     *   be negative.
+     * @param[in] caps bitor'ed combination of GeodesicExact::mask values
+     *   specifying the capabilities the GeodesicLineExact object should
+     *   possess, i.e., which quantities can be returned in calls to
+     *   GeodesicLineExact::Position.
+     * @return a GeodesicLineExact object.
+     *
+     * This function sets point 3 of the GeodesicLineExact to correspond to
+     * point 2 of the direct geodesic problem.
+     *
+     * \e lat1 should be in the range [&minus;90&deg;, 90&deg;].
+     **********************************************************************/
+    GeodesicLineExact ArcDirectLine(real lat1, real lon1, real azi1, real a12,
+                                    unsigned caps = ALL) const;
+
+    /**
+     * Define a GeodesicLineExact in terms of the direct geodesic problem
+     * specified in terms of either distance or arc length.
+     *
+     * @param[in] lat1 latitude of point 1 (degrees).
+     * @param[in] lon1 longitude of point 1 (degrees).
+     * @param[in] azi1 azimuth at point 1 (degrees).
+     * @param[in] arcmode boolean flag determining the meaning of the \e
+     *   s12_a12.
+     * @param[in] s12_a12 if \e arcmode is false, this is the distance between
+     *   point 1 and point 2 (meters); otherwise it is the arc length between
+     *   point 1 and point 2 (degrees); it can be negative.
+     * @param[in] caps bitor'ed combination of GeodesicExact::mask values
+     *   specifying the capabilities the GeodesicLineExact object should
+     *   possess, i.e., which quantities can be returned in calls to
+     *   GeodesicLineExact::Position.
+     * @return a GeodesicLineExact object.
+     *
+     * This function sets point 3 of the GeodesicLineExact to correspond to
+     * point 2 of the direct geodesic problem.
+     *
+     * \e lat1 should be in the range [&minus;90&deg;, 90&deg;].
+     **********************************************************************/
+    GeodesicLineExact GenDirectLine(real lat1, real lon1, real azi1,
+                                    bool arcmode, real s12_a12,
+                                    unsigned caps = ALL) const;
+    ///@}
+
+    /** \name Inspector functions.
+     **********************************************************************/
+    ///@{
+
+    /**
+     * @return \e a the equatorial radius of the ellipsoid (meters).  This is
+     *   the value used in the constructor.
+     **********************************************************************/
+    Math::real EquatorialRadius() const { return _a; }
+
+    /**
+     * @return \e f the  flattening of the ellipsoid.  This is the
+     *   value used in the constructor.
+     **********************************************************************/
+    Math::real Flattening() const { return _f; }
+
+    /**
+     * @return total area of ellipsoid in meters<sup>2</sup>.  The area of a
+     *   polygon encircling a pole can be found by adding
+     *   GeodesicExact::EllipsoidArea()/2 to the sum of \e S12 for each side of
+     *   the polygon.
+     **********************************************************************/
+    Math::real EllipsoidArea() const
+    { return 4 * Math::pi() * _c2; }
+
+    /**
+     * \deprecated An old name for EquatorialRadius().
+     **********************************************************************/
+    GEOGRAPHICLIB_DEPRECATED("Use EquatorialRadius()")
+    Math::real MajorRadius() const { return EquatorialRadius(); }
+    ///@}
+
+    /**
+     * A global instantiation of GeodesicExact with the parameters for the
+     * WGS84 ellipsoid.
+     **********************************************************************/
+    static const GeodesicExact& WGS84();
+
+  };
+
+} // namespace GeographicLib
+
+#endif  // GEOGRAPHICLIB_GEODESICEXACT_HPP

+ 708 - 0
external/include/GeographicLib/GeodesicLine.hpp

@@ -0,0 +1,708 @@
+/**
+ * \file GeodesicLine.hpp
+ * \brief Header for GeographicLib::GeodesicLine class
+ *
+ * Copyright (c) Charles Karney (2009-2020) <charles@karney.com> and licensed
+ * under the MIT/X11 License.  For more information, see
+ * https://geographiclib.sourceforge.io/
+ **********************************************************************/
+
+#if !defined(GEOGRAPHICLIB_GEODESICLINE_HPP)
+#define GEOGRAPHICLIB_GEODESICLINE_HPP 1
+
+#include <GeographicLib/Constants.hpp>
+#include <GeographicLib/Geodesic.hpp>
+
+namespace GeographicLib {
+
+  /**
+   * \brief A geodesic line
+   *
+   * GeodesicLine facilitates the determination of a series of points on a
+   * single geodesic.  The starting point (\e lat1, \e lon1) and the azimuth \e
+   * azi1 are specified in the constructor; alternatively, the Geodesic::Line
+   * method can be used to create a GeodesicLine.  GeodesicLine.Position
+   * returns the location of point 2 a distance \e s12 along the geodesic.  In
+   * addition, GeodesicLine.ArcPosition gives the position of point 2 an arc
+   * length \e a12 along the geodesic.
+   *
+   * You can register the position of a reference point 3 a distance (arc
+   * length), \e s13 (\e a13) along the geodesic with the
+   * GeodesicLine.SetDistance (GeodesicLine.SetArc) functions.  Points a
+   * fractional distance along the line can be found by providing, for example,
+   * 0.5 * Distance() as an argument to GeodesicLine.Position.  The
+   * Geodesic::InverseLine or Geodesic::DirectLine methods return GeodesicLine
+   * objects with point 3 set to the point 2 of the corresponding geodesic
+   * problem.  GeodesicLine objects created with the public constructor or with
+   * Geodesic::Line have \e s13 and \e a13 set to NaNs.
+   *
+   * The default copy constructor and assignment operators work with this
+   * class.  Similarly, a vector can be used to hold GeodesicLine objects.
+   *
+   * The calculations are accurate to better than 15 nm (15 nanometers).  See
+   * Sec. 9 of
+   * <a href="https://arxiv.org/abs/1102.1215v1">arXiv:1102.1215v1</a> for
+   * details.  The algorithms used by this class are based on series expansions
+   * using the flattening \e f as a small parameter.  These are only accurate
+   * for |<i>f</i>| &lt; 0.02; however reasonably accurate results will be
+   * obtained for |<i>f</i>| &lt; 0.2.  For very eccentric ellipsoids, use
+   * GeodesicLineExact instead.
+   *
+   * The algorithms are described in
+   * - C. F. F. Karney,
+   *   <a href="https://doi.org/10.1007/s00190-012-0578-z">
+   *   Algorithms for geodesics</a>,
+   *   J. Geodesy <b>87</b>, 43--55 (2013);
+   *   DOI: <a href="https://doi.org/10.1007/s00190-012-0578-z">
+   *   10.1007/s00190-012-0578-z</a>;
+   *   addenda:
+   *   <a href="https://geographiclib.sourceforge.io/geod-addenda.html">
+   *   geod-addenda.html</a>.
+   * .
+   * For more information on geodesics see \ref geodesic.
+   *
+   * Example of use:
+   * \include example-GeodesicLine.cpp
+   *
+   * <a href="GeodSolve.1.html">GeodSolve</a> is a command-line utility
+   * providing access to the functionality of Geodesic and GeodesicLine.
+   **********************************************************************/
+
+  class GEOGRAPHICLIB_EXPORT GeodesicLine {
+  private:
+    typedef Math::real real;
+    friend class Geodesic;
+    static const int nC1_ = Geodesic::nC1_;
+    static const int nC1p_ = Geodesic::nC1p_;
+    static const int nC2_ = Geodesic::nC2_;
+    static const int nC3_ = Geodesic::nC3_;
+    static const int nC4_ = Geodesic::nC4_;
+
+    real tiny_;
+    real _lat1, _lon1, _azi1;
+    real _a, _f, _b, _c2, _f1, _salp0, _calp0, _k2,
+      _salp1, _calp1, _ssig1, _csig1, _dn1, _stau1, _ctau1, _somg1, _comg1,
+      _A1m1, _A2m1, _A3c, _B11, _B21, _B31, _A4, _B41;
+    real _a13, _s13;
+    // index zero elements of _C1a, _C1pa, _C2a, _C3a are unused
+    real _C1a[nC1_ + 1], _C1pa[nC1p_ + 1], _C2a[nC2_ + 1], _C3a[nC3_],
+      _C4a[nC4_];    // all the elements of _C4a are used
+    unsigned _caps;
+
+    void LineInit(const Geodesic& g,
+                  real lat1, real lon1,
+                  real azi1, real salp1, real calp1,
+                  unsigned caps);
+    GeodesicLine(const Geodesic& g,
+                 real lat1, real lon1,
+                 real azi1, real salp1, real calp1,
+                 unsigned caps, bool arcmode, real s13_a13);
+
+    enum captype {
+      CAP_NONE = Geodesic::CAP_NONE,
+      CAP_C1   = Geodesic::CAP_C1,
+      CAP_C1p  = Geodesic::CAP_C1p,
+      CAP_C2   = Geodesic::CAP_C2,
+      CAP_C3   = Geodesic::CAP_C3,
+      CAP_C4   = Geodesic::CAP_C4,
+      CAP_ALL  = Geodesic::CAP_ALL,
+      CAP_MASK = Geodesic::CAP_MASK,
+      OUT_ALL  = Geodesic::OUT_ALL,
+      OUT_MASK = Geodesic::OUT_MASK,
+    };
+  public:
+
+    /**
+     * Bit masks for what calculations to do.  They signify to the
+     * GeodesicLine::GeodesicLine constructor and to Geodesic::Line what
+     * capabilities should be included in the GeodesicLine object.  This is
+     * merely a duplication of Geodesic::mask.
+     **********************************************************************/
+    enum mask {
+      /**
+       * No capabilities, no output.
+       * @hideinitializer
+       **********************************************************************/
+      NONE          = Geodesic::NONE,
+      /**
+       * Calculate latitude \e lat2.  (It's not necessary to include this as a
+       * capability to GeodesicLine because this is included by default.)
+       * @hideinitializer
+       **********************************************************************/
+      LATITUDE      = Geodesic::LATITUDE,
+      /**
+       * Calculate longitude \e lon2.
+       * @hideinitializer
+       **********************************************************************/
+      LONGITUDE     = Geodesic::LONGITUDE,
+      /**
+       * Calculate azimuths \e azi1 and \e azi2.  (It's not necessary to
+       * include this as a capability to GeodesicLine because this is included
+       * by default.)
+       * @hideinitializer
+       **********************************************************************/
+      AZIMUTH       = Geodesic::AZIMUTH,
+      /**
+       * Calculate distance \e s12.
+       * @hideinitializer
+       **********************************************************************/
+      DISTANCE      = Geodesic::DISTANCE,
+      /**
+       * Allow distance \e s12 to be used as input in the direct geodesic
+       * problem.
+       * @hideinitializer
+       **********************************************************************/
+      DISTANCE_IN   = Geodesic::DISTANCE_IN,
+      /**
+       * Calculate reduced length \e m12.
+       * @hideinitializer
+       **********************************************************************/
+      REDUCEDLENGTH = Geodesic::REDUCEDLENGTH,
+      /**
+       * Calculate geodesic scales \e M12 and \e M21.
+       * @hideinitializer
+       **********************************************************************/
+      GEODESICSCALE = Geodesic::GEODESICSCALE,
+      /**
+       * Calculate area \e S12.
+       * @hideinitializer
+       **********************************************************************/
+      AREA          = Geodesic::AREA,
+      /**
+       * Unroll \e lon2 in the direct calculation.
+       * @hideinitializer
+       **********************************************************************/
+      LONG_UNROLL   = Geodesic::LONG_UNROLL,
+      /**
+       * All capabilities, calculate everything.  (LONG_UNROLL is not
+       * included in this mask.)
+       * @hideinitializer
+       **********************************************************************/
+      ALL           = Geodesic::ALL,
+    };
+
+    /** \name Constructors
+     **********************************************************************/
+    ///@{
+
+    /**
+     * Constructor for a geodesic line staring at latitude \e lat1, longitude
+     * \e lon1, and azimuth \e azi1 (all in degrees).
+     *
+     * @param[in] g A Geodesic object used to compute the necessary information
+     *   about the GeodesicLine.
+     * @param[in] lat1 latitude of point 1 (degrees).
+     * @param[in] lon1 longitude of point 1 (degrees).
+     * @param[in] azi1 azimuth at point 1 (degrees).
+     * @param[in] caps bitor'ed combination of GeodesicLine::mask values
+     *   specifying the capabilities the GeodesicLine object should possess,
+     *   i.e., which quantities can be returned in calls to
+     *   GeodesicLine::Position.
+     *
+     * \e lat1 should be in the range [&minus;90&deg;, 90&deg;].
+     *
+     * The GeodesicLine::mask values are
+     * - \e caps |= GeodesicLine::LATITUDE for the latitude \e lat2; this is
+     *   added automatically;
+     * - \e caps |= GeodesicLine::LONGITUDE for the latitude \e lon2;
+     * - \e caps |= GeodesicLine::AZIMUTH for the latitude \e azi2; this is
+     *   added automatically;
+     * - \e caps |= GeodesicLine::DISTANCE for the distance \e s12;
+     * - \e caps |= GeodesicLine::REDUCEDLENGTH for the reduced length \e m12;
+     * - \e caps |= GeodesicLine::GEODESICSCALE for the geodesic scales \e M12
+     *   and \e M21;
+     * - \e caps |= GeodesicLine::AREA for the area \e S12;
+     * - \e caps |= GeodesicLine::DISTANCE_IN permits the length of the
+     *   geodesic to be given in terms of \e s12; without this capability the
+     *   length can only be specified in terms of arc length;
+     * - \e caps |= GeodesicLine::ALL for all of the above.
+     * .
+     * The default value of \e caps is GeodesicLine::ALL.
+     *
+     * If the point is at a pole, the azimuth is defined by keeping \e lon1
+     * fixed, writing \e lat1 = &plusmn;(90&deg; &minus; &epsilon;), and taking
+     * the limit &epsilon; &rarr; 0+.
+     **********************************************************************/
+    GeodesicLine(const Geodesic& g, real lat1, real lon1, real azi1,
+                 unsigned caps = ALL);
+
+    /**
+     * A default constructor.  If GeodesicLine::Position is called on the
+     * resulting object, it returns immediately (without doing any
+     * calculations).  The object can be set with a call to Geodesic::Line.
+     * Use Init() to test whether object is still in this uninitialized state.
+     **********************************************************************/
+    GeodesicLine() : _caps(0U) {}
+    ///@}
+
+    /** \name Position in terms of distance
+     **********************************************************************/
+    ///@{
+
+    /**
+     * Compute the position of point 2 which is a distance \e s12 (meters) from
+     * point 1.
+     *
+     * @param[in] s12 distance from point 1 to point 2 (meters); it can be
+     *   negative.
+     * @param[out] lat2 latitude of point 2 (degrees).
+     * @param[out] lon2 longitude of point 2 (degrees); requires that the
+     *   GeodesicLine object was constructed with \e caps |=
+     *   GeodesicLine::LONGITUDE.
+     * @param[out] azi2 (forward) azimuth at point 2 (degrees).
+     * @param[out] m12 reduced length of geodesic (meters); requires that the
+     *   GeodesicLine object was constructed with \e caps |=
+     *   GeodesicLine::REDUCEDLENGTH.
+     * @param[out] M12 geodesic scale of point 2 relative to point 1
+     *   (dimensionless); requires that the GeodesicLine object was constructed
+     *   with \e caps |= GeodesicLine::GEODESICSCALE.
+     * @param[out] M21 geodesic scale of point 1 relative to point 2
+     *   (dimensionless); requires that the GeodesicLine object was constructed
+     *   with \e caps |= GeodesicLine::GEODESICSCALE.
+     * @param[out] S12 area under the geodesic (meters<sup>2</sup>); requires
+     *   that the GeodesicLine object was constructed with \e caps |=
+     *   GeodesicLine::AREA.
+     * @return \e a12 arc length from point 1 to point 2 (degrees).
+     *
+     * The values of \e lon2 and \e azi2 returned are in the range
+     * [&minus;180&deg;, 180&deg;].
+     *
+     * The GeodesicLine object \e must have been constructed with \e caps |=
+     * GeodesicLine::DISTANCE_IN; otherwise Math::NaN() is returned and no
+     * parameters are set.  Requesting a value which the GeodesicLine object is
+     * not capable of computing is not an error; the corresponding argument
+     * will not be altered.
+     *
+     * The following functions are overloaded versions of
+     * GeodesicLine::Position which omit some of the output parameters.  Note,
+     * however, that the arc length is always computed and returned as the
+     * function value.
+     **********************************************************************/
+    Math::real Position(real s12,
+                        real& lat2, real& lon2, real& azi2,
+                        real& m12, real& M12, real& M21,
+                        real& S12) const {
+      real t;
+      return GenPosition(false, s12,
+                         LATITUDE | LONGITUDE | AZIMUTH |
+                         REDUCEDLENGTH | GEODESICSCALE | AREA,
+                         lat2, lon2, azi2, t, m12, M12, M21, S12);
+    }
+
+    /**
+     * See the documentation for GeodesicLine::Position.
+     **********************************************************************/
+    Math::real Position(real s12, real& lat2, real& lon2) const {
+      real t;
+      return GenPosition(false, s12,
+                         LATITUDE | LONGITUDE,
+                         lat2, lon2, t, t, t, t, t, t);
+    }
+
+    /**
+     * See the documentation for GeodesicLine::Position.
+     **********************************************************************/
+    Math::real Position(real s12, real& lat2, real& lon2,
+                        real& azi2) const {
+      real t;
+      return GenPosition(false, s12,
+                         LATITUDE | LONGITUDE | AZIMUTH,
+                         lat2, lon2, azi2, t, t, t, t, t);
+    }
+
+    /**
+     * See the documentation for GeodesicLine::Position.
+     **********************************************************************/
+    Math::real Position(real s12, real& lat2, real& lon2,
+                        real& azi2, real& m12) const {
+      real t;
+      return GenPosition(false, s12,
+                         LATITUDE | LONGITUDE |
+                         AZIMUTH | REDUCEDLENGTH,
+                         lat2, lon2, azi2, t, m12, t, t, t);
+    }
+
+    /**
+     * See the documentation for GeodesicLine::Position.
+     **********************************************************************/
+    Math::real Position(real s12, real& lat2, real& lon2,
+                        real& azi2, real& M12, real& M21)
+      const {
+      real t;
+      return GenPosition(false, s12,
+                         LATITUDE | LONGITUDE |
+                         AZIMUTH | GEODESICSCALE,
+                         lat2, lon2, azi2, t, t, M12, M21, t);
+    }
+
+    /**
+     * See the documentation for GeodesicLine::Position.
+     **********************************************************************/
+    Math::real Position(real s12,
+                        real& lat2, real& lon2, real& azi2,
+                        real& m12, real& M12, real& M21)
+      const {
+      real t;
+      return GenPosition(false, s12,
+                         LATITUDE | LONGITUDE | AZIMUTH |
+                         REDUCEDLENGTH | GEODESICSCALE,
+                         lat2, lon2, azi2, t, m12, M12, M21, t);
+    }
+    ///@}
+
+    /** \name Position in terms of arc length
+     **********************************************************************/
+    ///@{
+
+    /**
+     * Compute the position of point 2 which is an arc length \e a12 (degrees)
+     * from point 1.
+     *
+     * @param[in] a12 arc length from point 1 to point 2 (degrees); it can
+     *   be negative.
+     * @param[out] lat2 latitude of point 2 (degrees).
+     * @param[out] lon2 longitude of point 2 (degrees); requires that the
+     *   GeodesicLine object was constructed with \e caps |=
+     *   GeodesicLine::LONGITUDE.
+     * @param[out] azi2 (forward) azimuth at point 2 (degrees).
+     * @param[out] s12 distance from point 1 to point 2 (meters); requires
+     *   that the GeodesicLine object was constructed with \e caps |=
+     *   GeodesicLine::DISTANCE.
+     * @param[out] m12 reduced length of geodesic (meters); requires that the
+     *   GeodesicLine object was constructed with \e caps |=
+     *   GeodesicLine::REDUCEDLENGTH.
+     * @param[out] M12 geodesic scale of point 2 relative to point 1
+     *   (dimensionless); requires that the GeodesicLine object was constructed
+     *   with \e caps |= GeodesicLine::GEODESICSCALE.
+     * @param[out] M21 geodesic scale of point 1 relative to point 2
+     *   (dimensionless); requires that the GeodesicLine object was constructed
+     *   with \e caps |= GeodesicLine::GEODESICSCALE.
+     * @param[out] S12 area under the geodesic (meters<sup>2</sup>); requires
+     *   that the GeodesicLine object was constructed with \e caps |=
+     *   GeodesicLine::AREA.
+     *
+     * The values of \e lon2 and \e azi2 returned are in the range
+     * [&minus;180&deg;, 180&deg;].
+     *
+     * Requesting a value which the GeodesicLine object is not capable of
+     * computing is not an error; the corresponding argument will not be
+     * altered.
+     *
+     * The following functions are overloaded versions of
+     * GeodesicLine::ArcPosition which omit some of the output parameters.
+     **********************************************************************/
+    void ArcPosition(real a12, real& lat2, real& lon2, real& azi2,
+                     real& s12, real& m12, real& M12, real& M21,
+                     real& S12) const {
+      GenPosition(true, a12,
+                  LATITUDE | LONGITUDE | AZIMUTH | DISTANCE |
+                  REDUCEDLENGTH | GEODESICSCALE | AREA,
+                  lat2, lon2, azi2, s12, m12, M12, M21, S12);
+    }
+
+    /**
+     * See the documentation for GeodesicLine::ArcPosition.
+     **********************************************************************/
+    void ArcPosition(real a12, real& lat2, real& lon2)
+      const {
+      real t;
+      GenPosition(true, a12,
+                  LATITUDE | LONGITUDE,
+                  lat2, lon2, t, t, t, t, t, t);
+    }
+
+    /**
+     * See the documentation for GeodesicLine::ArcPosition.
+     **********************************************************************/
+    void ArcPosition(real a12,
+                     real& lat2, real& lon2, real& azi2)
+      const {
+      real t;
+      GenPosition(true, a12,
+                  LATITUDE | LONGITUDE | AZIMUTH,
+                  lat2, lon2, azi2, t, t, t, t, t);
+    }
+
+    /**
+     * See the documentation for GeodesicLine::ArcPosition.
+     **********************************************************************/
+    void ArcPosition(real a12, real& lat2, real& lon2, real& azi2,
+                     real& s12) const {
+      real t;
+      GenPosition(true, a12,
+                  LATITUDE | LONGITUDE | AZIMUTH | DISTANCE,
+                  lat2, lon2, azi2, s12, t, t, t, t);
+    }
+
+    /**
+     * See the documentation for GeodesicLine::ArcPosition.
+     **********************************************************************/
+    void ArcPosition(real a12, real& lat2, real& lon2, real& azi2,
+                     real& s12, real& m12) const {
+      real t;
+      GenPosition(true, a12,
+                  LATITUDE | LONGITUDE | AZIMUTH |
+                  DISTANCE | REDUCEDLENGTH,
+                  lat2, lon2, azi2, s12, m12, t, t, t);
+    }
+
+    /**
+     * See the documentation for GeodesicLine::ArcPosition.
+     **********************************************************************/
+    void ArcPosition(real a12, real& lat2, real& lon2, real& azi2,
+                     real& s12, real& M12, real& M21)
+      const {
+      real t;
+      GenPosition(true, a12,
+                  LATITUDE | LONGITUDE | AZIMUTH |
+                  DISTANCE | GEODESICSCALE,
+                  lat2, lon2, azi2, s12, t, M12, M21, t);
+    }
+
+    /**
+     * See the documentation for GeodesicLine::ArcPosition.
+     **********************************************************************/
+    void ArcPosition(real a12, real& lat2, real& lon2, real& azi2,
+                     real& s12, real& m12, real& M12, real& M21)
+      const {
+      real t;
+      GenPosition(true, a12,
+                  LATITUDE | LONGITUDE | AZIMUTH |
+                  DISTANCE | REDUCEDLENGTH | GEODESICSCALE,
+                  lat2, lon2, azi2, s12, m12, M12, M21, t);
+    }
+    ///@}
+
+    /** \name The general position function.
+     **********************************************************************/
+    ///@{
+
+    /**
+     * The general position function.  GeodesicLine::Position and
+     * GeodesicLine::ArcPosition are defined in terms of this function.
+     *
+     * @param[in] arcmode boolean flag determining the meaning of the second
+     *   parameter; if \e arcmode is false, then the GeodesicLine object must
+     *   have been constructed with \e caps |= GeodesicLine::DISTANCE_IN.
+     * @param[in] s12_a12 if \e arcmode is false, this is the distance between
+     *   point 1 and point 2 (meters); otherwise it is the arc length between
+     *   point 1 and point 2 (degrees); it can be negative.
+     * @param[in] outmask a bitor'ed combination of GeodesicLine::mask values
+     *   specifying which of the following parameters should be set.
+     * @param[out] lat2 latitude of point 2 (degrees).
+     * @param[out] lon2 longitude of point 2 (degrees); requires that the
+     *   GeodesicLine object was constructed with \e caps |=
+     *   GeodesicLine::LONGITUDE.
+     * @param[out] azi2 (forward) azimuth at point 2 (degrees).
+     * @param[out] s12 distance from point 1 to point 2 (meters); requires
+     *   that the GeodesicLine object was constructed with \e caps |=
+     *   GeodesicLine::DISTANCE.
+     * @param[out] m12 reduced length of geodesic (meters); requires that the
+     *   GeodesicLine object was constructed with \e caps |=
+     *   GeodesicLine::REDUCEDLENGTH.
+     * @param[out] M12 geodesic scale of point 2 relative to point 1
+     *   (dimensionless); requires that the GeodesicLine object was constructed
+     *   with \e caps |= GeodesicLine::GEODESICSCALE.
+     * @param[out] M21 geodesic scale of point 1 relative to point 2
+     *   (dimensionless); requires that the GeodesicLine object was constructed
+     *   with \e caps |= GeodesicLine::GEODESICSCALE.
+     * @param[out] S12 area under the geodesic (meters<sup>2</sup>); requires
+     *   that the GeodesicLine object was constructed with \e caps |=
+     *   GeodesicLine::AREA.
+     * @return \e a12 arc length from point 1 to point 2 (degrees).
+     *
+     * The GeodesicLine::mask values possible for \e outmask are
+     * - \e outmask |= GeodesicLine::LATITUDE for the latitude \e lat2;
+     * - \e outmask |= GeodesicLine::LONGITUDE for the latitude \e lon2;
+     * - \e outmask |= GeodesicLine::AZIMUTH for the latitude \e azi2;
+     * - \e outmask |= GeodesicLine::DISTANCE for the distance \e s12;
+     * - \e outmask |= GeodesicLine::REDUCEDLENGTH for the reduced length \e
+     *   m12;
+     * - \e outmask |= GeodesicLine::GEODESICSCALE for the geodesic scales \e
+     *   M12 and \e M21;
+     * - \e outmask |= GeodesicLine::AREA for the area \e S12;
+     * - \e outmask |= GeodesicLine::ALL for all of the above;
+     * - \e outmask |= GeodesicLine::LONG_UNROLL to unroll \e lon2 instead of
+     *   reducing it into the range [&minus;180&deg;, 180&deg;].
+     * .
+     * Requesting a value which the GeodesicLine object is not capable of
+     * computing is not an error; the corresponding argument will not be
+     * altered.  Note, however, that the arc length is always computed and
+     * returned as the function value.
+     *
+     * With the GeodesicLine::LONG_UNROLL bit set, the quantity \e lon2 &minus;
+     * \e lon1 indicates how many times and in what sense the geodesic
+     * encircles the ellipsoid.
+     **********************************************************************/
+    Math::real GenPosition(bool arcmode, real s12_a12, unsigned outmask,
+                           real& lat2, real& lon2, real& azi2,
+                           real& s12, real& m12, real& M12, real& M21,
+                           real& S12) const;
+    ///@}
+
+    /** \name Setting point 3
+     **********************************************************************/
+    ///@{
+
+    /**
+     * Specify position of point 3 in terms of distance.
+     *
+     * @param[in] s13 the distance from point 1 to point 3 (meters); it
+     *   can be negative.
+     *
+     * This is only useful if the GeodesicLine object has been constructed
+     * with \e caps |= GeodesicLine::DISTANCE_IN.
+     **********************************************************************/
+    void SetDistance(real s13);
+
+    /**
+     * Specify position of point 3 in terms of arc length.
+     *
+     * @param[in] a13 the arc length from point 1 to point 3 (degrees); it
+     *   can be negative.
+     *
+     * The distance \e s13 is only set if the GeodesicLine object has been
+     * constructed with \e caps |= GeodesicLine::DISTANCE.
+     **********************************************************************/
+    void SetArc(real a13);
+
+    /**
+     * Specify position of point 3 in terms of either distance or arc length.
+     *
+     * @param[in] arcmode boolean flag determining the meaning of the second
+     *   parameter; if \e arcmode is false, then the GeodesicLine object must
+     *   have been constructed with \e caps |= GeodesicLine::DISTANCE_IN.
+     * @param[in] s13_a13 if \e arcmode is false, this is the distance from
+     *   point 1 to point 3 (meters); otherwise it is the arc length from
+     *   point 1 to point 3 (degrees); it can be negative.
+     **********************************************************************/
+    void GenSetDistance(bool arcmode, real s13_a13);
+    ///@}
+
+    /** \name Inspector functions
+     **********************************************************************/
+    ///@{
+
+    /**
+     * @return true if the object has been initialized.
+     **********************************************************************/
+    bool Init() const { return _caps != 0U; }
+
+    /**
+     * @return \e lat1 the latitude of point 1 (degrees).
+     **********************************************************************/
+    Math::real Latitude() const
+    { return Init() ? _lat1 : Math::NaN(); }
+
+    /**
+     * @return \e lon1 the longitude of point 1 (degrees).
+     **********************************************************************/
+    Math::real Longitude() const
+    { return Init() ? _lon1 : Math::NaN(); }
+
+    /**
+     * @return \e azi1 the azimuth (degrees) of the geodesic line at point 1.
+     **********************************************************************/
+    Math::real Azimuth() const
+    { return Init() ? _azi1 : Math::NaN(); }
+
+    /**
+     * The sine and cosine of \e azi1.
+     *
+     * @param[out] sazi1 the sine of \e azi1.
+     * @param[out] cazi1 the cosine of \e azi1.
+     **********************************************************************/
+    void Azimuth(real& sazi1, real& cazi1) const
+    { if (Init()) { sazi1 = _salp1; cazi1 = _calp1; } }
+
+    /**
+     * @return \e azi0 the azimuth (degrees) of the geodesic line as it crosses
+     *   the equator in a northward direction.
+     *
+     * The result lies in [&minus;90&deg;, 90&deg;].
+     **********************************************************************/
+    Math::real EquatorialAzimuth() const
+    { return Init() ? Math::atan2d(_salp0, _calp0) : Math::NaN(); }
+
+    /**
+     * The sine and cosine of \e azi0.
+     *
+     * @param[out] sazi0 the sine of \e azi0.
+     * @param[out] cazi0 the cosine of \e azi0.
+     **********************************************************************/
+    void EquatorialAzimuth(real& sazi0, real& cazi0) const
+    { if (Init()) { sazi0 = _salp0; cazi0 = _calp0; } }
+
+    /**
+     * @return \e a1 the arc length (degrees) between the northward equatorial
+     *   crossing and point 1.
+     *
+     * The result lies in (&minus;180&deg;, 180&deg;].
+     **********************************************************************/
+    Math::real EquatorialArc() const {
+      return Init() ? Math::atan2d(_ssig1, _csig1) : Math::NaN();
+    }
+
+    /**
+     * @return \e a the equatorial radius of the ellipsoid (meters).  This is
+     *   the value inherited from the Geodesic object used in the constructor.
+     **********************************************************************/
+    Math::real EquatorialRadius() const
+    { return Init() ? _a : Math::NaN(); }
+
+    /**
+     * @return \e f the flattening of the ellipsoid.  This is the value
+     *   inherited from the Geodesic object used in the constructor.
+     **********************************************************************/
+    Math::real Flattening() const
+    { return Init() ? _f : Math::NaN(); }
+
+    /**
+     * @return \e caps the computational capabilities that this object was
+     *   constructed with.  LATITUDE and AZIMUTH are always included.
+     **********************************************************************/
+    unsigned Capabilities() const { return _caps; }
+
+    /**
+     * Test what capabilities are available.
+     *
+     * @param[in] testcaps a set of bitor'ed GeodesicLine::mask values.
+     * @return true if the GeodesicLine object has all these capabilities.
+     **********************************************************************/
+    bool Capabilities(unsigned testcaps) const {
+      testcaps &= OUT_ALL;
+      return (_caps & testcaps) == testcaps;
+    }
+
+    /**
+     * The distance or arc length to point 3.
+     *
+     * @param[in] arcmode boolean flag determining the meaning of returned
+     *   value.
+     * @return \e s13 if \e arcmode is false; \e a13 if \e arcmode is true.
+     **********************************************************************/
+    Math::real GenDistance(bool arcmode) const
+    { return Init() ? (arcmode ? _a13 : _s13) : Math::NaN(); }
+
+    /**
+     * @return \e s13, the distance to point 3 (meters).
+     **********************************************************************/
+    Math::real Distance() const { return GenDistance(false); }
+
+    /**
+     * @return \e a13, the arc length to point 3 (degrees).
+     **********************************************************************/
+    Math::real Arc() const { return GenDistance(true); }
+
+    /**
+     * \deprecated An old name for EquatorialRadius().
+     **********************************************************************/
+    GEOGRAPHICLIB_DEPRECATED("Use EquatorialRadius()")
+    Math::real MajorRadius() const { return EquatorialRadius(); }
+    ///@}
+
+  };
+
+} // namespace GeographicLib
+
+#endif  // GEOGRAPHICLIB_GEODESICLINE_HPP

+ 673 - 0
external/include/GeographicLib/GeodesicLineExact.hpp

@@ -0,0 +1,673 @@
+/**
+ * \file GeodesicLineExact.hpp
+ * \brief Header for GeographicLib::GeodesicLineExact class
+ *
+ * Copyright (c) Charles Karney (2012-2020) <charles@karney.com> and licensed
+ * under the MIT/X11 License.  For more information, see
+ * https://geographiclib.sourceforge.io/
+ **********************************************************************/
+
+#if !defined(GEOGRAPHICLIB_GEODESICLINEEXACT_HPP)
+#define GEOGRAPHICLIB_GEODESICLINEEXACT_HPP 1
+
+#include <GeographicLib/Constants.hpp>
+#include <GeographicLib/GeodesicExact.hpp>
+#include <GeographicLib/EllipticFunction.hpp>
+
+namespace GeographicLib {
+
+  /**
+   * \brief An exact geodesic line
+   *
+   * GeodesicLineExact facilitates the determination of a series of points on a
+   * single geodesic.  This is a companion to the GeodesicExact class.  For
+   * additional information on this class see the documentation on the
+   * GeodesicLine class.
+   *
+   * Example of use:
+   * \include example-GeodesicLineExact.cpp
+   *
+   * <a href="GeodSolve.1.html">GeodSolve</a> is a command-line utility
+   * providing access to the functionality of GeodesicExact and
+   * GeodesicLineExact (via the -E option).
+   **********************************************************************/
+
+  class GEOGRAPHICLIB_EXPORT GeodesicLineExact {
+  private:
+    typedef Math::real real;
+    friend class GeodesicExact;
+    static const int nC4_ = GeodesicExact::nC4_;
+
+    real tiny_;
+    real _lat1, _lon1, _azi1;
+    real _a, _f, _b, _c2, _f1, _e2, _salp0, _calp0, _k2,
+      _salp1, _calp1, _ssig1, _csig1, _dn1, _stau1, _ctau1,
+      _somg1, _comg1, _cchi1,
+      _A4, _B41, _E0, _D0, _H0, _E1, _D1, _H1;
+    real _a13, _s13;
+    real _C4a[nC4_];            // all the elements of _C4a are used
+    EllipticFunction _E;
+    unsigned _caps;
+
+    void LineInit(const GeodesicExact& g,
+                  real lat1, real lon1,
+                  real azi1, real salp1, real calp1,
+                  unsigned caps);
+    GeodesicLineExact(const GeodesicExact& g,
+                      real lat1, real lon1,
+                      real azi1, real salp1, real calp1,
+                      unsigned caps, bool arcmode, real s13_a13);
+
+    enum captype {
+      CAP_NONE = GeodesicExact::CAP_NONE,
+      CAP_E    = GeodesicExact::CAP_E,
+      CAP_D    = GeodesicExact::CAP_D,
+      CAP_H    = GeodesicExact::CAP_H,
+      CAP_C4   = GeodesicExact::CAP_C4,
+      CAP_ALL  = GeodesicExact::CAP_ALL,
+      CAP_MASK = GeodesicExact::CAP_MASK,
+      OUT_ALL  = GeodesicExact::OUT_ALL,
+      OUT_MASK = GeodesicExact::OUT_MASK,
+    };
+  public:
+
+    /**
+     * Bit masks for what calculations to do.  They signify to the
+     * GeodesicLineExact::GeodesicLineExact constructor and to
+     * GeodesicExact::Line what capabilities should be included in the
+     * GeodesicLineExact object.  This is merely a duplication of
+     * GeodesicExact::mask.
+     **********************************************************************/
+    enum mask {
+      /**
+       * No capabilities, no output.
+       * @hideinitializer
+       **********************************************************************/
+      NONE          = GeodesicExact::NONE,
+      /**
+       * Calculate latitude \e lat2.  (It's not necessary to include this as a
+       * capability to GeodesicLineExact because this is included by default.)
+       * @hideinitializer
+       **********************************************************************/
+      LATITUDE      = GeodesicExact::LATITUDE,
+      /**
+       * Calculate longitude \e lon2.
+       * @hideinitializer
+       **********************************************************************/
+      LONGITUDE     = GeodesicExact::LONGITUDE,
+      /**
+       * Calculate azimuths \e azi1 and \e azi2.  (It's not necessary to
+       * include this as a capability to GeodesicLineExact because this is
+       * included by default.)
+       * @hideinitializer
+       **********************************************************************/
+      AZIMUTH       = GeodesicExact::AZIMUTH,
+      /**
+       * Calculate distance \e s12.
+       * @hideinitializer
+       **********************************************************************/
+      DISTANCE      = GeodesicExact::DISTANCE,
+      /**
+       * Allow distance \e s12 to be used as input in the direct geodesic
+       * problem.
+       * @hideinitializer
+       **********************************************************************/
+      DISTANCE_IN   = GeodesicExact::DISTANCE_IN,
+      /**
+       * Calculate reduced length \e m12.
+       * @hideinitializer
+       **********************************************************************/
+      REDUCEDLENGTH = GeodesicExact::REDUCEDLENGTH,
+      /**
+       * Calculate geodesic scales \e M12 and \e M21.
+       * @hideinitializer
+       **********************************************************************/
+      GEODESICSCALE = GeodesicExact::GEODESICSCALE,
+      /**
+       * Calculate area \e S12.
+       * @hideinitializer
+       **********************************************************************/
+      AREA          = GeodesicExact::AREA,
+      /**
+       * Unroll \e lon2 in the direct calculation.
+       * @hideinitializer
+       **********************************************************************/
+      LONG_UNROLL = GeodesicExact::LONG_UNROLL,
+      /**
+       * All capabilities, calculate everything.  (LONG_UNROLL is not
+       * included in this mask.)
+       * @hideinitializer
+       **********************************************************************/
+      ALL           = GeodesicExact::ALL,
+    };
+
+    /** \name Constructors
+     **********************************************************************/
+    ///@{
+
+    /**
+     * Constructor for a geodesic line staring at latitude \e lat1, longitude
+     * \e lon1, and azimuth \e azi1 (all in degrees).
+     *
+     * @param[in] g A GeodesicExact object used to compute the necessary
+     *   information about the GeodesicLineExact.
+     * @param[in] lat1 latitude of point 1 (degrees).
+     * @param[in] lon1 longitude of point 1 (degrees).
+     * @param[in] azi1 azimuth at point 1 (degrees).
+     * @param[in] caps bitor'ed combination of GeodesicLineExact::mask values
+     *   specifying the capabilities the GeodesicLineExact object should
+     *   possess, i.e., which quantities can be returned in calls to
+     *   GeodesicLine::Position.
+     *
+     * \e lat1 should be in the range [&minus;90&deg;, 90&deg;].
+     *
+     * The GeodesicLineExact::mask values are
+     * - \e caps |= GeodesicLineExact::LATITUDE for the latitude \e lat2; this
+     *   is added automatically;
+     * - \e caps |= GeodesicLineExact::LONGITUDE for the latitude \e lon2;
+     * - \e caps |= GeodesicLineExact::AZIMUTH for the latitude \e azi2; this
+     *   is added automatically;
+     * - \e caps |= GeodesicLineExact::DISTANCE for the distance \e s12;
+     * - \e caps |= GeodesicLineExact::REDUCEDLENGTH for the reduced length \e
+         m12;
+     * - \e caps |= GeodesicLineExact::GEODESICSCALE for the geodesic scales \e
+     *   M12 and \e M21;
+     * - \e caps |= GeodesicLineExact::AREA for the area \e S12;
+     * - \e caps |= GeodesicLineExact::DISTANCE_IN permits the length of the
+     *   geodesic to be given in terms of \e s12; without this capability the
+     *   length can only be specified in terms of arc length;
+     * - \e caps |= GeodesicLineExact::ALL for all of the above.
+     * .
+     * The default value of \e caps is GeodesicLineExact::ALL.
+     *
+     * If the point is at a pole, the azimuth is defined by keeping \e lon1
+     * fixed, writing \e lat1 = &plusmn;(90&deg; &minus; &epsilon;), and taking
+     * the limit &epsilon; &rarr; 0+.
+     **********************************************************************/
+    GeodesicLineExact(const GeodesicExact& g, real lat1, real lon1, real azi1,
+                      unsigned caps = ALL);
+
+    /**
+     * A default constructor.  If GeodesicLineExact::Position is called on the
+     * resulting object, it returns immediately (without doing any
+     * calculations).  The object can be set with a call to
+     * GeodesicExact::Line.  Use Init() to test whether object is still in this
+     * uninitialized state.
+     **********************************************************************/
+    GeodesicLineExact() : _caps(0U) {}
+    ///@}
+
+    /** \name Position in terms of distance
+     **********************************************************************/
+    ///@{
+
+    /**
+     * Compute the position of point 2 which is a distance \e s12 (meters)
+     * from point 1.
+     *
+     * @param[in] s12 distance from point 1 to point 2 (meters); it can be
+     *   signed.
+     * @param[out] lat2 latitude of point 2 (degrees).
+     * @param[out] lon2 longitude of point 2 (degrees); requires that the
+     *   GeodesicLineExact object was constructed with \e caps |=
+     *   GeodesicLineExact::LONGITUDE.
+     * @param[out] azi2 (forward) azimuth at point 2 (degrees).
+     * @param[out] m12 reduced length of geodesic (meters); requires that the
+     *   GeodesicLineExact object was constructed with \e caps |=
+     *   GeodesicLineExact::REDUCEDLENGTH.
+     * @param[out] M12 geodesic scale of point 2 relative to point 1
+     *   (dimensionless); requires that the GeodesicLineExact object was
+     *   constructed with \e caps |= GeodesicLineExact::GEODESICSCALE.
+     * @param[out] M21 geodesic scale of point 1 relative to point 2
+     *   (dimensionless); requires that the GeodesicLineExact object was
+     *   constructed with \e caps |= GeodesicLineExact::GEODESICSCALE.
+     * @param[out] S12 area under the geodesic (meters<sup>2</sup>); requires
+     *   that the GeodesicLineExact object was constructed with \e caps |=
+     *   GeodesicLineExact::AREA.
+     * @return \e a12 arc length from point 1 to point 2 (degrees).
+     *
+     * The values of \e lon2 and \e azi2 returned are in the range
+     * [&minus;180&deg;, 180&deg;].
+     *
+     * The GeodesicLineExact object \e must have been constructed with \e caps
+     * |= GeodesicLineExact::DISTANCE_IN; otherwise Math::NaN() is returned and
+     * no parameters are set.  Requesting a value which the GeodesicLineExact
+     * object is not capable of computing is not an error; the corresponding
+     * argument will not be altered.
+     *
+     * The following functions are overloaded versions of
+     * GeodesicLineExact::Position which omit some of the output parameters.
+     * Note, however, that the arc length is always computed and returned as
+     * the function value.
+     **********************************************************************/
+    Math::real Position(real s12,
+                        real& lat2, real& lon2, real& azi2,
+                        real& m12, real& M12, real& M21,
+                        real& S12) const {
+      real t;
+      return GenPosition(false, s12,
+                         LATITUDE | LONGITUDE | AZIMUTH |
+                         REDUCEDLENGTH | GEODESICSCALE | AREA,
+                         lat2, lon2, azi2, t, m12, M12, M21, S12);
+    }
+
+    /**
+     * See the documentation for GeodesicLineExact::Position.
+     **********************************************************************/
+    Math::real Position(real s12, real& lat2, real& lon2) const {
+      real t;
+      return GenPosition(false, s12,
+                         LATITUDE | LONGITUDE,
+                         lat2, lon2, t, t, t, t, t, t);
+    }
+
+    /**
+     * See the documentation for GeodesicLineExact::Position.
+     **********************************************************************/
+    Math::real Position(real s12, real& lat2, real& lon2,
+                        real& azi2) const {
+      real t;
+      return GenPosition(false, s12,
+                         LATITUDE | LONGITUDE | AZIMUTH,
+                         lat2, lon2, azi2, t, t, t, t, t);
+    }
+
+    /**
+     * See the documentation for GeodesicLineExact::Position.
+     **********************************************************************/
+    Math::real Position(real s12, real& lat2, real& lon2,
+                        real& azi2, real& m12) const {
+      real t;
+      return GenPosition(false, s12,
+                         LATITUDE | LONGITUDE |
+                         AZIMUTH | REDUCEDLENGTH,
+                         lat2, lon2, azi2, t, m12, t, t, t);
+    }
+
+    /**
+     * See the documentation for GeodesicLineExact::Position.
+     **********************************************************************/
+    Math::real Position(real s12, real& lat2, real& lon2,
+                        real& azi2, real& M12, real& M21)
+      const {
+      real t;
+      return GenPosition(false, s12,
+                         LATITUDE | LONGITUDE |
+                         AZIMUTH | GEODESICSCALE,
+                         lat2, lon2, azi2, t, t, M12, M21, t);
+    }
+
+    /**
+     * See the documentation for GeodesicLineExact::Position.
+     **********************************************************************/
+    Math::real Position(real s12,
+                        real& lat2, real& lon2, real& azi2,
+                        real& m12, real& M12, real& M21)
+      const {
+      real t;
+      return GenPosition(false, s12,
+                         LATITUDE | LONGITUDE | AZIMUTH |
+                         REDUCEDLENGTH | GEODESICSCALE,
+                         lat2, lon2, azi2, t, m12, M12, M21, t);
+    }
+    ///@}
+
+    /** \name Position in terms of arc length
+     **********************************************************************/
+    ///@{
+
+    /**
+     * Compute the position of point 2 which is an arc length \e a12 (degrees)
+     * from point 1.
+     *
+     * @param[in] a12 arc length from point 1 to point 2 (degrees); it can
+     *   be signed.
+     * @param[out] lat2 latitude of point 2 (degrees).
+     * @param[out] lon2 longitude of point 2 (degrees); requires that the
+     *   GeodesicLineExact object was constructed with \e caps |=
+     *   GeodesicLineExact::LONGITUDE.
+     * @param[out] azi2 (forward) azimuth at point 2 (degrees).
+     * @param[out] s12 distance from point 1 to point 2 (meters); requires
+     *   that the GeodesicLineExact object was constructed with \e caps |=
+     *   GeodesicLineExact::DISTANCE.
+     * @param[out] m12 reduced length of geodesic (meters); requires that the
+     *   GeodesicLineExact object was constructed with \e caps |=
+     *   GeodesicLineExact::REDUCEDLENGTH.
+     * @param[out] M12 geodesic scale of point 2 relative to point 1
+     *   (dimensionless); requires that the GeodesicLineExact object was
+     *   constructed with \e caps |= GeodesicLineExact::GEODESICSCALE.
+     * @param[out] M21 geodesic scale of point 1 relative to point 2
+     *   (dimensionless); requires that the GeodesicLineExact object was
+     *   constructed with \e caps |= GeodesicLineExact::GEODESICSCALE.
+     * @param[out] S12 area under the geodesic (meters<sup>2</sup>); requires
+     *   that the GeodesicLineExact object was constructed with \e caps |=
+     *   GeodesicLineExact::AREA.
+     *
+     * The values of \e lon2 and \e azi2 returned are in the range
+     * [&minus;180&deg;, 180&deg;].
+     *
+     * Requesting a value which the GeodesicLineExact object is not capable of
+     * computing is not an error; the corresponding argument will not be
+     * altered.
+     *
+     * The following functions are overloaded versions of
+     * GeodesicLineExact::ArcPosition which omit some of the output parameters.
+     **********************************************************************/
+    void ArcPosition(real a12, real& lat2, real& lon2, real& azi2,
+                     real& s12, real& m12, real& M12, real& M21,
+                     real& S12) const {
+      GenPosition(true, a12,
+                  LATITUDE | LONGITUDE | AZIMUTH | DISTANCE |
+                  REDUCEDLENGTH | GEODESICSCALE | AREA,
+                  lat2, lon2, azi2, s12, m12, M12, M21, S12);
+    }
+
+    /**
+     * See the documentation for GeodesicLineExact::ArcPosition.
+     **********************************************************************/
+    void ArcPosition(real a12, real& lat2, real& lon2)
+      const {
+      real t;
+      GenPosition(true, a12,
+                  LATITUDE | LONGITUDE,
+                  lat2, lon2, t, t, t, t, t, t);
+    }
+
+    /**
+     * See the documentation for GeodesicLineExact::ArcPosition.
+     **********************************************************************/
+    void ArcPosition(real a12,
+                     real& lat2, real& lon2, real& azi2)
+      const {
+      real t;
+      GenPosition(true, a12,
+                  LATITUDE | LONGITUDE | AZIMUTH,
+                  lat2, lon2, azi2, t, t, t, t, t);
+    }
+
+    /**
+     * See the documentation for GeodesicLineExact::ArcPosition.
+     **********************************************************************/
+    void ArcPosition(real a12, real& lat2, real& lon2, real& azi2,
+                     real& s12) const {
+      real t;
+      GenPosition(true, a12,
+                  LATITUDE | LONGITUDE | AZIMUTH | DISTANCE,
+                  lat2, lon2, azi2, s12, t, t, t, t);
+    }
+
+    /**
+     * See the documentation for GeodesicLineExact::ArcPosition.
+     **********************************************************************/
+    void ArcPosition(real a12, real& lat2, real& lon2, real& azi2,
+                     real& s12, real& m12) const {
+      real t;
+      GenPosition(true, a12,
+                  LATITUDE | LONGITUDE | AZIMUTH |
+                  DISTANCE | REDUCEDLENGTH,
+                  lat2, lon2, azi2, s12, m12, t, t, t);
+    }
+
+    /**
+     * See the documentation for GeodesicLineExact::ArcPosition.
+     **********************************************************************/
+    void ArcPosition(real a12, real& lat2, real& lon2, real& azi2,
+                     real& s12, real& M12, real& M21)
+      const {
+      real t;
+      GenPosition(true, a12,
+                  LATITUDE | LONGITUDE | AZIMUTH |
+                  DISTANCE | GEODESICSCALE,
+                  lat2, lon2, azi2, s12, t, M12, M21, t);
+    }
+
+    /**
+     * See the documentation for GeodesicLineExact::ArcPosition.
+     **********************************************************************/
+    void ArcPosition(real a12, real& lat2, real& lon2, real& azi2,
+                     real& s12, real& m12, real& M12, real& M21)
+      const {
+      real t;
+      GenPosition(true, a12,
+                  LATITUDE | LONGITUDE | AZIMUTH |
+                  DISTANCE | REDUCEDLENGTH | GEODESICSCALE,
+                  lat2, lon2, azi2, s12, m12, M12, M21, t);
+    }
+    ///@}
+
+    /** \name The general position function.
+     **********************************************************************/
+    ///@{
+
+    /**
+     * The general position function.  GeodesicLineExact::Position and
+     * GeodesicLineExact::ArcPosition are defined in terms of this function.
+     *
+     * @param[in] arcmode boolean flag determining the meaning of the second
+     *   parameter; if \e arcmode is false, then the GeodesicLineExact object
+     *   must have been constructed with \e caps |=
+     *   GeodesicLineExact::DISTANCE_IN.
+     * @param[in] s12_a12 if \e arcmode is false, this is the distance between
+     *   point 1 and point 2 (meters); otherwise it is the arc length between
+     *   point 1 and point 2 (degrees); it can be signed.
+     * @param[in] outmask a bitor'ed combination of GeodesicLineExact::mask
+     *   values specifying which of the following parameters should be set.
+     * @param[out] lat2 latitude of point 2 (degrees).
+     * @param[out] lon2 longitude of point 2 (degrees); requires that the
+     *   GeodesicLineExact object was constructed with \e caps |=
+     *   GeodesicLineExact::LONGITUDE.
+     * @param[out] azi2 (forward) azimuth at point 2 (degrees).
+     * @param[out] s12 distance from point 1 to point 2 (meters); requires
+     *   that the GeodesicLineExact object was constructed with \e caps |=
+     *   GeodesicLineExact::DISTANCE.
+     * @param[out] m12 reduced length of geodesic (meters); requires that the
+     *   GeodesicLineExact object was constructed with \e caps |=
+     *   GeodesicLineExact::REDUCEDLENGTH.
+     * @param[out] M12 geodesic scale of point 2 relative to point 1
+     *   (dimensionless); requires that the GeodesicLineExact object was
+     *   constructed with \e caps |= GeodesicLineExact::GEODESICSCALE.
+     * @param[out] M21 geodesic scale of point 1 relative to point 2
+     *   (dimensionless); requires that the GeodesicLineExact object was
+     *   constructed with \e caps |= GeodesicLineExact::GEODESICSCALE.
+     * @param[out] S12 area under the geodesic (meters<sup>2</sup>); requires
+     *   that the GeodesicLineExact object was constructed with \e caps |=
+     *   GeodesicLineExact::AREA.
+     * @return \e a12 arc length from point 1 to point 2 (degrees).
+     *
+     * The GeodesicLineExact::mask values possible for \e outmask are
+     * - \e outmask |= GeodesicLineExact::LATITUDE for the latitude \e lat2;
+     * - \e outmask |= GeodesicLineExact::LONGITUDE for the latitude \e lon2;
+     * - \e outmask |= GeodesicLineExact::AZIMUTH for the latitude \e azi2;
+     * - \e outmask |= GeodesicLineExact::DISTANCE for the distance \e s12;
+     * - \e outmask |= GeodesicLineExact::REDUCEDLENGTH for the reduced length
+     *   \e m12;
+     * - \e outmask |= GeodesicLineExact::GEODESICSCALE for the geodesic scales
+     *   \e M12 and \e M21;
+     * - \e outmask |= GeodesicLineExact::AREA for the area \e S12;
+     * - \e outmask |= GeodesicLineExact::ALL for all of the above;
+     * - \e outmask |= GeodesicLineExact::LONG_UNROLL to unroll \e lon2 instead
+     *   of wrapping it into the range [&minus;180&deg;, 180&deg;].
+     * .
+     * Requesting a value which the GeodesicLineExact object is not capable of
+     * computing is not an error; the corresponding argument will not be
+     * altered.  Note, however, that the arc length is always computed and
+     * returned as the function value.
+     *
+     * With the GeodesicLineExact::LONG_UNROLL bit set, the quantity \e lon2
+     * &minus; \e lon1 indicates how many times and in what sense the geodesic
+     * encircles the ellipsoid.
+     **********************************************************************/
+    Math::real GenPosition(bool arcmode, real s12_a12, unsigned outmask,
+                           real& lat2, real& lon2, real& azi2,
+                           real& s12, real& m12, real& M12, real& M21,
+                           real& S12) const;
+    ///@}
+
+    /** \name Setting point 3
+     **********************************************************************/
+    ///@{
+
+    /**
+     * Specify position of point 3 in terms of distance.
+     *
+     * @param[in] s13 the distance from point 1 to point 3 (meters); it
+     *   can be negative.
+     *
+     * This is only useful if the GeodesicLineExact object has been constructed
+     * with \e caps |= GeodesicLineExact::DISTANCE_IN.
+     **********************************************************************/
+    void SetDistance(real s13);
+
+    /**
+     * Specify position of point 3 in terms of arc length.
+     *
+     * @param[in] a13 the arc length from point 1 to point 3 (degrees); it
+     *   can be negative.
+     *
+     * The distance \e s13 is only set if the GeodesicLineExact object has been
+     * constructed with \e caps |= GeodesicLineExact::DISTANCE.
+     **********************************************************************/
+    void SetArc(real a13);
+
+    /**
+     * Specify position of point 3 in terms of either distance or arc length.
+     *
+     * @param[in] arcmode boolean flag determining the meaning of the second
+     *   parameter; if \e arcmode is false, then the GeodesicLineExact object
+     *   must have been constructed with \e caps |=
+     *   GeodesicLineExact::DISTANCE_IN.
+     * @param[in] s13_a13 if \e arcmode is false, this is the distance from
+     *   point 1 to point 3 (meters); otherwise it is the arc length from
+     *   point 1 to point 3 (degrees); it can be negative.
+     **********************************************************************/
+    void GenSetDistance(bool arcmode, real s13_a13);
+
+    /** \name Inspector functions
+     **********************************************************************/
+    ///@{
+
+    /**
+     * @return true if the object has been initialized.
+     **********************************************************************/
+    bool Init() const { return _caps != 0U; }
+
+    /**
+     * @return \e lat1 the latitude of point 1 (degrees).
+     **********************************************************************/
+    Math::real Latitude() const
+    { return Init() ? _lat1 : Math::NaN(); }
+
+    /**
+     * @return \e lon1 the longitude of point 1 (degrees).
+     **********************************************************************/
+    Math::real Longitude() const
+    { return Init() ? _lon1 : Math::NaN(); }
+
+    /**
+     * @return \e azi1 the azimuth (degrees) of the geodesic line at point 1.
+     **********************************************************************/
+    Math::real Azimuth() const
+    { return Init() ? _azi1 : Math::NaN(); }
+
+    /**
+     * The sine and cosine of \e azi1.
+     *
+     * @param[out] sazi1 the sine of \e azi1.
+     * @param[out] cazi1 the cosine of \e azi1.
+     **********************************************************************/
+    void Azimuth(real& sazi1, real& cazi1) const
+    { if (Init()) { sazi1 = _salp1; cazi1 = _calp1; } }
+
+    /**
+     * @return \e azi0 the azimuth (degrees) of the geodesic line as it crosses
+     *   the equator in a northward direction.
+     *
+     * The result lies in [&minus;90&deg;, 90&deg;].
+     **********************************************************************/
+    Math::real EquatorialAzimuth() const
+    { return Init() ? Math::atan2d(_salp0, _calp0) : Math::NaN(); }
+
+    /**
+     * The sine and cosine of \e azi0.
+     *
+     * @param[out] sazi0 the sine of \e azi0.
+     * @param[out] cazi0 the cosine of \e azi0.
+     **********************************************************************/
+    void EquatorialAzimuth(real& sazi0, real& cazi0) const
+    { if (Init()) { sazi0 = _salp0; cazi0 = _calp0; } }
+
+    /**
+     * @return \e a1 the arc length (degrees) between the northward equatorial
+     *   crossing and point 1.
+     *
+     * The result lies in (&minus;180&deg;, 180&deg;].
+     **********************************************************************/
+    Math::real EquatorialArc() const {
+      using std::atan2;
+      return Init() ? atan2(_ssig1, _csig1) / Math::degree() : Math::NaN();
+    }
+
+    /**
+     * @return \e a the equatorial radius of the ellipsoid (meters).  This is
+     *   the value inherited from the GeodesicExact object used in the
+     *   constructor.
+     **********************************************************************/
+    Math::real EquatorialRadius() const
+    { return Init() ? _a : Math::NaN(); }
+
+    /**
+     * @return \e f the flattening of the ellipsoid.  This is the value
+     *   inherited from the GeodesicExact object used in the constructor.
+     **********************************************************************/
+    Math::real Flattening() const
+    { return Init() ? _f : Math::NaN(); }
+
+    /**
+     * @return \e caps the computational capabilities that this object was
+     *   constructed with.  LATITUDE and AZIMUTH are always included.
+     **********************************************************************/
+    unsigned Capabilities() const { return _caps; }
+
+    /**
+     * Test what capabilities are available.
+     *
+     * @param[in] testcaps a set of bitor'ed GeodesicLineExact::mask values.
+     * @return true if the GeodesicLineExact object has all these capabilities.
+     **********************************************************************/
+    bool Capabilities(unsigned testcaps) const {
+      testcaps &= OUT_ALL;
+      return (_caps & testcaps) == testcaps;
+    }
+
+    /**
+     * The distance or arc length to point 3.
+     *
+     * @param[in] arcmode boolean flag determining the meaning of returned
+     *   value.
+     * @return \e s13 if \e arcmode is false; \e a13 if \e arcmode is true.
+     **********************************************************************/
+    Math::real GenDistance(bool arcmode) const
+    { return Init() ? (arcmode ? _a13 : _s13) : Math::NaN(); }
+
+    /**
+     * @return \e s13, the distance to point 3 (meters).
+     **********************************************************************/
+    Math::real Distance() const { return GenDistance(false); }
+
+    /**
+     * @return \e a13, the arc length to point 3 (degrees).
+     **********************************************************************/
+    Math::real Arc() const { return GenDistance(true); }
+
+    /**
+     * \deprecated An old name for EquatorialRadius().
+     **********************************************************************/
+    GEOGRAPHICLIB_DEPRECATED("Use EquatorialRadius()")
+    Math::real MajorRadius() const { return EquatorialRadius(); }
+    ///@}
+
+  };
+
+} // namespace GeographicLib
+
+#endif  // GEOGRAPHICLIB_GEODESICLINEEXACT_HPP

+ 180 - 0
external/include/GeographicLib/Geohash.hpp

@@ -0,0 +1,180 @@
+/**
+ * \file Geohash.hpp
+ * \brief Header for GeographicLib::Geohash class
+ *
+ * Copyright (c) Charles Karney (2012-2017) <charles@karney.com> and licensed
+ * under the MIT/X11 License.  For more information, see
+ * https://geographiclib.sourceforge.io/
+ **********************************************************************/
+
+#if !defined(GEOGRAPHICLIB_GEOHASH_HPP)
+#define GEOGRAPHICLIB_GEOHASH_HPP 1
+
+#include <GeographicLib/Constants.hpp>
+
+#if defined(_MSC_VER)
+// Squelch warnings about dll vs string
+#  pragma warning (push)
+#  pragma warning (disable: 4251)
+#endif
+
+namespace GeographicLib {
+
+  /**
+   * \brief Conversions for geohashes
+   *
+   * Geohashes are described in
+   * - https://en.wikipedia.org/wiki/Geohash
+   * - http://geohash.org/
+   * .
+   * They provide a compact string representation of a particular geographic
+   * location (expressed as latitude and longitude), with the property that if
+   * trailing characters are dropped from the string the geographic location
+   * remains nearby.  The classes Georef and GARS implement similar compact
+   * representations.
+   *
+   * Example of use:
+   * \include example-Geohash.cpp
+   **********************************************************************/
+
+  class GEOGRAPHICLIB_EXPORT Geohash {
+  private:
+    typedef Math::real real;
+    static const int maxlen_ = 18;
+    static const unsigned long long mask_ = 1ULL << 45;
+    static const char* const lcdigits_;
+    static const char* const ucdigits_;
+    Geohash();                     // Disable constructor
+
+  public:
+
+    /**
+     * Convert from geographic coordinates to a geohash.
+     *
+     * @param[in] lat latitude of point (degrees).
+     * @param[in] lon longitude of point (degrees).
+     * @param[in] len the length of the resulting geohash.
+     * @param[out] geohash the geohash.
+     * @exception GeographicErr if \e lat is not in [&minus;90&deg;,
+     *   90&deg;].
+     * @exception std::bad_alloc if memory for \e geohash can't be allocated.
+     *
+     * Internally, \e len is first put in the range [0, 18].  (\e len = 18
+     * provides approximately 1&mu;m precision.)
+     *
+     * If \e lat or \e lon is NaN, the returned geohash is "invalid".
+     **********************************************************************/
+    static void Forward(real lat, real lon, int len, std::string& geohash);
+
+    /**
+     * Convert from a geohash to geographic coordinates.
+     *
+     * @param[in] geohash the geohash.
+     * @param[out] lat latitude of point (degrees).
+     * @param[out] lon longitude of point (degrees).
+     * @param[out] len the length of the geohash.
+     * @param[in] centerp if true (the default) return the center of the
+     *   geohash location, otherwise return the south-west corner.
+     * @exception GeographicErr if \e geohash contains illegal characters.
+     *
+     * Only the first 18 characters for \e geohash are considered.  (18
+     * characters provides approximately 1&mu;m precision.)  The case of the
+     * letters in \e geohash is ignored.
+     *
+     * If the first 3 characters of \e geohash are "inv", then \e lat and \e
+     * lon are set to NaN and \e len is unchanged.  ("nan" is treated
+     * similarly.)
+     **********************************************************************/
+    static void Reverse(const std::string& geohash, real& lat, real& lon,
+                        int& len, bool centerp = true);
+
+    /**
+     * The latitude resolution of a geohash.
+     *
+     * @param[in] len the length of the geohash.
+     * @return the latitude resolution (degrees).
+     *
+     * Internally, \e len is first put in the range [0, 18].
+     **********************************************************************/
+    static Math::real LatitudeResolution(int len) {
+      using std::ldexp;
+      len = (std::max)(0, (std::min)(int(maxlen_), len));
+      return ldexp(real(180), -(5 * len / 2));
+    }
+
+    /**
+     * The longitude resolution of a geohash.
+     *
+     * @param[in] len the length of the geohash.
+     * @return the longitude resolution (degrees).
+     *
+     * Internally, \e len is first put in the range [0, 18].
+     **********************************************************************/
+    static Math::real LongitudeResolution(int len) {
+      using std::ldexp;
+      len = (std::max)(0, (std::min)(int(maxlen_), len));
+      return ldexp(real(360), -(5 * len - 5 * len / 2));
+    }
+
+    /**
+     * The geohash length required to meet a given geographic resolution.
+     *
+     * @param[in] res the minimum of resolution in latitude and longitude
+     *   (degrees).
+     * @return geohash length.
+     *
+     * The returned length is in the range [0, 18].
+     **********************************************************************/
+    static int GeohashLength(real res) {
+      using std::abs; res = abs(res);
+      for (int len = 0; len < maxlen_; ++len)
+        if (LongitudeResolution(len) <= res)
+          return len;
+      return maxlen_;
+    }
+
+    /**
+     * The geohash length required to meet a given geographic resolution.
+     *
+     * @param[in] latres the resolution in latitude (degrees).
+     * @param[in] lonres the resolution in longitude (degrees).
+     * @return geohash length.
+     *
+     * The returned length is in the range [0, 18].
+     **********************************************************************/
+    static int GeohashLength(real latres, real lonres) {
+      using std::abs;
+      latres = abs(latres);
+      lonres = abs(lonres);
+      for (int len = 0; len < maxlen_; ++len)
+        if (LatitudeResolution(len) <= latres &&
+            LongitudeResolution(len) <= lonres)
+          return len;
+      return maxlen_;
+    }
+
+    /**
+     * The decimal geographic precision required to match a given geohash
+     * length.  This is the number of digits needed after decimal point in a
+     * decimal degrees representation.
+     *
+     * @param[in] len the length of the geohash.
+     * @return the decimal precision (may be negative).
+     *
+     * Internally, \e len is first put in the range [0, 18].  The returned
+     * decimal precision is in the range [&minus;2, 12].
+     **********************************************************************/
+    static int DecimalPrecision(int len) {
+      using std::floor; using std::log;
+      return -int(floor(log(LatitudeResolution(len))/log(Math::real(10))));
+    }
+
+  };
+
+} // namespace GeographicLib
+
+#if defined(_MSC_VER)
+#  pragma warning (pop)
+#endif
+
+#endif  // GEOGRAPHICLIB_GEOHASH_HPP

+ 478 - 0
external/include/GeographicLib/Geoid.hpp

@@ -0,0 +1,478 @@
+/**
+ * \file Geoid.hpp
+ * \brief Header for GeographicLib::Geoid class
+ *
+ * Copyright (c) Charles Karney (2009-2021) <charles@karney.com> and licensed
+ * under the MIT/X11 License.  For more information, see
+ * https://geographiclib.sourceforge.io/
+ **********************************************************************/
+
+#if !defined(GEOGRAPHICLIB_GEOID_HPP)
+#define GEOGRAPHICLIB_GEOID_HPP 1
+
+#include <vector>
+#include <fstream>
+#include <GeographicLib/Constants.hpp>
+
+#if defined(_MSC_VER)
+// Squelch warnings about dll vs vector and constant conditional expressions
+#  pragma warning (push)
+#  pragma warning (disable: 4251 4127)
+#endif
+
+#if !defined(GEOGRAPHICLIB_GEOID_PGM_PIXEL_WIDTH)
+/**
+ * The size of the pixel data in the pgm data files for the geoids.  2 is the
+ * standard size corresponding to a maxval 2<sup>16</sup>&minus;1.  Setting it
+ * to 4 uses a maxval of 2<sup>32</sup>&minus;1 and changes the extension for
+ * the data files from .pgm to .pgm4.  Note that the format of these pgm4 files
+ * is a non-standard extension of the pgm format.
+ **********************************************************************/
+#  define GEOGRAPHICLIB_GEOID_PGM_PIXEL_WIDTH 2
+#endif
+
+namespace GeographicLib {
+
+  /**
+   * \brief Looking up the height of the geoid above the ellipsoid
+   *
+   * This class evaluates the height of one of the standard geoids, EGM84,
+   * EGM96, or EGM2008 by bilinear or cubic interpolation into a rectangular
+   * grid of data.  These geoid models are documented in
+   * - EGM84:
+   *   https://earth-info.nga.mil/index.php?dir=wgs84&action=wgs84#tab_egm84
+   * - EGM96:
+   *   https://earth-info.nga.mil/index.php?dir=wgs84&action=wgs84#tab_egm96
+   * - EGM2008:
+   *   https://earth-info.nga.mil/index.php?dir=wgs84&action=wgs84#tab_egm2008
+   *
+   * The geoids are defined in terms of spherical harmonics.  However in order
+   * to provide a quick and flexible method of evaluating the geoid heights,
+   * this class evaluates the height by interpolation into a grid of
+   * precomputed values.
+   *
+   * The height of the geoid above the ellipsoid, \e N, is sometimes called the
+   * geoid undulation.  It can be used to convert a height above the ellipsoid,
+   * \e h, to the corresponding height above the geoid (the orthometric height,
+   * roughly the height above mean sea level), \e H, using the relations
+   *
+   * &nbsp;&nbsp;&nbsp;\e h = \e N + \e H;
+   * &nbsp;&nbsp;\e H = &minus;\e N + \e h.
+   *
+   * See \ref geoid for details of how to install the data sets, the data
+   * format, estimates of the interpolation errors, and how to use caching.
+   *
+   * This class is typically \e not thread safe in that a single instantiation
+   * cannot be safely used by multiple threads because of the way the object
+   * reads the data set and because it maintains a single-cell cache.  If
+   * multiple threads need to calculate geoid heights they should all construct
+   * thread-local instantiations.  Alternatively, set the optional \e
+   * threadsafe parameter to true in the constructor.  This causes the
+   * constructor to read all the data into memory and to turn off the
+   * single-cell caching which results in a Geoid object which \e is thread
+   * safe.
+   *
+   * Example of use:
+   * \include example-Geoid.cpp
+   *
+   * <a href="GeoidEval.1.html">GeoidEval</a> is a command-line utility
+   * providing access to the functionality of Geoid.
+   **********************************************************************/
+
+  class GEOGRAPHICLIB_EXPORT Geoid {
+  private:
+    typedef Math::real real;
+#if GEOGRAPHICLIB_GEOID_PGM_PIXEL_WIDTH != 4
+    typedef unsigned short pixel_t;
+    static const unsigned pixel_size_ = 2;
+    static const unsigned pixel_max_ = 0xffffu;
+#else
+    typedef unsigned pixel_t;
+    static const unsigned pixel_size_ = 4;
+    static const unsigned pixel_max_ = 0xffffffffu;
+#endif
+    static const unsigned stencilsize_ = 12;
+    static const unsigned nterms_ = ((3 + 1) * (3 + 2))/2; // for a cubic fit
+    static const int c0_;
+    static const int c0n_;
+    static const int c0s_;
+    static const int c3_[stencilsize_ * nterms_];
+    static const int c3n_[stencilsize_ * nterms_];
+    static const int c3s_[stencilsize_ * nterms_];
+
+    std::string _name, _dir, _filename;
+    const bool _cubic;
+    const real _a, _e2, _degree, _eps;
+    mutable std::ifstream _file;
+    real _rlonres, _rlatres;
+    std::string _description, _datetime;
+    real _offset, _scale, _maxerror, _rmserror;
+    int _width, _height;
+    unsigned long long _datastart, _swidth;
+    bool _threadsafe;
+    // Area cache
+    mutable std::vector< std::vector<pixel_t> > _data;
+    mutable bool _cache;
+    // NE corner and extent of cache
+    mutable int _xoffset, _yoffset, _xsize, _ysize;
+    // Cell cache
+    mutable int _ix, _iy;
+    mutable real _v00, _v01, _v10, _v11;
+    mutable real _t[nterms_];
+    void filepos(int ix, int iy) const {
+      _file.seekg(std::streamoff
+                  (_datastart +
+                   pixel_size_ * (unsigned(iy)*_swidth + unsigned(ix))));
+    }
+    real rawval(int ix, int iy) const {
+      if (ix < 0)
+        ix += _width;
+      else if (ix >= _width)
+        ix -= _width;
+      if (_cache && iy >= _yoffset && iy < _yoffset + _ysize &&
+          ((ix >= _xoffset && ix < _xoffset + _xsize) ||
+           (ix + _width >= _xoffset && ix + _width < _xoffset + _xsize))) {
+        return real(_data[iy - _yoffset]
+                    [ix >= _xoffset ? ix - _xoffset : ix + _width - _xoffset]);
+      } else {
+        if (iy < 0 || iy >= _height) {
+          iy = iy < 0 ? -iy : 2 * (_height - 1) - iy;
+          ix += (ix < _width/2 ? 1 : -1) * _width/2;
+        }
+        try {
+          filepos(ix, iy);
+          // initial values to suppress warnings in case get fails
+          char a = 0, b = 0;
+          _file.get(a);
+          _file.get(b);
+          unsigned r = ((unsigned char)(a) << 8) | (unsigned char)(b);
+          if (pixel_size_ == 4) {
+            _file.get(a);
+            _file.get(b);
+            r = (r << 16) | ((unsigned char)(a) << 8) | (unsigned char)(b);
+          }
+          return real(r);
+        }
+        catch (const std::exception& e) {
+          // throw GeographicErr("Error reading " + _filename + ": "
+          //                      + e.what());
+          // triggers complaints about the "binary '+'" under Visual Studio.
+          // So use '+=' instead.
+          std::string err("Error reading ");
+          err += _filename;
+          err += ": ";
+          err += e.what();
+          throw GeographicErr(err);
+        }
+      }
+    }
+    real height(real lat, real lon) const;
+    Geoid(const Geoid&) = delete;            // copy constructor not allowed
+    Geoid& operator=(const Geoid&) = delete; // copy assignment not allowed
+  public:
+
+    /**
+     * Flags indicating conversions between heights above the geoid and heights
+     * above the ellipsoid.
+     **********************************************************************/
+    enum convertflag {
+      /**
+       * The multiplier for converting from heights above the geoid to heights
+       * above the ellipsoid.
+       **********************************************************************/
+      ELLIPSOIDTOGEOID = -1,
+      /**
+       * No conversion.
+       **********************************************************************/
+      NONE = 0,
+      /**
+       * The multiplier for converting from heights above the ellipsoid to
+       * heights above the geoid.
+       **********************************************************************/
+      GEOIDTOELLIPSOID = 1,
+    };
+
+    /** \name Setting up the geoid
+     **********************************************************************/
+    ///@{
+    /**
+     * Construct a geoid.
+     *
+     * @param[in] name the name of the geoid.
+     * @param[in] path (optional) directory for data file.
+     * @param[in] cubic (optional) interpolation method; false means bilinear,
+     *   true (the default) means cubic.
+     * @param[in] threadsafe (optional), if true, construct a thread safe
+     *   object.  The default is false
+     * @exception GeographicErr if the data file cannot be found, is
+     *   unreadable, or is corrupt.
+     * @exception GeographicErr if \e threadsafe is true but the memory
+     *   necessary for caching the data can't be allocated.
+     *
+     * The data file is formed by appending ".pgm" to the name.  If \e path is
+     * specified (and is non-empty), then the file is loaded from directory, \e
+     * path.  Otherwise the path is given by DefaultGeoidPath().  If the \e
+     * threadsafe parameter is true, the data set is read into memory, the data
+     * file is closed, and single-cell caching is turned off; this results in a
+     * Geoid object which \e is thread safe.
+     **********************************************************************/
+    explicit Geoid(const std::string& name, const std::string& path = "",
+                   bool cubic = true, bool threadsafe = false);
+
+    /**
+     * Set up a cache.
+     *
+     * @param[in] south latitude (degrees) of the south edge of the cached
+     *   area.
+     * @param[in] west longitude (degrees) of the west edge of the cached area.
+     * @param[in] north latitude (degrees) of the north edge of the cached
+     *   area.
+     * @param[in] east longitude (degrees) of the east edge of the cached area.
+     * @exception GeographicErr if the memory necessary for caching the data
+     *   can't be allocated (in this case, you will have no cache and can try
+     *   again with a smaller area).
+     * @exception GeographicErr if there's a problem reading the data.
+     * @exception GeographicErr if this is called on a threadsafe Geoid.
+     *
+     * Cache the data for the specified "rectangular" area bounded by the
+     * parallels \e south and \e north and the meridians \e west and \e east.
+     * \e east is always interpreted as being east of \e west, if necessary by
+     * adding 360&deg; to its value.  \e south and \e north should be in
+     * the range [&minus;90&deg;, 90&deg;].
+     **********************************************************************/
+    void CacheArea(real south, real west, real north, real east) const;
+
+    /**
+     * Cache all the data.
+     *
+     * @exception GeographicErr if the memory necessary for caching the data
+     *   can't be allocated (in this case, you will have no cache and can try
+     *   again with a smaller area).
+     * @exception GeographicErr if there's a problem reading the data.
+     * @exception GeographicErr if this is called on a threadsafe Geoid.
+     *
+     * On most computers, this is fast for data sets with grid resolution of 5'
+     * or coarser.  For a 1' grid, the required RAM is 450MB; a 2.5' grid needs
+     * 72MB; and a 5' grid needs 18MB.
+     **********************************************************************/
+    void CacheAll() const { CacheArea(real(-90), real(0),
+                                      real(90), real(360)); }
+
+    /**
+     * Clear the cache.  This never throws an error.  (This does nothing with a
+     * thread safe Geoid.)
+     **********************************************************************/
+    void CacheClear() const;
+
+    ///@}
+
+    /** \name Compute geoid heights
+     **********************************************************************/
+    ///@{
+    /**
+     * Compute the geoid height at a point
+     *
+     * @param[in] lat latitude of the point (degrees).
+     * @param[in] lon longitude of the point (degrees).
+     * @exception GeographicErr if there's a problem reading the data; this
+     *   never happens if (\e lat, \e lon) is within a successfully cached
+     *   area.
+     * @return the height of the geoid above the ellipsoid (meters).
+     *
+     * The latitude should be in [&minus;90&deg;, 90&deg;].
+     **********************************************************************/
+    Math::real operator()(real lat, real lon) const {
+      return height(lat, lon);
+    }
+
+    /**
+     * Convert a height above the geoid to a height above the ellipsoid and
+     * vice versa.
+     *
+     * @param[in] lat latitude of the point (degrees).
+     * @param[in] lon longitude of the point (degrees).
+     * @param[in] h height of the point (degrees).
+     * @param[in] d a Geoid::convertflag specifying the direction of the
+     *   conversion; Geoid::GEOIDTOELLIPSOID means convert a height above the
+     *   geoid to a height above the ellipsoid; Geoid::ELLIPSOIDTOGEOID means
+     *   convert a height above the ellipsoid to a height above the geoid.
+     * @exception GeographicErr if there's a problem reading the data; this
+     *   never happens if (\e lat, \e lon) is within a successfully cached
+     *   area.
+     * @return converted height (meters).
+     **********************************************************************/
+    Math::real ConvertHeight(real lat, real lon, real h,
+                             convertflag d) const {
+      return h + real(d) * height(lat, lon);
+    }
+
+    ///@}
+
+    /** \name Inspector functions
+     **********************************************************************/
+    ///@{
+    /**
+     * @return geoid description, if available, in the data file; if
+     *   absent, return "NONE".
+     **********************************************************************/
+    const std::string& Description() const { return _description; }
+
+    /**
+     * @return date of the data file; if absent, return "UNKNOWN".
+     **********************************************************************/
+    const std::string& DateTime() const { return _datetime; }
+
+    /**
+     * @return full file name used to load the geoid data.
+     **********************************************************************/
+    const std::string& GeoidFile() const { return _filename; }
+
+    /**
+     * @return "name" used to load the geoid data (from the first argument of
+     *   the constructor).
+     **********************************************************************/
+    const std::string& GeoidName() const { return _name; }
+
+    /**
+     * @return directory used to load the geoid data.
+     **********************************************************************/
+    const std::string& GeoidDirectory() const { return _dir; }
+
+    /**
+     * @return interpolation method ("cubic" or "bilinear").
+     **********************************************************************/
+    const std::string Interpolation() const
+    { return std::string(_cubic ? "cubic" : "bilinear"); }
+
+    /**
+     * @return estimate of the maximum interpolation and quantization error
+     *   (meters).
+     *
+     * This relies on the value being stored in the data file.  If the value is
+     * absent, return &minus;1.
+     **********************************************************************/
+    Math::real MaxError() const { return _maxerror; }
+
+    /**
+     * @return estimate of the RMS interpolation and quantization error
+     *   (meters).
+     *
+     * This relies on the value being stored in the data file.  If the value is
+     * absent, return &minus;1.
+     **********************************************************************/
+    Math::real RMSError() const { return _rmserror; }
+
+    /**
+     * @return offset (meters).
+     *
+     * This in used in converting from the pixel values in the data file to
+     * geoid heights.
+     **********************************************************************/
+    Math::real Offset() const { return _offset; }
+
+    /**
+     * @return scale (meters).
+     *
+     * This in used in converting from the pixel values in the data file to
+     * geoid heights.
+     **********************************************************************/
+    Math::real Scale() const { return _scale; }
+
+    /**
+     * @return true if the object is constructed to be thread safe.
+     **********************************************************************/
+    bool ThreadSafe() const { return _threadsafe; }
+
+    /**
+     * @return true if a data cache is active.
+     **********************************************************************/
+    bool Cache() const { return _cache; }
+
+    /**
+     * @return west edge of the cached area; the cache includes this edge.
+     **********************************************************************/
+    Math::real CacheWest() const {
+      return _cache ? ((_xoffset + (_xsize == _width ? 0 : _cubic)
+                        + _width/2) % _width - _width/2) / _rlonres :
+        0;
+    }
+
+    /**
+     * @return east edge of the cached area; the cache excludes this edge.
+     **********************************************************************/
+    Math::real CacheEast() const {
+      return  _cache ?
+        CacheWest() +
+        (_xsize - (_xsize == _width ? 0 : 1 + 2 * _cubic)) / _rlonres :
+        0;
+    }
+
+    /**
+     * @return north edge of the cached area; the cache includes this edge.
+     **********************************************************************/
+    Math::real CacheNorth() const {
+      return _cache ? 90 - (_yoffset + _cubic) / _rlatres : 0;
+    }
+
+    /**
+     * @return south edge of the cached area; the cache excludes this edge
+     *   unless it's the south pole.
+     **********************************************************************/
+    Math::real CacheSouth() const {
+      return _cache ? 90 - ( _yoffset + _ysize - 1 - _cubic) / _rlatres : 0;
+    }
+
+    /**
+     * @return \e a the equatorial radius of the WGS84 ellipsoid (meters).
+     *
+     * (The WGS84 value is returned because the supported geoid models are all
+     * based on this ellipsoid.)
+     **********************************************************************/
+    Math::real EquatorialRadius() const
+    { return Constants::WGS84_a(); }
+
+    /**
+     * @return \e f the flattening of the WGS84 ellipsoid.
+     *
+     * (The WGS84 value is returned because the supported geoid models are all
+     * based on this ellipsoid.)
+     **********************************************************************/
+    Math::real Flattening() const { return Constants::WGS84_f(); }
+
+    /**
+     * \deprecated An old name for EquatorialRadius().
+     **********************************************************************/
+    GEOGRAPHICLIB_DEPRECATED("Use EquatorialRadius()")
+    Math::real MajorRadius() const { return EquatorialRadius(); }
+    ///@}
+
+    /**
+     * @return the default path for geoid data files.
+     *
+     * This is the value of the environment variable GEOGRAPHICLIB_GEOID_PATH,
+     * if set; otherwise, it is $GEOGRAPHICLIB_DATA/geoids if the environment
+     * variable GEOGRAPHICLIB_DATA is set; otherwise, it is a compile-time
+     * default (/usr/local/share/GeographicLib/geoids on non-Windows systems
+     * and C:/ProgramData/GeographicLib/geoids on Windows systems).
+     **********************************************************************/
+    static std::string DefaultGeoidPath();
+
+    /**
+     * @return the default name for the geoid.
+     *
+     * This is the value of the environment variable GEOGRAPHICLIB_GEOID_NAME,
+     * if set; otherwise, it is "egm96-5".  The Geoid class does not use this
+     * function; it is just provided as a convenience for a calling program
+     * when constructing a Geoid object.
+     **********************************************************************/
+    static std::string DefaultGeoidName();
+
+  };
+
+} // namespace GeographicLib
+
+#if defined(_MSC_VER)
+#  pragma warning (pop)
+#endif
+
+#endif  // GEOGRAPHICLIB_GEOID_HPP

+ 161 - 0
external/include/GeographicLib/Georef.hpp

@@ -0,0 +1,161 @@
+/**
+ * \file Georef.hpp
+ * \brief Header for GeographicLib::Georef class
+ *
+ * Copyright (c) Charles Karney (2015-2021) <charles@karney.com> and licensed
+ * under the MIT/X11 License.  For more information, see
+ * https://geographiclib.sourceforge.io/
+ **********************************************************************/
+
+#if !defined(GEOGRAPHICLIB_GEOREF_HPP)
+#define GEOGRAPHICLIB_GEOREF_HPP 1
+
+#include <GeographicLib/Constants.hpp>
+
+#if defined(_MSC_VER)
+// Squelch warnings about dll vs string
+#  pragma warning (push)
+#  pragma warning (disable: 4251)
+#endif
+
+namespace GeographicLib {
+
+  /**
+   * \brief Conversions for the World Geographic Reference System (georef)
+   *
+   * The World Geographic Reference System is described in
+   * - https://en.wikipedia.org/wiki/Georef
+   * - https://web.archive.org/web/20161214054445/http://earth-info.nga.mil/GandG/coordsys/grids/georef.pdf
+   * .
+   * It provides a compact string representation of a geographic area
+   * (expressed as latitude and longitude).  The classes GARS and Geohash
+   * implement similar compact representations.
+   *
+   * Example of use:
+   * \include example-Georef.cpp
+   **********************************************************************/
+
+  class GEOGRAPHICLIB_EXPORT Georef {
+  private:
+    typedef Math::real real;
+    static const char* const digits_;
+    static const char* const lontile_;
+    static const char* const lattile_;
+    static const char* const degrees_;
+    enum {
+      tile_ = 15,               // The size of tile in degrees
+      lonorig_ = -180,          // Origin for longitude
+      latorig_ = -90,           // Origin for latitude
+      base_ = 10,               // Base for minutes
+      baselen_ = 4,
+      maxprec_ = 11,            // approximately equivalent to MGRS class
+      maxlen_ = baselen_ + 2 * maxprec_,
+    };
+    Georef();                     // Disable constructor
+
+  public:
+
+    /**
+     * Convert from geographic coordinates to georef.
+     *
+     * @param[in] lat latitude of point (degrees).
+     * @param[in] lon longitude of point (degrees).
+     * @param[in] prec the precision of the resulting georef.
+     * @param[out] georef the georef string.
+     * @exception GeographicErr if \e lat is not in [&minus;90&deg;,
+     *   90&deg;].
+     * @exception std::bad_alloc if memory for \e georef can't be allocated.
+     *
+     * \e prec specifies the precision of \e georef as follows:
+     * - \e prec = &minus;1 (min), 15&deg;
+     * - \e prec = 0, 1&deg;
+     * - \e prec = 1, converted to \e prec = 2
+     * - \e prec = 2, 1'
+     * - \e prec = 3, 0.1'
+     * - \e prec = 4, 0.01'
+     * - \e prec = 5, 0.001'
+     * - &hellip;
+     * - \e prec = 11 (max), 10<sup>&minus;9</sup>'
+     *
+     * If \e lat or \e lon is NaN, then \e georef is set to "INVALID".
+     **********************************************************************/
+    static void Forward(real lat, real lon, int prec, std::string& georef);
+
+    /**
+     * Convert from Georef to geographic coordinates.
+     *
+     * @param[in] georef the Georef.
+     * @param[out] lat latitude of point (degrees).
+     * @param[out] lon longitude of point (degrees).
+     * @param[out] prec the precision of \e georef.
+     * @param[in] centerp if true (the default) return the center
+     *   \e georef, otherwise return the south-west corner.
+     * @exception GeographicErr if \e georef is illegal.
+     *
+     * The case of the letters in \e georef is ignored.  \e prec is in the
+     * range [&minus;1, 11] and gives the precision of \e georef as follows:
+     * - \e prec = &minus;1 (min), 15&deg;
+     * - \e prec = 0, 1&deg;
+     * - \e prec = 1, not returned
+     * - \e prec = 2, 1'
+     * - \e prec = 3, 0.1'
+     * - \e prec = 4, 0.01'
+     * - \e prec = 5, 0.001'
+     * - &hellip;
+     * - \e prec = 11 (max), 10<sup>&minus;9</sup>'
+     *
+     * If the first 3 characters of \e georef are "INV", then \e lat and \e lon
+     * are set to NaN and \e prec is unchanged.
+     **********************************************************************/
+    static void Reverse(const std::string& georef, real& lat, real& lon,
+                        int& prec, bool centerp = true);
+
+    /**
+     * The angular resolution of a Georef.
+     *
+     * @param[in] prec the precision of the Georef.
+     * @return the latitude-longitude resolution (degrees).
+     *
+     * Internally, \e prec is first put in the range [&minus;1, 11].
+     **********************************************************************/
+    static Math::real Resolution(int prec) {
+      if (prec < 1)
+        return real(prec < 0 ? 15 : 1);
+      else {
+        using std::pow;
+        // Treat prec = 1 as 2.
+        prec = (std::max)(2, (std::min)(int(maxprec_), prec));
+        // Need extra real because, since C++11, pow(float, int) returns double
+        return 1/(60 * real(pow(real(base_), prec - 2)));
+      }
+    }
+
+    /**
+     * The Georef precision required to meet a given geographic resolution.
+     *
+     * @param[in] res the minimum of resolution in latitude and longitude
+     *   (degrees).
+     * @return Georef precision.
+     *
+     * The returned length is in the range [0, 11].
+     **********************************************************************/
+    static int Precision(real res) {
+      using std::abs; res = abs(res);
+      for (int prec = 0; prec < maxprec_; ++prec) {
+        if (prec == 1)
+          continue;
+        if (Resolution(prec) <= res)
+          return prec;
+      }
+      return maxprec_;
+    }
+
+  };
+
+} // namespace GeographicLib
+
+#if defined(_MSC_VER)
+#  pragma warning (pop)
+#endif
+
+#endif  // GEOGRAPHICLIB_GEOREF_HPP

+ 221 - 0
external/include/GeographicLib/Gnomonic.hpp

@@ -0,0 +1,221 @@
+/**
+ * \file Gnomonic.hpp
+ * \brief Header for GeographicLib::Gnomonic class
+ *
+ * Copyright (c) Charles Karney (2010-2020) <charles@karney.com> and licensed
+ * under the MIT/X11 License.  For more information, see
+ * https://geographiclib.sourceforge.io/
+ **********************************************************************/
+
+#if !defined(GEOGRAPHICLIB_GNOMONIC_HPP)
+#define GEOGRAPHICLIB_GNOMONIC_HPP 1
+
+#include <GeographicLib/Geodesic.hpp>
+#include <GeographicLib/GeodesicLine.hpp>
+#include <GeographicLib/Constants.hpp>
+
+namespace GeographicLib {
+
+  /**
+   * \brief %Gnomonic projection
+   *
+   * %Gnomonic projection centered at an arbitrary position \e C on the
+   * ellipsoid.  This projection is derived in Section 8 of
+   * - C. F. F. Karney,
+   *   <a href="https://doi.org/10.1007/s00190-012-0578-z">
+   *   Algorithms for geodesics</a>,
+   *   J. Geodesy <b>87</b>, 43--55 (2013);
+   *   DOI: <a href="https://doi.org/10.1007/s00190-012-0578-z">
+   *   10.1007/s00190-012-0578-z</a>;
+   *   addenda:
+   *   <a href="https://geographiclib.sourceforge.io/geod-addenda.html">
+   *   geod-addenda.html</a>.
+   * .
+   * The projection of \e P is defined as follows: compute the geodesic line
+   * from \e C to \e P; compute the reduced length \e m12, geodesic scale \e
+   * M12, and &rho; = <i>m12</i>/\e M12; finally \e x = &rho; sin \e azi1; \e
+   * y = &rho; cos \e azi1, where \e azi1 is the azimuth of the geodesic at \e
+   * C.  The Gnomonic::Forward and Gnomonic::Reverse methods also return the
+   * azimuth \e azi of the geodesic at \e P and reciprocal scale \e rk in the
+   * azimuthal direction.  The scale in the radial direction if
+   * 1/<i>rk</i><sup>2</sup>.
+   *
+   * For a sphere, &rho; is reduces to \e a tan(<i>s12</i>/<i>a</i>), where \e
+   * s12 is the length of the geodesic from \e C to \e P, and the gnomonic
+   * projection has the property that all geodesics appear as straight lines.
+   * For an ellipsoid, this property holds only for geodesics interesting the
+   * centers.  However geodesic segments close to the center are approximately
+   * straight.
+   *
+   * Consider a geodesic segment of length \e l.  Let \e T be the point on the
+   * geodesic (extended if necessary) closest to \e C the center of the
+   * projection and \e t be the distance \e CT.  To lowest order, the maximum
+   * deviation (as a true distance) of the corresponding gnomonic line segment
+   * (i.e., with the same end points) from the geodesic is<br>
+   * <br>
+   * (<i>K</i>(<i>T</i>) - <i>K</i>(<i>C</i>))
+   * <i>l</i><sup>2</sup> \e t / 32.<br>
+   * <br>
+   * where \e K is the Gaussian curvature.
+   *
+   * This result applies for any surface.  For an ellipsoid of revolution,
+   * consider all geodesics whose end points are within a distance \e r of \e
+   * C.  For a given \e r, the deviation is maximum when the latitude of \e C
+   * is 45&deg;, when endpoints are a distance \e r away, and when their
+   * azimuths from the center are &plusmn; 45&deg; or &plusmn; 135&deg;.
+   * To lowest order in \e r and the flattening \e f, the deviation is \e f
+   * (<i>r</i>/2<i>a</i>)<sup>3</sup> \e r.
+   *
+   * The conversions all take place using a Geodesic object (by default
+   * Geodesic::WGS84()).  For more information on geodesics see \ref geodesic.
+   *
+   * \warning The definition of this projection for a sphere is
+   * standard.  However, there is no standard for how it should be extended to
+   * an ellipsoid.  The choices are:
+   * - Declare that the projection is undefined for an ellipsoid.
+   * - Project to a tangent plane from the center of the ellipsoid.  This
+   *   causes great ellipses to appear as straight lines in the projection;
+   *   i.e., it generalizes the spherical great circle to a great ellipse.
+   *   This was proposed by independently by Bowring and Williams in 1997.
+   * - Project to the conformal sphere with the constant of integration chosen
+   *   so that the values of the latitude match for the center point and
+   *   perform a central projection onto the plane tangent to the conformal
+   *   sphere at the center point.  This causes normal sections through the
+   *   center point to appear as straight lines in the projection; i.e., it
+   *   generalizes the spherical great circle to a normal section.  This was
+   *   proposed by I. G. Letoval'tsev, Generalization of the gnomonic
+   *   projection for a spheroid and the principal geodetic problems involved
+   *   in the alignment of surface routes, Geodesy and Aerophotography (5),
+   *   271--274 (1963).
+   * - The projection given here.  This causes geodesics close to the center
+   *   point to appear as straight lines in the projection; i.e., it
+   *   generalizes the spherical great circle to a geodesic.
+   *
+   * Example of use:
+   * \include example-Gnomonic.cpp
+   *
+   * <a href="GeodesicProj.1.html">GeodesicProj</a> is a command-line utility
+   * providing access to the functionality of AzimuthalEquidistant, Gnomonic,
+   * and CassiniSoldner.
+   **********************************************************************/
+
+  class GEOGRAPHICLIB_EXPORT Gnomonic {
+  private:
+    typedef Math::real real;
+    real eps0_, eps_;
+    Geodesic _earth;
+    real _a, _f;
+    // numit_ increased from 10 to 20 to fix convergence failure with high
+    // precision (e.g., GEOGRAPHICLIB_DIGITS=2000) calculations.  Reverse uses
+    // Newton's method which converges quadratically and so numit_ = 10 would
+    // normally be big enough.  However, since the Geodesic class is based on a
+    // series it is of limited accuracy; in particular, the derivative rules
+    // used by Reverse only hold approximately.  Consequently, after a few
+    // iterations, the convergence in the Reverse falls back to improvements in
+    // each step by a constant (albeit small) factor.
+    static const int numit_ = 20;
+  public:
+
+    /**
+     * Constructor for Gnomonic.
+     *
+     * @param[in] earth the Geodesic object to use for geodesic calculations.
+     *   By default this uses the WGS84 ellipsoid.
+     **********************************************************************/
+    explicit Gnomonic(const Geodesic& earth = Geodesic::WGS84());
+
+    /**
+     * Forward projection, from geographic to gnomonic.
+     *
+     * @param[in] lat0 latitude of center point of projection (degrees).
+     * @param[in] lon0 longitude of center point of projection (degrees).
+     * @param[in] lat latitude of point (degrees).
+     * @param[in] lon longitude of point (degrees).
+     * @param[out] x easting of point (meters).
+     * @param[out] y northing of point (meters).
+     * @param[out] azi azimuth of geodesic at point (degrees).
+     * @param[out] rk reciprocal of azimuthal scale at point.
+     *
+     * \e lat0 and \e lat should be in the range [&minus;90&deg;, 90&deg;].
+     * The scale of the projection is 1/<i>rk</i><sup>2</sup> in the "radial"
+     * direction, \e azi clockwise from true north, and is 1/\e rk in the
+     * direction perpendicular to this.  If the point lies "over the horizon",
+     * i.e., if \e rk &le; 0, then NaNs are returned for \e x and \e y (the
+     * correct values are returned for \e azi and \e rk).  A call to Forward
+     * followed by a call to Reverse will return the original (\e lat, \e lon)
+     * (to within roundoff) provided the point in not over the horizon.
+     **********************************************************************/
+    void Forward(real lat0, real lon0, real lat, real lon,
+                 real& x, real& y, real& azi, real& rk) const;
+
+    /**
+     * Reverse projection, from gnomonic to geographic.
+     *
+     * @param[in] lat0 latitude of center point of projection (degrees).
+     * @param[in] lon0 longitude of center point of projection (degrees).
+     * @param[in] x easting of point (meters).
+     * @param[in] y northing of point (meters).
+     * @param[out] lat latitude of point (degrees).
+     * @param[out] lon longitude of point (degrees).
+     * @param[out] azi azimuth of geodesic at point (degrees).
+     * @param[out] rk reciprocal of azimuthal scale at point.
+     *
+     * \e lat0 should be in the range [&minus;90&deg;, 90&deg;].  \e lat will
+     * be in the range [&minus;90&deg;, 90&deg;] and \e lon will be in the
+     * range [&minus;180&deg;, 180&deg;].  The scale of the projection is
+     * 1/<i>rk</i><sup>2</sup> in the "radial" direction, \e azi clockwise from
+     * true north, and is 1/\e rk in the direction perpendicular to this.  Even
+     * though all inputs should return a valid \e lat and \e lon, it's possible
+     * that the procedure fails to converge for very large \e x or \e y; in
+     * this case NaNs are returned for all the output arguments.  A call to
+     * Reverse followed by a call to Forward will return the original (\e x, \e
+     * y) (to roundoff).
+     **********************************************************************/
+    void Reverse(real lat0, real lon0, real x, real y,
+                 real& lat, real& lon, real& azi, real& rk) const;
+
+    /**
+     * Gnomonic::Forward without returning the azimuth and scale.
+     **********************************************************************/
+    void Forward(real lat0, real lon0, real lat, real lon,
+                 real& x, real& y) const {
+      real azi, rk;
+      Forward(lat0, lon0, lat, lon, x, y, azi, rk);
+    }
+
+    /**
+     * Gnomonic::Reverse without returning the azimuth and scale.
+     **********************************************************************/
+    void Reverse(real lat0, real lon0, real x, real y,
+                 real& lat, real& lon) const {
+      real azi, rk;
+      Reverse(lat0, lon0, x, y, lat, lon, azi, rk);
+    }
+
+    /** \name Inspector functions
+     **********************************************************************/
+    ///@{
+    /**
+     * @return \e a the equatorial radius of the ellipsoid (meters).  This is
+     *   the value inherited from the Geodesic object used in the constructor.
+     **********************************************************************/
+    Math::real EquatorialRadius() const { return _earth.EquatorialRadius(); }
+
+    /**
+     * @return \e f the flattening of the ellipsoid.  This is the value
+     *   inherited from the Geodesic object used in the constructor.
+     **********************************************************************/
+    Math::real Flattening() const { return _earth.Flattening(); }
+
+    /**
+     * \deprecated An old name for EquatorialRadius().
+     **********************************************************************/
+    GEOGRAPHICLIB_DEPRECATED("Use EquatorialRadius()")
+    Math::real MajorRadius() const { return EquatorialRadius(); }
+    ///@}
+
+  };
+
+} // namespace GeographicLib
+
+#endif  // GEOGRAPHICLIB_GNOMONIC_HPP

+ 287 - 0
external/include/GeographicLib/GravityCircle.hpp

@@ -0,0 +1,287 @@
+/**
+ * \file GravityCircle.hpp
+ * \brief Header for GeographicLib::GravityCircle class
+ *
+ * Copyright (c) Charles Karney (2011-2020) <charles@karney.com> and licensed
+ * under the MIT/X11 License.  For more information, see
+ * https://geographiclib.sourceforge.io/
+ **********************************************************************/
+
+#if !defined(GEOGRAPHICLIB_GRAVITYCIRCLE_HPP)
+#define GEOGRAPHICLIB_GRAVITYCIRCLE_HPP 1
+
+#include <vector>
+#include <GeographicLib/Constants.hpp>
+#include <GeographicLib/CircularEngine.hpp>
+#include <GeographicLib/GravityModel.hpp>
+
+namespace GeographicLib {
+
+  /**
+   * \brief Gravity on a circle of latitude
+   *
+   * Evaluate the earth's gravity field on a circle of constant height and
+   * latitude.  This uses a CircularEngine to pre-evaluate the inner sum of the
+   * spherical harmonic sum, allowing the values of the field at several
+   * different longitudes to be evaluated rapidly.
+   *
+   * Use GravityModel::Circle to create a GravityCircle object.  (The
+   * constructor for this class is private.)
+   *
+   * See \ref gravityparallel for an example of using GravityCircle (together
+   * with OpenMP) to speed up the computation of geoid heights.
+   *
+   * Example of use:
+   * \include example-GravityCircle.cpp
+   *
+   * <a href="Gravity.1.html">Gravity</a> is a command-line utility providing
+   * access to the functionality of GravityModel and GravityCircle.
+   **********************************************************************/
+
+  class GEOGRAPHICLIB_EXPORT GravityCircle {
+  private:
+    typedef Math::real real;
+    enum mask {
+      NONE                 = GravityModel::NONE,
+      GRAVITY              = GravityModel::GRAVITY,
+      DISTURBANCE          = GravityModel::DISTURBANCE,
+      DISTURBING_POTENTIAL = GravityModel::DISTURBING_POTENTIAL,
+      GEOID_HEIGHT         = GravityModel::GEOID_HEIGHT,
+      SPHERICAL_ANOMALY    = GravityModel::SPHERICAL_ANOMALY,
+      ALL                  = GravityModel::ALL,
+    };
+
+    unsigned _caps;
+    real _a, _f, _lat, _h, _Z, _Px, _invR, _cpsi, _spsi,
+      _cphi, _sphi, _amodel, _GMmodel, _dzonal0,
+      _corrmult, _gamma0, _gamma, _frot;
+    CircularEngine _gravitational, _disturbing, _correction;
+
+    GravityCircle(mask caps, real a, real f, real lat, real h,
+                  real Z, real P, real cphi, real sphi,
+                  real amodel, real GMmodel,
+                  real dzonal0, real corrmult,
+                  real gamma0, real gamma, real frot,
+                  const CircularEngine& gravitational,
+                  const CircularEngine& disturbing,
+                  const CircularEngine& correction);
+
+    friend class GravityModel; // GravityModel calls the private constructor
+    Math::real W(real slam, real clam,
+                 real& gX, real& gY, real& gZ) const;
+    Math::real V(real slam, real clam,
+                 real& gX, real& gY, real& gZ) const;
+    Math::real InternalT(real slam, real clam,
+                         real& deltaX, real& deltaY, real& deltaZ,
+                         bool gradp, bool correct) const;
+  public:
+    /**
+     * A default constructor for the normal gravity.  This sets up an
+     * uninitialized object which can be later replaced by the
+     * GravityModel::Circle.
+     **********************************************************************/
+    GravityCircle() : _a(-1) {}
+
+    /** \name Compute the gravitational field
+     **********************************************************************/
+    ///@{
+    /**
+     * Evaluate the gravity.
+     *
+     * @param[in] lon the geographic longitude (degrees).
+     * @param[out] gx the easterly component of the acceleration
+     *   (m s<sup>&minus;2</sup>).
+     * @param[out] gy the northerly component of the acceleration
+     *   (m s<sup>&minus;2</sup>).
+     * @param[out] gz the upward component of the acceleration
+     *   (m s<sup>&minus;2</sup>); this is usually negative.
+     * @return \e W the sum of the gravitational and centrifugal potentials
+     *   (m<sup>2</sup> s<sup>&minus;2</sup>).
+     *
+     * The function includes the effects of the earth's rotation.
+     **********************************************************************/
+    Math::real Gravity(real lon, real& gx, real& gy, real& gz) const;
+
+    /**
+     * Evaluate the gravity disturbance vector.
+     *
+     * @param[in] lon the geographic longitude (degrees).
+     * @param[out] deltax the easterly component of the disturbance vector
+     *   (m s<sup>&minus;2</sup>).
+     * @param[out] deltay the northerly component of the disturbance vector
+     *   (m s<sup>&minus;2</sup>).
+     * @param[out] deltaz the upward component of the disturbance vector
+     *   (m s<sup>&minus;2</sup>).
+     * @return \e T the corresponding disturbing potential
+     *   (m<sup>2</sup> s<sup>&minus;2</sup>).
+     **********************************************************************/
+    Math::real Disturbance(real lon, real& deltax, real& deltay, real& deltaz)
+      const;
+
+    /**
+     * Evaluate the geoid height.
+     *
+     * @param[in] lon the geographic longitude (degrees).
+     * @return \e N the height of the geoid above the reference ellipsoid
+     *   (meters).
+     *
+     * Some approximations are made in computing the geoid height so that the
+     * results of the NGA codes are reproduced accurately.  Details are given
+     * in \ref gravitygeoid.
+     **********************************************************************/
+    Math::real GeoidHeight(real lon) const;
+
+    /**
+     * Evaluate the components of the gravity anomaly vector using the
+     * spherical approximation.
+     *
+     * @param[in] lon the geographic longitude (degrees).
+     * @param[out] Dg01 the gravity anomaly (m s<sup>&minus;2</sup>).
+     * @param[out] xi the northerly component of the deflection of the vertical
+     *  (degrees).
+     * @param[out] eta the easterly component of the deflection of the vertical
+     *  (degrees).
+     *
+     * The spherical approximation (see Heiskanen and Moritz, Sec 2-14) is used
+     * so that the results of the NGA codes are reproduced accurately.
+     * approximations used here.  Details are given in \ref gravitygeoid.
+     **********************************************************************/
+    void SphericalAnomaly(real lon, real& Dg01, real& xi, real& eta)
+      const;
+
+    /**
+     * Evaluate the components of the acceleration due to gravity and the
+     * centrifugal acceleration in geocentric coordinates.
+     *
+     * @param[in] lon the geographic longitude (degrees).
+     * @param[out] gX the \e X component of the acceleration
+     *   (m s<sup>&minus;2</sup>).
+     * @param[out] gY the \e Y component of the acceleration
+     *   (m s<sup>&minus;2</sup>).
+     * @param[out] gZ the \e Z component of the acceleration
+     *   (m s<sup>&minus;2</sup>).
+     * @return \e W = \e V + &Phi; the sum of the gravitational and
+     *   centrifugal potentials (m<sup>2</sup> s<sup>&minus;2</sup>).
+     **********************************************************************/
+    Math::real W(real lon, real& gX, real& gY, real& gZ) const {
+      real slam, clam;
+      Math::sincosd(lon, slam, clam);
+      return W(slam, clam, gX, gY, gZ);
+    }
+
+    /**
+     * Evaluate the components of the acceleration due to gravity in geocentric
+     * coordinates.
+     *
+     * @param[in] lon the geographic longitude (degrees).
+     * @param[out] GX the \e X component of the acceleration
+     *   (m s<sup>&minus;2</sup>).
+     * @param[out] GY the \e Y component of the acceleration
+     *   (m s<sup>&minus;2</sup>).
+     * @param[out] GZ the \e Z component of the acceleration
+     *   (m s<sup>&minus;2</sup>).
+     * @return \e V = \e W - &Phi; the gravitational potential
+     *   (m<sup>2</sup> s<sup>&minus;2</sup>).
+     **********************************************************************/
+    Math::real V(real lon, real& GX, real& GY, real& GZ) const {
+      real slam, clam;
+      Math::sincosd(lon, slam, clam);
+      return V(slam, clam, GX, GY, GZ);
+    }
+
+    /**
+     * Evaluate the components of the gravity disturbance in geocentric
+     * coordinates.
+     *
+     * @param[in] lon the geographic longitude (degrees).
+     * @param[out] deltaX the \e X component of the gravity disturbance
+     *   (m s<sup>&minus;2</sup>).
+     * @param[out] deltaY the \e Y component of the gravity disturbance
+     *   (m s<sup>&minus;2</sup>).
+     * @param[out] deltaZ the \e Z component of the gravity disturbance
+     *   (m s<sup>&minus;2</sup>).
+     * @return \e T = \e W - \e U the disturbing potential (also called the
+     *   anomalous potential) (m<sup>2</sup> s<sup>&minus;2</sup>).
+     **********************************************************************/
+    Math::real T(real lon, real& deltaX, real& deltaY, real& deltaZ)
+      const {
+      real slam, clam;
+      Math::sincosd(lon, slam, clam);
+      return InternalT(slam, clam, deltaX, deltaY, deltaZ, true, true);
+    }
+
+    /**
+     * Evaluate disturbing potential in geocentric coordinates.
+     *
+     * @param[in] lon the geographic longitude (degrees).
+     * @return \e T = \e W - \e U the disturbing potential (also called the
+     *   anomalous potential) (m<sup>2</sup> s<sup>&minus;2</sup>).
+     **********************************************************************/
+    Math::real T(real lon) const {
+      real slam, clam, dummy;
+      Math::sincosd(lon, slam, clam);
+      return InternalT(slam, clam, dummy, dummy, dummy, false, true);
+    }
+
+    ///@}
+
+    /** \name Inspector functions
+     **********************************************************************/
+    ///@{
+    /**
+     * @return true if the object has been initialized.
+     **********************************************************************/
+    bool Init() const { return _a > 0; }
+
+    /**
+     * @return \e a the equatorial radius of the ellipsoid (meters).  This is
+     *   the value inherited from the GravityModel object used in the
+     *   constructor.
+     **********************************************************************/
+    Math::real EquatorialRadius() const
+    { return Init() ? _a : Math::NaN(); }
+
+    /**
+     * @return \e f the flattening of the ellipsoid.  This is the value
+     *   inherited from the GravityModel object used in the constructor.
+     **********************************************************************/
+    Math::real Flattening() const
+    { return Init() ? _f : Math::NaN(); }
+
+    /**
+     * @return the latitude of the circle (degrees).
+     **********************************************************************/
+    Math::real Latitude() const
+    { return Init() ? _lat : Math::NaN(); }
+
+    /**
+     * @return the height of the circle (meters).
+     **********************************************************************/
+    Math::real Height() const
+    { return Init() ? _h : Math::NaN(); }
+
+    /**
+     * @return \e caps the computational capabilities that this object was
+     *   constructed with.
+     **********************************************************************/
+    unsigned Capabilities() const { return _caps; }
+
+    /**
+     * @param[in] testcaps a set of bitor'ed GravityModel::mask values.
+     * @return true if the GravityCircle object has all these capabilities.
+     **********************************************************************/
+    bool Capabilities(unsigned testcaps) const {
+      return (_caps & testcaps) == testcaps;
+    }
+
+    /**
+     * \deprecated An old name for EquatorialRadius().
+     **********************************************************************/
+    GEOGRAPHICLIB_DEPRECATED("Use EquatorialRadius()")
+    Math::real MajorRadius() const { return EquatorialRadius(); }
+    ///@}
+  };
+
+} // namespace GeographicLib
+
+#endif  // GEOGRAPHICLIB_GRAVITYCIRCLE_HPP

+ 549 - 0
external/include/GeographicLib/GravityModel.hpp

@@ -0,0 +1,549 @@
+/**
+ * \file GravityModel.hpp
+ * \brief Header for GeographicLib::GravityModel class
+ *
+ * Copyright (c) Charles Karney (2011-2021) <charles@karney.com> and licensed
+ * under the MIT/X11 License.  For more information, see
+ * https://geographiclib.sourceforge.io/
+ **********************************************************************/
+
+#if !defined(GEOGRAPHICLIB_GRAVITYMODEL_HPP)
+#define GEOGRAPHICLIB_GRAVITYMODEL_HPP 1
+
+#include <GeographicLib/Constants.hpp>
+#include <GeographicLib/NormalGravity.hpp>
+#include <GeographicLib/SphericalHarmonic.hpp>
+#include <GeographicLib/SphericalHarmonic1.hpp>
+
+#if defined(_MSC_VER)
+// Squelch warnings about dll vs vector
+#  pragma warning (push)
+#  pragma warning (disable: 4251)
+#endif
+
+namespace GeographicLib {
+
+  class GravityCircle;
+
+  /**
+   * \brief Model of the earth's gravity field
+   *
+   * Evaluate the earth's gravity field according to a model.  The supported
+   * models treat only the gravitational field exterior to the mass of the
+   * earth.  When computing the field at points near (but above) the surface of
+   * the earth a small correction can be applied to account for the mass of the
+   * atmosphere above the point in question; see \ref gravityatmos.
+   * Determining the height of the geoid above the ellipsoid entails correcting
+   * for the mass of the earth above the geoid.  The egm96 and egm2008 include
+   * separate correction terms to account for this mass.
+   *
+   * Definitions and terminology (from Heiskanen and Moritz, Sec 2-13):
+   * - \e V = gravitational potential;
+   * - &Phi; = rotational potential;
+   * - \e W = \e V + &Phi; = \e T + \e U = total potential;
+   * - <i>V</i><sub>0</sub> = normal gravitation potential;
+   * - \e U = <i>V</i><sub>0</sub> + &Phi; = total normal potential;
+   * - \e T = \e W &minus; \e U = \e V &minus; <i>V</i><sub>0</sub> = anomalous
+   *   or disturbing potential;
+   * - <b>g</b> = &nabla;\e W = <b>&gamma;</b> + <b>&delta;</b>;
+   * - <b>f</b> = &nabla;&Phi;;
+   * - <b>&Gamma;</b> = &nabla;<i>V</i><sub>0</sub>;
+   * - <b>&gamma;</b> = &nabla;\e U;
+   * - <b>&delta;</b> = &nabla;\e T = gravity disturbance vector
+   *   = <b>g</b><sub><i>P</i></sub> &minus; <b>&gamma;</b><sub><i>P</i></sub>;
+   * - &delta;\e g = gravity disturbance = <i>g</i><sub><i>P</i></sub> &minus;
+   *   &gamma;<sub><i>P</i></sub>;
+   * - &Delta;<b>g</b> = gravity anomaly vector = <b>g</b><sub><i>P</i></sub>
+   *   &minus; <b>&gamma;</b><sub><i>Q</i></sub>; here the line \e PQ is
+   *   perpendicular to ellipsoid and the potential at \e P equals the normal
+   *   potential at \e Q;
+   * - &Delta;\e g = gravity anomaly = <i>g</i><sub><i>P</i></sub> &minus;
+   *   &gamma;<sub><i>Q</i></sub>;
+   * - (&xi;, &eta;) deflection of the vertical, the difference in
+   *   directions of <b>g</b><sub><i>P</i></sub> and
+   *   <b>&gamma;</b><sub><i>Q</i></sub>, &xi; = NS, &eta; = EW.
+   * - \e X, \e Y, \e Z, geocentric coordinates;
+   * - \e x, \e y, \e z, local cartesian coordinates used to denote the east,
+   *   north and up directions.
+   *
+   * See \ref gravity for details of how to install the gravity models and the
+   * data format.
+   *
+   * References:
+   * - W. A. Heiskanen and H. Moritz, Physical Geodesy (Freeman, San
+   *   Francisco, 1967).
+   *
+   * Example of use:
+   * \include example-GravityModel.cpp
+   *
+   * <a href="Gravity.1.html">Gravity</a> is a command-line utility providing
+   * access to the functionality of GravityModel and GravityCircle.
+   **********************************************************************/
+
+  class GEOGRAPHICLIB_EXPORT GravityModel {
+  private:
+    typedef Math::real real;
+    friend class GravityCircle;
+    static const int idlength_ = 8;
+    std::string _name, _dir, _description, _date, _filename, _id;
+    real _amodel, _GMmodel, _zeta0, _corrmult;
+    int _nmx, _mmx;
+    SphericalHarmonic::normalization _norm;
+    NormalGravity _earth;
+    std::vector<real> _Cx, _Sx, _CC, _CS, _zonal;
+    real _dzonal0;              // A left over contribution to _zonal.
+    SphericalHarmonic _gravitational;
+    SphericalHarmonic1 _disturbing;
+    SphericalHarmonic _correction;
+    void ReadMetadata(const std::string& name);
+    Math::real InternalT(real X, real Y, real Z,
+                         real& deltaX, real& deltaY, real& deltaZ,
+                         bool gradp, bool correct) const;
+    GravityModel(const GravityModel&) = delete; // copy constructor not allowed
+    // nor copy assignment
+    GravityModel& operator=(const GravityModel&) = delete;
+
+    enum captype {
+      CAP_NONE   = 0U,
+      CAP_G      = 1U<<0,       // implies potentials W and V
+      CAP_T      = 1U<<1,
+      CAP_DELTA  = 1U<<2 | CAP_T, // delta implies T?
+      CAP_C      = 1U<<3,
+      CAP_GAMMA0 = 1U<<4,
+      CAP_GAMMA  = 1U<<5,
+      CAP_ALL    = 0x3FU,
+    };
+
+  public:
+
+    /**
+     * Bit masks for the capabilities to be given to the GravityCircle object
+     * produced by Circle.
+     **********************************************************************/
+    enum mask {
+      /**
+       * No capabilities.
+       * @hideinitializer
+       **********************************************************************/
+      NONE = 0U,
+      /**
+       * Allow calls to GravityCircle::Gravity, GravityCircle::W, and
+       * GravityCircle::V.
+       * @hideinitializer
+       **********************************************************************/
+      GRAVITY = CAP_G,
+      /**
+       * Allow calls to GravityCircle::Disturbance and GravityCircle::T.
+       * @hideinitializer
+       **********************************************************************/
+      DISTURBANCE = CAP_DELTA,
+      /**
+       * Allow calls to GravityCircle::T(real lon) (i.e., computing the
+       * disturbing potential and not the gravity disturbance vector).
+       * @hideinitializer
+       **********************************************************************/
+      DISTURBING_POTENTIAL = CAP_T,
+      /**
+       * Allow calls to GravityCircle::SphericalAnomaly.
+       * @hideinitializer
+       **********************************************************************/
+      SPHERICAL_ANOMALY = CAP_DELTA | CAP_GAMMA,
+      /**
+       * Allow calls to GravityCircle::GeoidHeight.
+       * @hideinitializer
+       **********************************************************************/
+      GEOID_HEIGHT = CAP_T | CAP_C | CAP_GAMMA0,
+      /**
+       * All capabilities.
+       * @hideinitializer
+       **********************************************************************/
+      ALL = CAP_ALL,
+    };
+    /** \name Setting up the gravity model
+     **********************************************************************/
+    ///@{
+    /**
+     * Construct a gravity model.
+     *
+     * @param[in] name the name of the model.
+     * @param[in] path (optional) directory for data file.
+     * @param[in] Nmax (optional) if non-negative, truncate the degree of the
+     *   model this value.
+     * @param[in] Mmax (optional) if non-negative, truncate the order of the
+     *   model this value.
+     * @exception GeographicErr if the data file cannot be found, is
+     *   unreadable, or is corrupt, or if \e Mmax > \e Nmax.
+     * @exception std::bad_alloc if the memory necessary for storing the model
+     *   can't be allocated.
+     *
+     * A filename is formed by appending ".egm" (World Gravity Model) to the
+     * name.  If \e path is specified (and is non-empty), then the file is
+     * loaded from directory, \e path.  Otherwise the path is given by
+     * DefaultGravityPath().
+     *
+     * This file contains the metadata which specifies the properties of the
+     * model.  The coefficients for the spherical harmonic sums are obtained
+     * from a file obtained by appending ".cof" to metadata file (so the
+     * filename ends in ".egm.cof").
+     *
+     * If \e Nmax &ge; 0 and \e Mmax < 0, then \e Mmax is set to \e Nmax.
+     * After the model is loaded, the maximum degree and order of the model can
+     * be found by the Degree() and Order() methods.
+     **********************************************************************/
+    explicit GravityModel(const std::string& name,
+                          const std::string& path = "",
+                          int Nmax = -1, int Mmax = -1);
+    ///@}
+
+    /** \name Compute gravity in geodetic coordinates
+     **********************************************************************/
+    ///@{
+    /**
+     * Evaluate the gravity at an arbitrary point above (or below) the
+     * ellipsoid.
+     *
+     * @param[in] lat the geographic latitude (degrees).
+     * @param[in] lon the geographic longitude (degrees).
+     * @param[in] h the height above the ellipsoid (meters).
+     * @param[out] gx the easterly component of the acceleration
+     *   (m s<sup>&minus;2</sup>).
+     * @param[out] gy the northerly component of the acceleration
+     *   (m s<sup>&minus;2</sup>).
+     * @param[out] gz the upward component of the acceleration
+     *   (m s<sup>&minus;2</sup>); this is usually negative.
+     * @return \e W the sum of the gravitational and centrifugal potentials
+     *   (m<sup>2</sup> s<sup>&minus;2</sup>).
+     *
+     * The function includes the effects of the earth's rotation.
+     **********************************************************************/
+    Math::real Gravity(real lat, real lon, real h,
+                       real& gx, real& gy, real& gz) const;
+
+    /**
+     * Evaluate the gravity disturbance vector at an arbitrary point above (or
+     * below) the ellipsoid.
+     *
+     * @param[in] lat the geographic latitude (degrees).
+     * @param[in] lon the geographic longitude (degrees).
+     * @param[in] h the height above the ellipsoid (meters).
+     * @param[out] deltax the easterly component of the disturbance vector
+     *   (m s<sup>&minus;2</sup>).
+     * @param[out] deltay the northerly component of the disturbance vector
+     *   (m s<sup>&minus;2</sup>).
+     * @param[out] deltaz the upward component of the disturbance vector
+     *   (m s<sup>&minus;2</sup>).
+     * @return \e T the corresponding disturbing potential
+     *   (m<sup>2</sup> s<sup>&minus;2</sup>).
+     **********************************************************************/
+    Math::real Disturbance(real lat, real lon, real h,
+                           real& deltax, real& deltay, real& deltaz)
+      const;
+
+    /**
+     * Evaluate the geoid height.
+     *
+     * @param[in] lat the geographic latitude (degrees).
+     * @param[in] lon the geographic longitude (degrees).
+     * @return \e N the height of the geoid above the ReferenceEllipsoid()
+     *   (meters).
+     *
+     * This calls NormalGravity::U for ReferenceEllipsoid().  Some
+     * approximations are made in computing the geoid height so that the
+     * results of the NGA codes are reproduced accurately.  Details are given
+     * in \ref gravitygeoid.
+     **********************************************************************/
+    Math::real GeoidHeight(real lat, real lon) const;
+
+    /**
+     * Evaluate the components of the gravity anomaly vector using the
+     * spherical approximation.
+     *
+     * @param[in] lat the geographic latitude (degrees).
+     * @param[in] lon the geographic longitude (degrees).
+     * @param[in] h the height above the ellipsoid (meters).
+     * @param[out] Dg01 the gravity anomaly (m s<sup>&minus;2</sup>).
+     * @param[out] xi the northerly component of the deflection of the vertical
+     *  (degrees).
+     * @param[out] eta the easterly component of the deflection of the vertical
+     *  (degrees).
+     *
+     * The spherical approximation (see Heiskanen and Moritz, Sec 2-14) is used
+     * so that the results of the NGA codes are reproduced accurately.
+     * approximations used here.  Details are given in \ref gravitygeoid.
+     **********************************************************************/
+    void SphericalAnomaly(real lat, real lon, real h,
+                          real& Dg01, real& xi, real& eta) const;
+    ///@}
+
+    /** \name Compute gravity in geocentric coordinates
+     **********************************************************************/
+    ///@{
+    /**
+     * Evaluate the components of the acceleration due to gravity and the
+     * centrifugal acceleration in geocentric coordinates.
+     *
+     * @param[in] X geocentric coordinate of point (meters).
+     * @param[in] Y geocentric coordinate of point (meters).
+     * @param[in] Z geocentric coordinate of point (meters).
+     * @param[out] gX the \e X component of the acceleration
+     *   (m s<sup>&minus;2</sup>).
+     * @param[out] gY the \e Y component of the acceleration
+     *   (m s<sup>&minus;2</sup>).
+     * @param[out] gZ the \e Z component of the acceleration
+     *   (m s<sup>&minus;2</sup>).
+     * @return \e W = \e V + &Phi; the sum of the gravitational and
+     *   centrifugal potentials (m<sup>2</sup> s<sup>&minus;2</sup>).
+     *
+     * This calls NormalGravity::U for ReferenceEllipsoid().
+     **********************************************************************/
+    Math::real W(real X, real Y, real Z,
+                 real& gX, real& gY, real& gZ) const;
+
+    /**
+     * Evaluate the components of the acceleration due to gravity in geocentric
+     * coordinates.
+     *
+     * @param[in] X geocentric coordinate of point (meters).
+     * @param[in] Y geocentric coordinate of point (meters).
+     * @param[in] Z geocentric coordinate of point (meters).
+     * @param[out] GX the \e X component of the acceleration
+     *   (m s<sup>&minus;2</sup>).
+     * @param[out] GY the \e Y component of the acceleration
+     *   (m s<sup>&minus;2</sup>).
+     * @param[out] GZ the \e Z component of the acceleration
+     *   (m s<sup>&minus;2</sup>).
+     * @return \e V = \e W - &Phi; the gravitational potential
+     *   (m<sup>2</sup> s<sup>&minus;2</sup>).
+     **********************************************************************/
+    Math::real V(real X, real Y, real Z,
+                 real& GX, real& GY, real& GZ) const;
+
+    /**
+     * Evaluate the components of the gravity disturbance in geocentric
+     * coordinates.
+     *
+     * @param[in] X geocentric coordinate of point (meters).
+     * @param[in] Y geocentric coordinate of point (meters).
+     * @param[in] Z geocentric coordinate of point (meters).
+     * @param[out] deltaX the \e X component of the gravity disturbance
+     *   (m s<sup>&minus;2</sup>).
+     * @param[out] deltaY the \e Y component of the gravity disturbance
+     *   (m s<sup>&minus;2</sup>).
+     * @param[out] deltaZ the \e Z component of the gravity disturbance
+     *   (m s<sup>&minus;2</sup>).
+     * @return \e T = \e W - \e U the disturbing potential (also called the
+     *   anomalous potential) (m<sup>2</sup> s<sup>&minus;2</sup>).
+     **********************************************************************/
+    Math::real T(real X, real Y, real Z,
+                 real& deltaX, real& deltaY, real& deltaZ) const
+    { return InternalT(X, Y, Z, deltaX, deltaY, deltaZ, true, true); }
+
+    /**
+     * Evaluate disturbing potential in geocentric coordinates.
+     *
+     * @param[in] X geocentric coordinate of point (meters).
+     * @param[in] Y geocentric coordinate of point (meters).
+     * @param[in] Z geocentric coordinate of point (meters).
+     * @return \e T = \e W - \e U the disturbing potential (also called the
+     *   anomalous potential) (m<sup>2</sup> s<sup>&minus;2</sup>).
+     **********************************************************************/
+    Math::real T(real X, real Y, real Z) const {
+      real dummy;
+      return InternalT(X, Y, Z, dummy, dummy, dummy, false, true);
+    }
+
+    /**
+     * Evaluate the components of the acceleration due to normal gravity and
+     * the centrifugal acceleration in geocentric coordinates.
+     *
+     * @param[in] X geocentric coordinate of point (meters).
+     * @param[in] Y geocentric coordinate of point (meters).
+     * @param[in] Z geocentric coordinate of point (meters).
+     * @param[out] gammaX the \e X component of the normal acceleration
+     *   (m s<sup>&minus;2</sup>).
+     * @param[out] gammaY the \e Y component of the normal acceleration
+     *   (m s<sup>&minus;2</sup>).
+     * @param[out] gammaZ the \e Z component of the normal acceleration
+     *   (m s<sup>&minus;2</sup>).
+     * @return \e U = <i>V</i><sub>0</sub> + &Phi; the sum of the
+     *   normal gravitational and centrifugal potentials
+     *   (m<sup>2</sup> s<sup>&minus;2</sup>).
+     *
+     * This calls NormalGravity::U for ReferenceEllipsoid().
+     **********************************************************************/
+    Math::real U(real X, real Y, real Z,
+                 real& gammaX, real& gammaY, real& gammaZ) const
+    { return _earth.U(X, Y, Z, gammaX, gammaY, gammaZ); }
+
+    /**
+     * Evaluate the centrifugal acceleration in geocentric coordinates.
+     *
+     * @param[in] X geocentric coordinate of point (meters).
+     * @param[in] Y geocentric coordinate of point (meters).
+     * @param[out] fX the \e X component of the centrifugal acceleration
+     *   (m s<sup>&minus;2</sup>).
+     * @param[out] fY the \e Y component of the centrifugal acceleration
+     *   (m s<sup>&minus;2</sup>).
+     * @return &Phi; the centrifugal potential (m<sup>2</sup>
+     * s<sup>&minus;2</sup>).
+     *
+     * This calls NormalGravity::Phi for ReferenceEllipsoid().
+     **********************************************************************/
+    Math::real Phi(real X, real Y, real& fX, real& fY) const
+    { return _earth.Phi(X, Y, fX, fY); }
+    ///@}
+
+    /** \name Compute gravity on a circle of constant latitude
+     **********************************************************************/
+    ///@{
+    /**
+     * Create a GravityCircle object to allow the gravity field at many points
+     * with constant \e lat and \e h and varying \e lon to be computed
+     * efficiently.
+     *
+     * @param[in] lat latitude of the point (degrees).
+     * @param[in] h the height of the point above the ellipsoid (meters).
+     * @param[in] caps bitor'ed combination of GravityModel::mask values
+     *   specifying the capabilities of the resulting GravityCircle object.
+     * @exception std::bad_alloc if the memory necessary for creating a
+     *   GravityCircle can't be allocated.
+     * @return a GravityCircle object whose member functions computes the
+     *   gravitational field at a particular values of \e lon.
+     *
+     * The GravityModel::mask values are
+     * - \e caps |= GravityModel::GRAVITY
+     * - \e caps |= GravityModel::DISTURBANCE
+     * - \e caps |= GravityModel::DISTURBING_POTENTIAL
+     * - \e caps |= GravityModel::SPHERICAL_ANOMALY
+     * - \e caps |= GravityModel::GEOID_HEIGHT
+     * .
+     * The default value of \e caps is GravityModel::ALL which turns on all the
+     * capabilities.  If an unsupported function is invoked, it will return
+     * NaNs.  Note that GravityModel::GEOID_HEIGHT will only be honored if \e h
+     * = 0.
+     *
+     * If the field at several points on a circle of latitude need to be
+     * calculated then creating a GravityCircle object and using its member
+     * functions will be substantially faster, especially for high-degree
+     * models.  See \ref gravityparallel for an example of using GravityCircle
+     * (together with OpenMP) to speed up the computation of geoid heights.
+     **********************************************************************/
+    GravityCircle Circle(real lat, real h, unsigned caps = ALL) const;
+    ///@}
+
+    /** \name Inspector functions
+     **********************************************************************/
+    ///@{
+
+    /**
+     * @return the NormalGravity object for the reference ellipsoid.
+     **********************************************************************/
+    const NormalGravity& ReferenceEllipsoid() const { return _earth; }
+
+    /**
+     * @return the description of the gravity model, if available, in the data
+     *   file; if absent, return "NONE".
+     **********************************************************************/
+    const std::string& Description() const { return _description; }
+
+    /**
+     * @return date of the model; if absent, return "UNKNOWN".
+     **********************************************************************/
+    const std::string& DateTime() const { return _date; }
+
+    /**
+     * @return full file name used to load the gravity model.
+     **********************************************************************/
+    const std::string& GravityFile() const { return _filename; }
+
+    /**
+     * @return "name" used to load the gravity model (from the first argument
+     *   of the constructor, but this may be overridden by the model file).
+     **********************************************************************/
+    const std::string& GravityModelName() const { return _name; }
+
+    /**
+     * @return directory used to load the gravity model.
+     **********************************************************************/
+    const std::string& GravityModelDirectory() const { return _dir; }
+
+    /**
+     * @return \e a the equatorial radius of the ellipsoid (meters).
+     **********************************************************************/
+    Math::real EquatorialRadius() const { return _earth.EquatorialRadius(); }
+
+    /**
+     * @return \e GM the mass constant of the model (m<sup>3</sup>
+     *   s<sup>&minus;2</sup>); this is the product of \e G the gravitational
+     *   constant and \e M the mass of the earth (usually including the mass of
+     *   the earth's atmosphere).
+     **********************************************************************/
+    Math::real MassConstant() const { return _GMmodel; }
+
+    /**
+     * @return \e GM the mass constant of the ReferenceEllipsoid()
+     *   (m<sup>3</sup> s<sup>&minus;2</sup>).
+     **********************************************************************/
+    Math::real ReferenceMassConstant() const
+    { return _earth.MassConstant(); }
+
+    /**
+     * @return &omega; the angular velocity of the model and the
+     *   ReferenceEllipsoid() (rad s<sup>&minus;1</sup>).
+     **********************************************************************/
+    Math::real AngularVelocity() const
+    { return _earth.AngularVelocity(); }
+
+    /**
+     * @return \e f the flattening of the ellipsoid.
+     **********************************************************************/
+    Math::real Flattening() const { return _earth.Flattening(); }
+
+    /**
+     * @return \e Nmax the maximum degree of the components of the model.
+     **********************************************************************/
+    int Degree() const { return _nmx; }
+
+    /**
+     * @return \e Mmax the maximum order of the components of the model.
+     **********************************************************************/
+    int Order() const { return _mmx; }
+
+    /**
+     * \deprecated An old name for EquatorialRadius().
+     **********************************************************************/
+    GEOGRAPHICLIB_DEPRECATED("Use EquatorialRadius()")
+    Math::real MajorRadius() const { return EquatorialRadius(); }
+    ///@}
+
+    /**
+     * @return the default path for gravity model data files.
+     *
+     * This is the value of the environment variable
+     * GEOGRAPHICLIB_GRAVITY_PATH, if set; otherwise, it is
+     * $GEOGRAPHICLIB_DATA/gravity if the environment variable
+     * GEOGRAPHICLIB_DATA is set; otherwise, it is a compile-time default
+     * (/usr/local/share/GeographicLib/gravity on non-Windows systems and
+     * C:/ProgramData/GeographicLib/gravity on Windows systems).
+     **********************************************************************/
+    static std::string DefaultGravityPath();
+
+    /**
+     * @return the default name for the gravity model.
+     *
+     * This is the value of the environment variable
+     * GEOGRAPHICLIB_GRAVITY_NAME, if set; otherwise, it is "egm96".  The
+     * GravityModel class does not use this function; it is just provided as a
+     * convenience for a calling program when constructing a GravityModel
+     * object.
+     **********************************************************************/
+    static std::string DefaultGravityName();
+  };
+
+} // namespace GeographicLib
+
+#if defined(_MSC_VER)
+#  pragma warning (pop)
+#endif
+
+#endif  // GEOGRAPHICLIB_GRAVITYMODEL_HPP

+ 330 - 0
external/include/GeographicLib/LambertConformalConic.hpp

@@ -0,0 +1,330 @@
+/**
+ * \file LambertConformalConic.hpp
+ * \brief Header for GeographicLib::LambertConformalConic class
+ *
+ * Copyright (c) Charles Karney (2010-2020) <charles@karney.com> and licensed
+ * under the MIT/X11 License.  For more information, see
+ * https://geographiclib.sourceforge.io/
+ **********************************************************************/
+
+#if !defined(GEOGRAPHICLIB_LAMBERTCONFORMALCONIC_HPP)
+#define GEOGRAPHICLIB_LAMBERTCONFORMALCONIC_HPP 1
+
+#include <GeographicLib/Constants.hpp>
+
+namespace GeographicLib {
+
+  /**
+   * \brief Lambert conformal conic projection
+   *
+   * Implementation taken from the report,
+   * - J. P. Snyder,
+   *   <a href="http://pubs.er.usgs.gov/usgspubs/pp/pp1395"> Map Projections: A
+   *   Working Manual</a>, USGS Professional Paper 1395 (1987),
+   *   pp. 107--109.
+   *
+   * This is a implementation of the equations in Snyder except that divided
+   * differences have been used to transform the expressions into ones which
+   * may be evaluated accurately and that Newton's method is used to invert the
+   * projection.  In this implementation, the projection correctly becomes the
+   * Mercator projection or the polar stereographic projection when the
+   * standard latitude is the equator or a pole.  The accuracy of the
+   * projections is about 10 nm (10 nanometers).
+   *
+   * The ellipsoid parameters, the standard parallels, and the scale on the
+   * standard parallels are set in the constructor.  Internally, the case with
+   * two standard parallels is converted into a single standard parallel, the
+   * latitude of tangency (also the latitude of minimum scale), with a scale
+   * specified on this parallel.  This latitude is also used as the latitude of
+   * origin which is returned by LambertConformalConic::OriginLatitude.  The
+   * scale on the latitude of origin is given by
+   * LambertConformalConic::CentralScale.  The case with two distinct standard
+   * parallels where one is a pole is singular and is disallowed.  The central
+   * meridian (which is a trivial shift of the longitude) is specified as the
+   * \e lon0 argument of the LambertConformalConic::Forward and
+   * LambertConformalConic::Reverse functions.
+   *
+   * This class also returns the meridian convergence \e gamma and scale \e k.
+   * The meridian convergence is the bearing of grid north (the \e y axis)
+   * measured clockwise from true north.
+   *
+   * There is no provision in this
+   * class for specifying a false easting or false northing or a different
+   * latitude of origin.  However these are can be simply included by the
+   * calling function.  For example the Pennsylvania South state coordinate
+   * system (<a href="https://www.spatialreference.org/ref/epsg/3364/">
+   * EPSG:3364</a>) is obtained by:
+   * \include example-LambertConformalConic.cpp
+   *
+   * <a href="ConicProj.1.html">ConicProj</a> is a command-line utility
+   * providing access to the functionality of LambertConformalConic and
+   * AlbersEqualArea.
+   **********************************************************************/
+  class GEOGRAPHICLIB_EXPORT LambertConformalConic {
+  private:
+    typedef Math::real real;
+    real eps_, epsx_, ahypover_;
+    real _a, _f, _fm, _e2, _es;
+    real _sign, _n, _nc, _t0nm1, _scale, _lat0, _k0;
+    real _scbet0, _tchi0, _scchi0, _psi0, _nrho0, _drhomax;
+    static const int numit_ = 5;
+    static real hyp(real x) {
+      using std::hypot;
+      return hypot(real(1), x);
+    }
+    // Divided differences
+    // Definition: Df(x,y) = (f(x)-f(y))/(x-y)
+    // See:
+    //   W. M. Kahan and R. J. Fateman,
+    //   Symbolic computation of divided differences,
+    //   SIGSAM Bull. 33(3), 7-28 (1999)
+    //   https://doi.org/10.1145/334714.334716
+    //   http://www.cs.berkeley.edu/~fateman/papers/divdiff.pdf
+    //
+    // General rules
+    // h(x) = f(g(x)): Dh(x,y) = Df(g(x),g(y))*Dg(x,y)
+    // h(x) = f(x)*g(x):
+    //        Dh(x,y) = Df(x,y)*g(x) + Dg(x,y)*f(y)
+    //                = Df(x,y)*g(y) + Dg(x,y)*f(x)
+    //                = Df(x,y)*(g(x)+g(y))/2 + Dg(x,y)*(f(x)+f(y))/2
+    //
+    // hyp(x) = sqrt(1+x^2): Dhyp(x,y) = (x+y)/(hyp(x)+hyp(y))
+    static real Dhyp(real x, real y, real hx, real hy)
+    // hx = hyp(x)
+    { return (x + y) / (hx + hy); }
+    // sn(x) = x/sqrt(1+x^2): Dsn(x,y) = (x+y)/((sn(x)+sn(y))*(1+x^2)*(1+y^2))
+    static real Dsn(real x, real y, real sx, real sy) {
+      // sx = x/hyp(x)
+      real t = x * y;
+      return t > 0 ? (x + y) * Math::sq( (sx * sy)/t ) / (sx + sy) :
+        (x - y != 0 ? (sx - sy) / (x - y) : 1);
+    }
+    // Dlog1p(x,y) = log1p((x-y)/(1+y))/(x-y)
+    static real Dlog1p(real x, real y) {
+      using std::log1p;
+      real t = x - y; if (t < 0) { t = -t; y = x; }
+      return t != 0 ? log1p(t / (1 + y)) / t : 1 / (1 + x);
+    }
+    // Dexp(x,y) = exp((x+y)/2) * 2*sinh((x-y)/2)/(x-y)
+    static real Dexp(real x, real y) {
+      using std::sinh; using std::exp;
+      real t = (x - y)/2;
+      return (t != 0 ? sinh(t)/t : 1) * exp((x + y)/2);
+    }
+    // Dsinh(x,y) = 2*sinh((x-y)/2)/(x-y) * cosh((x+y)/2)
+    //   cosh((x+y)/2) = (c+sinh(x)*sinh(y)/c)/2
+    //   c=sqrt((1+cosh(x))*(1+cosh(y)))
+    //   cosh((x+y)/2) = sqrt( (sinh(x)*sinh(y) + cosh(x)*cosh(y) + 1)/2 )
+    static real Dsinh(real x, real y, real sx, real sy, real cx, real cy)
+    // sx = sinh(x), cx = cosh(x)
+    {
+      // real t = (x - y)/2, c = sqrt((1 + cx) * (1 + cy));
+      // return (t ? sinh(t)/t : real(1)) * (c + sx * sy / c) /2;
+      using std::sinh; using std::sqrt;
+      real t = (x - y)/2;
+      return (t != 0 ? sinh(t)/t : 1) * sqrt((sx * sy + cx * cy + 1) /2);
+    }
+    // Dasinh(x,y) = asinh((x-y)*(x+y)/(x*sqrt(1+y^2)+y*sqrt(1+x^2)))/(x-y)
+    //             = asinh((x*sqrt(1+y^2)-y*sqrt(1+x^2)))/(x-y)
+    static real Dasinh(real x, real y, real hx, real hy) {
+      // hx = hyp(x)
+      using std::asinh;
+      real t = x - y;
+      return t != 0 ?
+        asinh(x*y > 0 ? t * (x + y) / (x*hy + y*hx) : x*hy - y*hx) / t :
+        1 / hx;
+    }
+    // Deatanhe(x,y) = eatanhe((x-y)/(1-e^2*x*y))/(x-y)
+    real Deatanhe(real x, real y) const {
+      real t = x - y, d = 1 - _e2 * x * y;
+      return t != 0 ? Math::eatanhe(t / d, _es) / t : _e2 / d;
+    }
+    void Init(real sphi1, real cphi1, real sphi2, real cphi2, real k1);
+  public:
+
+    /**
+     * Constructor with a single standard parallel.
+     *
+     * @param[in] a equatorial radius of ellipsoid (meters).
+     * @param[in] f flattening of ellipsoid.  Setting \e f = 0 gives a sphere.
+     *   Negative \e f gives a prolate ellipsoid.
+     * @param[in] stdlat standard parallel (degrees), the circle of tangency.
+     * @param[in] k0 scale on the standard parallel.
+     * @exception GeographicErr if \e a, (1 &minus; \e f) \e a, or \e k0 is
+     *   not positive.
+     * @exception GeographicErr if \e stdlat is not in [&minus;90&deg;,
+     *   90&deg;].
+     **********************************************************************/
+    LambertConformalConic(real a, real f, real stdlat, real k0);
+
+    /**
+     * Constructor with two standard parallels.
+     *
+     * @param[in] a equatorial radius of ellipsoid (meters).
+     * @param[in] f flattening of ellipsoid.  Setting \e f = 0 gives a sphere.
+     *   Negative \e f gives a prolate ellipsoid.
+     * @param[in] stdlat1 first standard parallel (degrees).
+     * @param[in] stdlat2 second standard parallel (degrees).
+     * @param[in] k1 scale on the standard parallels.
+     * @exception GeographicErr if \e a, (1 &minus; \e f) \e a, or \e k1 is
+     *   not positive.
+     * @exception GeographicErr if \e stdlat1 or \e stdlat2 is not in
+     *   [&minus;90&deg;, 90&deg;], or if either \e stdlat1 or \e
+     *   stdlat2 is a pole and \e stdlat1 is not equal \e stdlat2.
+     **********************************************************************/
+    LambertConformalConic(real a, real f, real stdlat1, real stdlat2, real k1);
+
+    /**
+     * Constructor with two standard parallels specified by sines and cosines.
+     *
+     * @param[in] a equatorial radius of ellipsoid (meters).
+     * @param[in] f flattening of ellipsoid.  Setting \e f = 0 gives a sphere.
+     *   Negative \e f gives a prolate ellipsoid.
+     * @param[in] sinlat1 sine of first standard parallel.
+     * @param[in] coslat1 cosine of first standard parallel.
+     * @param[in] sinlat2 sine of second standard parallel.
+     * @param[in] coslat2 cosine of second standard parallel.
+     * @param[in] k1 scale on the standard parallels.
+     * @exception GeographicErr if \e a, (1 &minus; \e f) \e a, or \e k1 is
+     *   not positive.
+     * @exception GeographicErr if \e stdlat1 or \e stdlat2 is not in
+     *   [&minus;90&deg;, 90&deg;], or if either \e stdlat1 or \e
+     *   stdlat2 is a pole and \e stdlat1 is not equal \e stdlat2.
+     *
+     * This allows parallels close to the poles to be specified accurately.
+     * This routine computes the latitude of origin and the scale at this
+     * latitude.  In the case where \e lat1 and \e lat2 are different, the
+     * errors in this routines are as follows: if \e dlat = abs(\e lat2 &minus;
+     * \e lat1) &le; 160&deg; and max(abs(\e lat1), abs(\e lat2)) &le; 90
+     * &minus; min(0.0002, 2.2 &times; 10<sup>&minus;6</sup>(180 &minus; \e
+     * dlat), 6 &times 10<sup>&minus;8</sup> <i>dlat</i><sup>2</sup>) (in
+     * degrees), then the error in the latitude of origin is less than 4.5
+     * &times; 10<sup>&minus;14</sup>d and the relative error in the scale is
+     * less than 7 &times; 10<sup>&minus;15</sup>.
+     **********************************************************************/
+    LambertConformalConic(real a, real f,
+                          real sinlat1, real coslat1,
+                          real sinlat2, real coslat2,
+                          real k1);
+
+    /**
+     * Set the scale for the projection.
+     *
+     * @param[in] lat (degrees).
+     * @param[in] k scale at latitude \e lat (default 1).
+     * @exception GeographicErr \e k is not positive.
+     * @exception GeographicErr if \e lat is not in [&minus;90&deg;,
+     *   90&deg;].
+     **********************************************************************/
+    void SetScale(real lat, real k = real(1));
+
+    /**
+     * Forward projection, from geographic to Lambert conformal conic.
+     *
+     * @param[in] lon0 central meridian longitude (degrees).
+     * @param[in] lat latitude of point (degrees).
+     * @param[in] lon longitude of point (degrees).
+     * @param[out] x easting of point (meters).
+     * @param[out] y northing of point (meters).
+     * @param[out] gamma meridian convergence at point (degrees).
+     * @param[out] k scale of projection at point.
+     *
+     * The latitude origin is given by LambertConformalConic::LatitudeOrigin().
+     * No false easting or northing is added and \e lat should be in the range
+     * [&minus;90&deg;, 90&deg;].  The error in the projection is less than
+     * about 10 nm (10 nanometers), true distance, and the errors in the
+     * meridian convergence and scale are consistent with this.  The values of
+     * \e x and \e y returned for points which project to infinity (i.e., one
+     * or both of the poles) will be large but finite.
+     **********************************************************************/
+    void Forward(real lon0, real lat, real lon,
+                 real& x, real& y, real& gamma, real& k) const;
+
+    /**
+     * Reverse projection, from Lambert conformal conic to geographic.
+     *
+     * @param[in] lon0 central meridian longitude (degrees).
+     * @param[in] x easting of point (meters).
+     * @param[in] y northing of point (meters).
+     * @param[out] lat latitude of point (degrees).
+     * @param[out] lon longitude of point (degrees).
+     * @param[out] gamma meridian convergence at point (degrees).
+     * @param[out] k scale of projection at point.
+     *
+     * The latitude origin is given by LambertConformalConic::LatitudeOrigin().
+     * No false easting or northing is added.  The value of \e lon returned is
+     * in the range [&minus;180&deg;, 180&deg;].  The error in the projection
+     * is less than about 10 nm (10 nanometers), true distance, and the errors
+     * in the meridian convergence and scale are consistent with this.
+     **********************************************************************/
+    void Reverse(real lon0, real x, real y,
+                 real& lat, real& lon, real& gamma, real& k) const;
+
+    /**
+     * LambertConformalConic::Forward without returning the convergence and
+     * scale.
+     **********************************************************************/
+    void Forward(real lon0, real lat, real lon,
+                 real& x, real& y) const {
+      real gamma, k;
+      Forward(lon0, lat, lon, x, y, gamma, k);
+    }
+
+    /**
+     * LambertConformalConic::Reverse without returning the convergence and
+     * scale.
+     **********************************************************************/
+    void Reverse(real lon0, real x, real y,
+                 real& lat, real& lon) const {
+      real gamma, k;
+      Reverse(lon0, x, y, lat, lon, gamma, k);
+    }
+
+    /** \name Inspector functions
+     **********************************************************************/
+    ///@{
+    /**
+     * @return \e a the equatorial radius of the ellipsoid (meters).  This is
+     *   the value used in the constructor.
+     **********************************************************************/
+    Math::real EquatorialRadius() const { return _a; }
+
+    /**
+     * @return \e f the flattening of the ellipsoid.  This is the
+     *   value used in the constructor.
+     **********************************************************************/
+    Math::real Flattening() const { return _f; }
+
+    /**
+     * @return latitude of the origin for the projection (degrees).
+     *
+     * This is the latitude of minimum scale and equals the \e stdlat in the
+     * 1-parallel constructor and lies between \e stdlat1 and \e stdlat2 in the
+     * 2-parallel constructors.
+     **********************************************************************/
+    Math::real OriginLatitude() const { return _lat0; }
+
+    /**
+     * @return central scale for the projection.  This is the scale on the
+     *   latitude of origin.
+     **********************************************************************/
+    Math::real CentralScale() const { return _k0; }
+
+    /**
+     * \deprecated An old name for EquatorialRadius().
+     **********************************************************************/
+    GEOGRAPHICLIB_DEPRECATED("Use EquatorialRadius()")
+    Math::real MajorRadius() const { return EquatorialRadius(); }
+    ///@}
+
+    /**
+     * A global instantiation of LambertConformalConic with the WGS84
+     * ellipsoid, \e stdlat = 0, and \e k0 = 1.  This degenerates to the
+     * Mercator projection.
+     **********************************************************************/
+    static const LambertConformalConic& Mercator();
+  };
+
+} // namespace GeographicLib
+
+#endif  // GEOGRAPHICLIB_LAMBERTCONFORMALCONIC_HPP

+ 244 - 0
external/include/GeographicLib/LocalCartesian.hpp

@@ -0,0 +1,244 @@
+/**
+ * \file LocalCartesian.hpp
+ * \brief Header for GeographicLib::LocalCartesian class
+ *
+ * Copyright (c) Charles Karney (2008-2020) <charles@karney.com> and licensed
+ * under the MIT/X11 License.  For more information, see
+ * https://geographiclib.sourceforge.io/
+ **********************************************************************/
+
+#if !defined(GEOGRAPHICLIB_LOCALCARTESIAN_HPP)
+#define GEOGRAPHICLIB_LOCALCARTESIAN_HPP 1
+
+#include <GeographicLib/Geocentric.hpp>
+#include <GeographicLib/Constants.hpp>
+
+namespace GeographicLib {
+
+  /**
+   * \brief Local cartesian coordinates
+   *
+   * Convert between geodetic coordinates latitude = \e lat, longitude = \e
+   * lon, height = \e h (measured vertically from the surface of the ellipsoid)
+   * to local cartesian coordinates (\e x, \e y, \e z).  The origin of local
+   * cartesian coordinate system is at \e lat = \e lat0, \e lon = \e lon0, \e h
+   * = \e h0. The \e z axis is normal to the ellipsoid; the \e y axis points
+   * due north.  The plane \e z = - \e h0 is tangent to the ellipsoid.
+   *
+   * The conversions all take place via geocentric coordinates using a
+   * Geocentric object (by default Geocentric::WGS84()).
+   *
+   * Example of use:
+   * \include example-LocalCartesian.cpp
+   *
+   * <a href="CartConvert.1.html">CartConvert</a> is a command-line utility
+   * providing access to the functionality of Geocentric and LocalCartesian.
+   **********************************************************************/
+
+  class GEOGRAPHICLIB_EXPORT LocalCartesian {
+  private:
+    typedef Math::real real;
+    static const size_t dim_ = 3;
+    static const size_t dim2_ = dim_ * dim_;
+    Geocentric _earth;
+    real _lat0, _lon0, _h0;
+    real _x0, _y0, _z0, _r[dim2_];
+    void IntForward(real lat, real lon, real h, real& x, real& y, real& z,
+                    real M[dim2_]) const;
+    void IntReverse(real x, real y, real z, real& lat, real& lon, real& h,
+                    real M[dim2_]) const;
+    void MatrixMultiply(real M[dim2_]) const;
+  public:
+
+    /**
+     * Constructor setting the origin.
+     *
+     * @param[in] lat0 latitude at origin (degrees).
+     * @param[in] lon0 longitude at origin (degrees).
+     * @param[in] h0 height above ellipsoid at origin (meters); default 0.
+     * @param[in] earth Geocentric object for the transformation; default
+     *   Geocentric::WGS84().
+     *
+     * \e lat0 should be in the range [&minus;90&deg;, 90&deg;].
+     **********************************************************************/
+    LocalCartesian(real lat0, real lon0, real h0 = 0,
+                   const Geocentric& earth = Geocentric::WGS84())
+      : _earth(earth)
+    { Reset(lat0, lon0, h0); }
+
+    /**
+     * Default constructor.
+     *
+     * @param[in] earth Geocentric object for the transformation; default
+     *   Geocentric::WGS84().
+     *
+     * Sets \e lat0 = 0, \e lon0 = 0, \e h0 = 0.
+     **********************************************************************/
+    explicit LocalCartesian(const Geocentric& earth = Geocentric::WGS84())
+      : _earth(earth)
+    { Reset(real(0), real(0), real(0)); }
+
+    /**
+     * Reset the origin.
+     *
+     * @param[in] lat0 latitude at origin (degrees).
+     * @param[in] lon0 longitude at origin (degrees).
+     * @param[in] h0 height above ellipsoid at origin (meters); default 0.
+     *
+     * \e lat0 should be in the range [&minus;90&deg;, 90&deg;].
+     **********************************************************************/
+    void Reset(real lat0, real lon0, real h0 = 0);
+
+    /**
+     * Convert from geodetic to local cartesian coordinates.
+     *
+     * @param[in] lat latitude of point (degrees).
+     * @param[in] lon longitude of point (degrees).
+     * @param[in] h height of point above the ellipsoid (meters).
+     * @param[out] x local cartesian coordinate (meters).
+     * @param[out] y local cartesian coordinate (meters).
+     * @param[out] z local cartesian coordinate (meters).
+     *
+     * \e lat should be in the range [&minus;90&deg;, 90&deg;].
+     **********************************************************************/
+    void Forward(real lat, real lon, real h, real& x, real& y, real& z)
+      const {
+      IntForward(lat, lon, h, x, y, z, NULL);
+    }
+
+    /**
+     * Convert from geodetic to local cartesian coordinates and return rotation
+     * matrix.
+     *
+     * @param[in] lat latitude of point (degrees).
+     * @param[in] lon longitude of point (degrees).
+     * @param[in] h height of point above the ellipsoid (meters).
+     * @param[out] x local cartesian coordinate (meters).
+     * @param[out] y local cartesian coordinate (meters).
+     * @param[out] z local cartesian coordinate (meters).
+     * @param[out] M if the length of the vector is 9, fill with the rotation
+     *   matrix in row-major order.
+     *
+     * \e lat should be in the range [&minus;90&deg;, 90&deg;].
+     *
+     * Let \e v be a unit vector located at (\e lat, \e lon, \e h).  We can
+     * express \e v as \e column vectors in one of two ways
+     * - in east, north, up coordinates (where the components are relative to a
+     *   local coordinate system at (\e lat, \e lon, \e h)); call this
+     *   representation \e v1.
+     * - in \e x, \e y, \e z coordinates (where the components are relative to
+     *   the local coordinate system at (\e lat0, \e lon0, \e h0)); call this
+     *   representation \e v0.
+     * .
+     * Then we have \e v0 = \e M &sdot; \e v1.
+     **********************************************************************/
+    void Forward(real lat, real lon, real h, real& x, real& y, real& z,
+                 std::vector<real>& M)
+      const  {
+      if (M.end() == M.begin() + dim2_) {
+        real t[dim2_];
+        IntForward(lat, lon, h, x, y, z, t);
+        std::copy(t, t + dim2_, M.begin());
+      } else
+        IntForward(lat, lon, h, x, y, z, NULL);
+    }
+
+    /**
+     * Convert from local cartesian to geodetic coordinates.
+     *
+     * @param[in] x local cartesian coordinate (meters).
+     * @param[in] y local cartesian coordinate (meters).
+     * @param[in] z local cartesian coordinate (meters).
+     * @param[out] lat latitude of point (degrees).
+     * @param[out] lon longitude of point (degrees).
+     * @param[out] h height of point above the ellipsoid (meters).
+     *
+     * In general, there are multiple solutions and the result which minimizes
+     * |<i>h</i> |is returned, i.e., (<i>lat</i>, <i>lon</i>) corresponds to
+     * the closest point on the ellipsoid.  The value of \e lon returned is in
+     * the range [&minus;180&deg;, 180&deg;].
+     **********************************************************************/
+    void Reverse(real x, real y, real z, real& lat, real& lon, real& h)
+      const {
+      IntReverse(x, y, z, lat, lon, h, NULL);
+    }
+
+    /**
+     * Convert from local cartesian to geodetic coordinates and return rotation
+     * matrix.
+     *
+     * @param[in] x local cartesian coordinate (meters).
+     * @param[in] y local cartesian coordinate (meters).
+     * @param[in] z local cartesian coordinate (meters).
+     * @param[out] lat latitude of point (degrees).
+     * @param[out] lon longitude of point (degrees).
+     * @param[out] h height of point above the ellipsoid (meters).
+     * @param[out] M if the length of the vector is 9, fill with the rotation
+     *   matrix in row-major order.
+     *
+     * Let \e v be a unit vector located at (\e lat, \e lon, \e h).  We can
+     * express \e v as \e column vectors in one of two ways
+     * - in east, north, up coordinates (where the components are relative to a
+     *   local coordinate system at (\e lat, \e lon, \e h)); call this
+     *   representation \e v1.
+     * - in \e x, \e y, \e z coordinates (where the components are relative to
+     *   the local coordinate system at (\e lat0, \e lon0, \e h0)); call this
+     *   representation \e v0.
+     * .
+     * Then we have \e v1 = <i>M</i><sup>T</sup> &sdot; \e v0, where
+     * <i>M</i><sup>T</sup> is the transpose of \e M.
+     **********************************************************************/
+    void Reverse(real x, real y, real z, real& lat, real& lon, real& h,
+                 std::vector<real>& M)
+      const {
+      if (M.end() == M.begin() + dim2_) {
+        real t[dim2_];
+        IntReverse(x, y, z, lat, lon, h, t);
+        std::copy(t, t + dim2_, M.begin());
+      } else
+        IntReverse(x, y, z, lat, lon, h, NULL);
+    }
+
+    /** \name Inspector functions
+     **********************************************************************/
+    ///@{
+    /**
+     * @return latitude of the origin (degrees).
+     **********************************************************************/
+    Math::real LatitudeOrigin() const { return _lat0; }
+
+    /**
+     * @return longitude of the origin (degrees).
+     **********************************************************************/
+    Math::real LongitudeOrigin() const { return _lon0; }
+
+    /**
+     * @return height of the origin (meters).
+     **********************************************************************/
+    Math::real HeightOrigin() const { return _h0; }
+
+    /**
+     * @return \e a the equatorial radius of the ellipsoid (meters).  This is
+     *   the value of \e a inherited from the Geocentric object used in the
+     *   constructor.
+     **********************************************************************/
+    Math::real EquatorialRadius() const { return _earth.EquatorialRadius(); }
+
+    /**
+     * @return \e f the flattening of the ellipsoid.  This is the value
+     *   inherited from the Geocentric object used in the constructor.
+     **********************************************************************/
+    Math::real Flattening() const { return _earth.Flattening(); }
+
+    /**
+     * \deprecated An old name for EquatorialRadius().
+     **********************************************************************/
+    GEOGRAPHICLIB_DEPRECATED("Use EquatorialRadius()")
+    Math::real MajorRadius() const { return EquatorialRadius(); }
+    ///@}
+
+  };
+
+} // namespace GeographicLib
+
+#endif  // GEOGRAPHICLIB_LOCALCARTESIAN_HPP

+ 361 - 0
external/include/GeographicLib/MGRS.hpp

@@ -0,0 +1,361 @@
+/**
+ * \file MGRS.hpp
+ * \brief Header for GeographicLib::MGRS class
+ *
+ * Copyright (c) Charles Karney (2008-2020) <charles@karney.com> and licensed
+ * under the MIT/X11 License.  For more information, see
+ * https://geographiclib.sourceforge.io/
+ **********************************************************************/
+
+#if !defined(GEOGRAPHICLIB_MGRS_HPP)
+#define GEOGRAPHICLIB_MGRS_HPP 1
+
+#include <GeographicLib/Constants.hpp>
+#include <GeographicLib/UTMUPS.hpp>
+
+#if defined(_MSC_VER)
+// Squelch warnings about dll vs string
+#  pragma warning (push)
+#  pragma warning (disable: 4251)
+#endif
+
+namespace GeographicLib {
+
+  /**
+   * \brief Convert between UTM/UPS and %MGRS
+   *
+   * MGRS is defined in Chapter 3 of
+   * - J. W. Hager, L. L. Fry, S. S. Jacks, D. R. Hill,
+   *   <a href="https://web.archive.org/web/20161214054445/http://earth-info.nga.mil/GandG/publications/tm8358.1/pdf/TM8358_1.pdf">
+   *   Datums, Ellipsoids, Grids, and Grid Reference Systems</a>,
+   *   Defense Mapping Agency, Technical Manual TM8358.1 (1990).
+   * .
+   * This document has been updated by the two NGA documents
+   * - <a href="https://earth-info.nga.mil/php/download.php?file=coord-grids">
+   *   Universal Grids and Grid Reference Systems</a>,
+   *   NGA.STND.0037 (2014).
+   * - <a href="https://earth-info.nga.mil/php/download.php?file=coord-utmups">
+   *   The Universal Grids and the Transverse Mercator and Polar Stereographic
+   *   Map Projections</a>, NGA.SIG.0012 (2014).
+   *
+   * This implementation has the following properties:
+   * - The conversions are closed, i.e., output from Forward is legal input for
+   *   Reverse and vice versa.  Conversion in both directions preserve the
+   *   UTM/UPS selection and the UTM zone.
+   * - Forward followed by Reverse and vice versa is approximately the
+   *   identity.  (This is affected in predictable ways by errors in
+   *   determining the latitude band and by loss of precision in the MGRS
+   *   coordinates.)
+   * - The trailing digits produced by Forward are consistent as the precision
+   *   is varied.  Specifically, the digits are obtained by operating on the
+   *   easting with &lfloor;10<sup>6</sup> <i>x</i>&rfloor; and extracting the
+   *   required digits from the resulting number (and similarly for the
+   *   northing).
+   * - All MGRS coordinates truncate to legal 100 km blocks.  All MGRS
+   *   coordinates with a legal 100 km block prefix are legal (even though the
+   *   latitude band letter may now belong to a neighboring band).
+   * - The range of UTM/UPS coordinates allowed for conversion to MGRS
+   *   coordinates is the maximum consistent with staying within the letter
+   *   ranges of the MGRS scheme.
+   * - All the transformations are implemented as static methods in the MGRS
+   *   class.
+   *
+   * The <a href="http://www.nga.mil">NGA</a> software package
+   * <a href="https://earth-info.nga.mil/index.php?dir=wgs84&action=wgs84#tab_geotrans">geotrans</a>
+   * also provides conversions to and from MGRS.  Version 3.0 (and earlier)
+   * suffers from some drawbacks:
+   * - Inconsistent rules are used to determine the whether a particular MGRS
+   *   coordinate is legal.  A more systematic approach is taken here.
+   * - The underlying projections are not very accurately implemented.
+   *
+   * Example of use:
+   * \include example-MGRS.cpp
+   **********************************************************************/
+  class GEOGRAPHICLIB_EXPORT MGRS {
+  private:
+    typedef Math::real real;
+    static const char* const hemispheres_;
+    static const char* const utmcols_[3];
+    static const char* const utmrow_;
+    static const char* const upscols_[4];
+    static const char* const upsrows_[2];
+    static const char* const latband_;
+    static const char* const upsband_;
+    static const char* const digits_;
+
+    static const int mineasting_[4];
+    static const int maxeasting_[4];
+    static const int minnorthing_[4];
+    static const int maxnorthing_[4];
+    enum {
+      base_ = 10,
+      // Top-level tiles are 10^5 m = 100 km on a side
+      tilelevel_ = 5,
+      // Period of UTM row letters
+      utmrowperiod_ = 20,
+      // Row letters are shifted by 5 for even zones
+      utmevenrowshift_ = 5,
+      // Maximum precision is um
+      maxprec_ = 5 + 6,
+      // For generating digits at maxprec
+      mult_ = 1000000,
+    };
+    static void CheckCoords(bool utmp, bool& northp, real& x, real& y);
+    static int UTMRow(int iband, int icol, int irow);
+
+    friend class UTMUPS;        // UTMUPS::StandardZone calls LatitudeBand
+    // Return latitude band number [-10, 10) for the given latitude (degrees).
+    // The bands are reckoned in include their southern edges.
+    static int LatitudeBand(real lat) {
+      using std::floor;
+      int ilat = int(floor(lat));
+      return (std::max)(-10, (std::min)(9, (ilat + 80)/8 - 10));
+    }
+    // Return approximate latitude band number [-10, 10) for the given northing
+    // (meters).  With this rule, each 100km tile would have a unique band
+    // letter corresponding to the latitude at the center of the tile.  This
+    // function isn't currently used.
+    static int ApproxLatitudeBand(real y) {
+      // northing at tile center in units of tile = 100km
+      using std::floor; using std::abs;
+      real ya = floor( (std::min)(real(88), abs(y/tile_)) ) +
+        real(0.5);
+      // convert to lat (mult by 90/100) and then to band (divide by 8)
+      // the +1 fine tunes the boundary between bands 3 and 4
+      int b = int(floor( ((ya * 9 + 1) / 10) / 8 ));
+      // For the northern hemisphere we have
+      // band rows  num
+      // N 0   0:8    9
+      // P 1   9:17   9
+      // Q 2  18:26   9
+      // R 3  27:34   8
+      // S 4  35:43   9
+      // T 5  44:52   9
+      // U 6  53:61   9
+      // V 7  62:70   9
+      // W 8  71:79   9
+      // X 9  80:94  15
+      return y >= 0 ? b : -(b + 1);
+    }
+    // UTMUPS access these enums
+    enum {
+      tile_ = 100000,            // Size MGRS blocks
+      minutmcol_ = 1,
+      maxutmcol_ = 9,
+      minutmSrow_ = 10,
+      maxutmSrow_ = 100,         // Also used for UTM S false northing
+      minutmNrow_ = 0,           // Also used for UTM N false northing
+      maxutmNrow_ = 95,
+      minupsSind_ = 8,           // These 4 ind's apply to easting and northing
+      maxupsSind_ = 32,
+      minupsNind_ = 13,
+      maxupsNind_ = 27,
+      upseasting_ = 20,          // Also used for UPS false northing
+      utmeasting_ = 5,           // UTM false easting
+      // Difference between S hemisphere northing and N hemisphere northing
+      utmNshift_ = (maxutmSrow_ - minutmNrow_) * tile_
+    };
+    MGRS();                     // Disable constructor
+
+  public:
+
+    /**
+     * Convert UTM or UPS coordinate to an MGRS coordinate.
+     *
+     * @param[in] zone UTM zone (zero means UPS).
+     * @param[in] northp hemisphere (true means north, false means south).
+     * @param[in] x easting of point (meters).
+     * @param[in] y northing of point (meters).
+     * @param[in] prec precision relative to 100 km.
+     * @param[out] mgrs MGRS string.
+     * @exception GeographicErr if \e zone, \e x, or \e y is outside its
+     *   allowed range.
+     * @exception GeographicErr if the memory for the MGRS string can't be
+     *   allocated.
+     *
+     * \e prec specifies the precision of the MGRS string as follows:
+     * - \e prec = &minus;1 (min), only the grid zone is returned
+     * - \e prec = 0, 100 km
+     * - \e prec = 1, 10 km
+     * - \e prec = 2, 1 km
+     * - \e prec = 3, 100 m
+     * - \e prec = 4, 10 m
+     * - \e prec = 5, 1 m
+     * - \e prec = 6, 0.1 m
+     * - &hellip;
+     * - \e prec = 11 (max), 1 &mu;m
+     *
+     * UTM eastings are allowed to be in the range [100 km, 900 km], northings
+     * are allowed to be in in [0 km, 9500 km] for the northern hemisphere and
+     * in [1000 km, 10000 km] for the southern hemisphere.  (However UTM
+     * northings can be continued across the equator.  So the actual limits on
+     * the northings are [&minus;9000 km, 9500 km] for the "northern"
+     * hemisphere and [1000 km, 19500 km] for the "southern" hemisphere.)
+     *
+     * UPS eastings/northings are allowed to be in the range [1300 km, 2700 km]
+     * in the northern hemisphere and in [800 km, 3200 km] in the southern
+     * hemisphere.
+     *
+     * The ranges are 100 km more restrictive than for the conversion between
+     * geographic coordinates and UTM and UPS given by UTMUPS.  These
+     * restrictions are dictated by the allowed letters in MGRS coordinates.
+     * The choice of 9500 km for the maximum northing for northern hemisphere
+     * and of 1000 km as the minimum northing for southern hemisphere provide
+     * at least 0.5 degree extension into standard UPS zones.  The upper ends
+     * of the ranges for the UPS coordinates is dictated by requiring symmetry
+     * about the meridians 0E and 90E.
+     *
+     * All allowed UTM and UPS coordinates may now be converted to legal MGRS
+     * coordinates with the proviso that eastings and northings on the upper
+     * boundaries are silently reduced by about 4 nm (4 nanometers) to place
+     * them \e within the allowed range.  (This includes reducing a southern
+     * hemisphere northing of 10000 km by 4 nm so that it is placed in latitude
+     * band M.)  The UTM or UPS coordinates are truncated to requested
+     * precision to determine the MGRS coordinate.  Thus in UTM zone 38n, the
+     * square area with easting in [444 km, 445 km) and northing in [3688 km,
+     * 3689 km) maps to MGRS coordinate 38SMB4488 (at \e prec = 2, 1 km),
+     * Khulani Sq., Baghdad.
+     *
+     * The UTM/UPS selection and the UTM zone is preserved in the conversion to
+     * MGRS coordinate.  Thus for \e zone > 0, the MGRS coordinate begins with
+     * the zone number followed by one of [C--M] for the southern
+     * hemisphere and [N--X] for the northern hemisphere.  For \e zone =
+     * 0, the MGRS coordinates begins with one of [AB] for the southern
+     * hemisphere and [XY] for the northern hemisphere.
+     *
+     * The conversion to the MGRS is exact for prec in [0, 5] except that a
+     * neighboring latitude band letter may be given if the point is within 5nm
+     * of a band boundary.  For prec in [6, 11], the conversion is accurate to
+     * roundoff.
+     *
+     * If \e prec = &minus;1, then the "grid zone designation", e.g., 18T, is
+     * returned.  This consists of the UTM zone number (absent for UPS) and the
+     * first letter of the MGRS string which labels the latitude band for UTM
+     * and the hemisphere for UPS.
+     *
+     * If \e x or \e y is NaN or if \e zone is UTMUPS::INVALID, the returned
+     * MGRS string is "INVALID".
+     *
+     * Return the result via a reference argument to avoid the overhead of
+     * allocating a potentially large number of small strings.  If an error is
+     * thrown, then \e mgrs is unchanged.
+     **********************************************************************/
+    static void Forward(int zone, bool northp, real x, real y,
+                        int prec, std::string& mgrs);
+
+    /**
+     * Convert UTM or UPS coordinate to an MGRS coordinate when the latitude is
+     * known.
+     *
+     * @param[in] zone UTM zone (zero means UPS).
+     * @param[in] northp hemisphere (true means north, false means south).
+     * @param[in] x easting of point (meters).
+     * @param[in] y northing of point (meters).
+     * @param[in] lat latitude (degrees).
+     * @param[in] prec precision relative to 100 km.
+     * @param[out] mgrs MGRS string.
+     * @exception GeographicErr if \e zone, \e x, or \e y is outside its
+     *   allowed range.
+     * @exception GeographicErr if \e lat is inconsistent with the given UTM
+     *   coordinates.
+     * @exception std::bad_alloc if the memory for \e mgrs can't be allocated.
+     *
+     * The latitude is ignored for \e zone = 0 (UPS); otherwise the latitude is
+     * used to determine the latitude band and this is checked for consistency
+     * using the same tests as Reverse.
+     **********************************************************************/
+    static void Forward(int zone, bool northp, real x, real y, real lat,
+                        int prec, std::string& mgrs);
+
+    /**
+     * Convert a MGRS coordinate to UTM or UPS coordinates.
+     *
+     * @param[in] mgrs MGRS string.
+     * @param[out] zone UTM zone (zero means UPS).
+     * @param[out] northp hemisphere (true means north, false means south).
+     * @param[out] x easting of point (meters).
+     * @param[out] y northing of point (meters).
+     * @param[out] prec precision relative to 100 km.
+     * @param[in] centerp if true (default), return center of the MGRS square,
+     *   else return SW (lower left) corner.
+     * @exception GeographicErr if \e mgrs is illegal.
+     *
+     * All conversions from MGRS to UTM/UPS are permitted provided the MGRS
+     * coordinate is a possible result of a conversion in the other direction.
+     * (The leading 0 may be dropped from an input MGRS coordinate for UTM
+     * zones 1--9.)  In addition, MGRS coordinates with a neighboring
+     * latitude band letter are permitted provided that some portion of the
+     * 100 km block is within the given latitude band.  Thus
+     * - 38VLS and 38WLS are allowed (latitude 64N intersects the square
+     *   38[VW]LS); but 38VMS is not permitted (all of 38WMS is north of 64N)
+     * - 38MPE and 38NPF are permitted (they straddle the equator); but 38NPE
+     *   and 38MPF are not permitted (the equator does not intersect either
+     *   block).
+     * - Similarly ZAB and YZB are permitted (they straddle the prime
+     *   meridian); but YAB and ZZB are not (the prime meridian does not
+     *   intersect either block).
+     *
+     * The UTM/UPS selection and the UTM zone is preserved in the conversion
+     * from MGRS coordinate.  The conversion is exact for prec in [0, 5].  With
+     * \e centerp = true, the conversion from MGRS to geographic and back is
+     * stable.  This is not assured if \e centerp = false.
+     *
+     * If a "grid zone designation" (for example, 18T or A) is given, then some
+     * suitable (but essentially arbitrary) point within that grid zone is
+     * returned.  The main utility of the conversion is to allow \e zone and \e
+     * northp to be determined.  In this case, the \e centerp parameter is
+     * ignored and \e prec is set to &minus;1.
+     *
+     * If the first 3 characters of \e mgrs are "INV", then \e x and \e y are
+     * set to NaN, \e zone is set to UTMUPS::INVALID, and \e prec is set to
+     * &minus;2.
+     *
+     * If an exception is thrown, then the arguments are unchanged.
+     **********************************************************************/
+    static void Reverse(const std::string& mgrs,
+                        int& zone, bool& northp, real& x, real& y,
+                        int& prec, bool centerp = true);
+
+    /** \name Inspector functions
+     **********************************************************************/
+    ///@{
+    /**
+     * @return \e a the equatorial radius of the WGS84 ellipsoid (meters).
+     *
+     * (The WGS84 value is returned because the UTM and UPS projections are
+     * based on this ellipsoid.)
+     **********************************************************************/
+    static Math::real EquatorialRadius() { return UTMUPS::EquatorialRadius(); }
+
+    /**
+     * @return \e f the flattening of the WGS84 ellipsoid.
+     *
+     * (The WGS84 value is returned because the UTM and UPS projections are
+     * based on this ellipsoid.)
+     **********************************************************************/
+    static Math::real Flattening() { return UTMUPS::Flattening(); }
+
+    /**
+     * \deprecated An old name for EquatorialRadius().
+     **********************************************************************/
+    GEOGRAPHICLIB_DEPRECATED("Use EquatorialRadius()")
+    static Math::real MajorRadius() { return EquatorialRadius(); }
+    ///@}
+
+    /**
+     * Perform some checks on the UTMUPS coordinates on this ellipsoid.  Throw
+     * an error if any of the assumptions made in the MGRS class is not true.
+     * This check needs to be carried out if the ellipsoid parameters (or the
+     * UTM/UPS scales) are ever changed.
+     **********************************************************************/
+    static void Check();
+
+  };
+
+} // namespace GeographicLib
+
+#if defined(_MSC_VER)
+#  pragma warning (pop)
+#endif
+
+#endif  // GEOGRAPHICLIB_MGRS_HPP

+ 204 - 0
external/include/GeographicLib/MagneticCircle.hpp

@@ -0,0 +1,204 @@
+/**
+ * \file MagneticCircle.hpp
+ * \brief Header for GeographicLib::MagneticCircle class
+ *
+ * Copyright (c) Charles Karney (2011-2021) <charles@karney.com> and licensed
+ * under the MIT/X11 License.  For more information, see
+ * https://geographiclib.sourceforge.io/
+ **********************************************************************/
+
+#if !defined(GEOGRAPHICLIB_MAGNETICCIRCLE_HPP)
+#define GEOGRAPHICLIB_MAGNETICCIRCLE_HPP 1
+
+#include <vector>
+#include <GeographicLib/Constants.hpp>
+#include <GeographicLib/CircularEngine.hpp>
+
+namespace GeographicLib {
+
+  /**
+   * \brief Geomagnetic field on a circle of latitude
+   *
+   * Evaluate the earth's magnetic field on a circle of constant height and
+   * latitude.  This uses a CircularEngine to pre-evaluate the inner sum of the
+   * spherical harmonic sum, allowing the values of the field at several
+   * different longitudes to be evaluated rapidly.
+   *
+   * Use MagneticModel::Circle to create a MagneticCircle object.  (The
+   * constructor for this class is private.)
+   *
+   * Example of use:
+   * \include example-MagneticCircle.cpp
+   *
+   * <a href="MagneticField.1.html">MagneticField</a> is a command-line utility
+   * providing access to the functionality of MagneticModel and MagneticCircle.
+   **********************************************************************/
+
+  class GEOGRAPHICLIB_EXPORT MagneticCircle {
+  private:
+    typedef Math::real real;
+
+    real _a, _f, _lat, _h, _t, _cphi, _sphi, _t1, _dt0;
+    bool _interpolate, _constterm;
+    CircularEngine _circ0, _circ1, _circ2;
+
+    MagneticCircle(real a, real f, real lat, real h, real t,
+                   real cphi, real sphi, real t1, real dt0,
+                   bool interpolate,
+                   const CircularEngine& circ0, const CircularEngine& circ1)
+      : _a(a)
+      , _f(f)
+      , _lat(Math::LatFix(lat))
+      , _h(h)
+      , _t(t)
+      , _cphi(cphi)
+      , _sphi(sphi)
+      , _t1(t1)
+      , _dt0(dt0)
+      , _interpolate(interpolate)
+      , _constterm(false)
+      , _circ0(circ0)
+      , _circ1(circ1)
+    {}
+
+    MagneticCircle(real a, real f, real lat, real h, real t,
+                   real cphi, real sphi, real t1, real dt0,
+                   bool interpolate,
+                   const CircularEngine& circ0, const CircularEngine& circ1,
+                   const CircularEngine& circ2)
+      : _a(a)
+      , _f(f)
+      , _lat(lat)
+      , _h(h)
+      , _t(t)
+      , _cphi(cphi)
+      , _sphi(sphi)
+      , _t1(t1)
+      , _dt0(dt0)
+      , _interpolate(interpolate)
+      , _constterm(true)
+      , _circ0(circ0)
+      , _circ1(circ1)
+      , _circ2(circ2)
+    {}
+
+    void Field(real lon, bool diffp,
+               real& Bx, real& By, real& Bz,
+               real& Bxt, real& Byt, real& Bzt) const;
+
+    void FieldGeocentric(real slam, real clam,
+                         real& BX, real& BY, real& BZ,
+                         real& BXt, real& BYt, real& BZt) const;
+
+    friend class MagneticModel; // MagneticModel calls the private constructor
+
+  public:
+
+    /**
+     * A default constructor for the normal gravity.  This sets up an
+     * uninitialized object which can be later replaced by the
+     * MagneticModel::Circle.
+     **********************************************************************/
+    MagneticCircle() : _a(-1) {}
+
+    /** \name Compute the magnetic field
+     **********************************************************************/
+    ///@{
+    /**
+     * Evaluate the components of the geomagnetic field at a particular
+     * longitude.
+     *
+     * @param[in] lon longitude of the point (degrees).
+     * @param[out] Bx the easterly component of the magnetic field (nanotesla).
+     * @param[out] By the northerly component of the magnetic field
+     *   (nanotesla).
+     * @param[out] Bz the vertical (up) component of the magnetic field
+     *   (nanotesla).
+     **********************************************************************/
+    void operator()(real lon, real& Bx, real& By, real& Bz) const {
+      real dummy;
+      Field(lon, false, Bx, By, Bz, dummy, dummy, dummy);
+    }
+
+    /**
+     * Evaluate the components of the geomagnetic field and their time
+     * derivatives at a particular longitude.
+     *
+     * @param[in] lon longitude of the point (degrees).
+     * @param[out] Bx the easterly component of the magnetic field (nanotesla).
+     * @param[out] By the northerly component of the magnetic field
+     *   (nanotesla).
+     * @param[out] Bz the vertical (up) component of the magnetic field
+     *   (nanotesla).
+     * @param[out] Bxt the rate of change of \e Bx (nT/yr).
+     * @param[out] Byt the rate of change of \e By (nT/yr).
+     * @param[out] Bzt the rate of change of \e Bz (nT/yr).
+     **********************************************************************/
+    void operator()(real lon, real& Bx, real& By, real& Bz,
+                    real& Bxt, real& Byt, real& Bzt) const {
+      Field(lon, true, Bx, By, Bz, Bxt, Byt, Bzt);
+    }
+
+    /**
+     * Evaluate the components of the geomagnetic field and their time
+     * derivatives at a particular longitude.
+     *
+     * @param[in] lon longitude of the point (degrees).
+     * @param[out] BX the \e X component of the magnetic field (nT).
+     * @param[out] BY the \e Y component of the magnetic field (nT).
+     * @param[out] BZ the \e Z component of the magnetic field (nT).
+     * @param[out] BXt the rate of change of \e BX (nT/yr).
+     * @param[out] BYt the rate of change of \e BY (nT/yr).
+     * @param[out] BZt the rate of change of \e BZ (nT/yr).
+     **********************************************************************/
+    void FieldGeocentric(real lon, real& BX, real& BY, real& BZ,
+                         real& BXt, real& BYt, real& BZt) const;
+    ///@}
+
+    /** \name Inspector functions
+     **********************************************************************/
+    ///@{
+    /**
+     * @return true if the object has been initialized.
+     **********************************************************************/
+    bool Init() const { return _a > 0; }
+    /**
+     * @return \e a the equatorial radius of the ellipsoid (meters).  This is
+     *   the value inherited from the MagneticModel object used in the
+     *   constructor.
+     **********************************************************************/
+    Math::real EquatorialRadius() const
+    { return Init() ? _a : Math::NaN(); }
+    /**
+     * @return \e f the flattening of the ellipsoid.  This is the value
+     *   inherited from the MagneticModel object used in the constructor.
+     **********************************************************************/
+    Math::real Flattening() const
+    { return Init() ? _f : Math::NaN(); }
+    /**
+     * @return the latitude of the circle (degrees).
+     **********************************************************************/
+    Math::real Latitude() const
+    { return Init() ? _lat : Math::NaN(); }
+    /**
+     * @return the height of the circle (meters).
+     **********************************************************************/
+    Math::real Height() const
+    { return Init() ? _h : Math::NaN(); }
+    /**
+     * @return the time (fractional years).
+     **********************************************************************/
+    Math::real Time() const
+    { return Init() ? _t : Math::NaN(); }
+
+    /**
+     * \deprecated An old name for EquatorialRadius().
+     **********************************************************************/
+    GEOGRAPHICLIB_DEPRECATED("Use EquatorialRadius()")
+    Math::real MajorRadius() const { return EquatorialRadius(); }
+    ///@}
+  };
+
+} // namespace GeographicLib
+
+#endif  // GEOGRAPHICLIB_MAGNETICCIRCLE_HPP

+ 406 - 0
external/include/GeographicLib/MagneticModel.hpp

@@ -0,0 +1,406 @@
+/**
+ * \file MagneticModel.hpp
+ * \brief Header for GeographicLib::MagneticModel class
+ *
+ * Copyright (c) Charles Karney (2011-2021) <charles@karney.com> and licensed
+ * under the MIT/X11 License.  For more information, see
+ * https://geographiclib.sourceforge.io/
+ **********************************************************************/
+
+#if !defined(GEOGRAPHICLIB_MAGNETICMODEL_HPP)
+#define GEOGRAPHICLIB_MAGNETICMODEL_HPP 1
+
+#include <GeographicLib/Constants.hpp>
+#include <GeographicLib/Geocentric.hpp>
+#include <GeographicLib/SphericalHarmonic.hpp>
+
+#if defined(_MSC_VER)
+// Squelch warnings about dll vs vector
+#  pragma warning (push)
+#  pragma warning (disable: 4251)
+#endif
+
+namespace GeographicLib {
+
+  class MagneticCircle;
+
+  /**
+   * \brief Model of the earth's magnetic field
+   *
+   * Evaluate the earth's magnetic field according to a model.  At present only
+   * internal magnetic fields are handled.  These are due to the earth's code
+   * and crust; these vary slowly (over many years).  Excluded are the effects
+   * of currents in the ionosphere and magnetosphere which have daily and
+   * annual variations.
+   *
+   * See \ref magnetic for details of how to install the magnetic models and
+   * the data format.
+   *
+   * See
+   * - General information:
+   *   - http://geomag.org/models/index.html
+   * - WMM2010:
+   *   - https://ngdc.noaa.gov/geomag/WMM/DoDWMM.shtml
+   *   - https://ngdc.noaa.gov/geomag/WMM/data/WMM2010/WMM2010COF.zip
+   * - WMM2015 (deprecated):
+   *   - https://ngdc.noaa.gov/geomag/WMM/DoDWMM.shtml
+   *   - https://ngdc.noaa.gov/geomag/WMM/data/WMM2015/WMM2015COF.zip
+   * - WMM2015V2:
+   *   - https://ngdc.noaa.gov/geomag/WMM/DoDWMM.shtml
+   *   - https://ngdc.noaa.gov/geomag/WMM/data/WMM2015/WMM2015v2COF.zip
+   * - WMM2020:
+   *   - https://ngdc.noaa.gov/geomag/WMM/DoDWMM.shtml
+   *   - https://ngdc.noaa.gov/geomag/WMM/data/WMM2020/WMM2020COF.zip
+   * - IGRF11:
+   *   - https://ngdc.noaa.gov/IAGA/vmod/igrf.html
+   *   - https://ngdc.noaa.gov/IAGA/vmod/igrf11coeffs.txt
+   *   - https://ngdc.noaa.gov/IAGA/vmod/geomag70_linux.tar.gz
+   * - EMM2010:
+   *   - https://ngdc.noaa.gov/geomag/EMM/index.html
+   *   - https://ngdc.noaa.gov/geomag/EMM/data/geomag/EMM2010_Sph_Windows_Linux.zip
+   * - EMM2015:
+   *   - https://ngdc.noaa.gov/geomag/EMM/index.html
+   *   - https://www.ngdc.noaa.gov/geomag/EMM/data/geomag/EMM2015_Sph_Linux.zip
+   * - EMM2017:
+   *   - https://ngdc.noaa.gov/geomag/EMM/index.html
+   *   - https://www.ngdc.noaa.gov/geomag/EMM/data/geomag/EMM2017_Sph_Linux.zip
+   *
+   * Example of use:
+   * \include example-MagneticModel.cpp
+   *
+   * <a href="MagneticField.1.html">MagneticField</a> is a command-line utility
+   * providing access to the functionality of MagneticModel and MagneticCircle.
+   **********************************************************************/
+
+  class GEOGRAPHICLIB_EXPORT MagneticModel {
+  private:
+    typedef Math::real real;
+    static const int idlength_ = 8;
+    std::string _name, _dir, _description, _date, _filename, _id;
+    real _t0, _dt0, _tmin, _tmax, _a, _hmin, _hmax;
+    int _Nmodels, _Nconstants, _nmx, _mmx;
+    SphericalHarmonic::normalization _norm;
+    Geocentric _earth;
+    std::vector< std::vector<real> > _G;
+    std::vector< std::vector<real> > _H;
+    std::vector<SphericalHarmonic> _harm;
+    void Field(real t, real lat, real lon, real h, bool diffp,
+               real& Bx, real& By, real& Bz,
+               real& Bxt, real& Byt, real& Bzt) const;
+    void ReadMetadata(const std::string& name);
+    // copy constructor not allowed
+    MagneticModel(const MagneticModel&) = delete;
+    // nor copy assignment
+    MagneticModel& operator=(const MagneticModel&) = delete;
+  public:
+
+    /** \name Setting up the magnetic model
+     **********************************************************************/
+    ///@{
+    /**
+     * Construct a magnetic model.
+     *
+     * @param[in] name the name of the model.
+     * @param[in] path (optional) directory for data file.
+     * @param[in] earth (optional) Geocentric object for converting
+     *   coordinates; default Geocentric::WGS84().
+     * @param[in] Nmax (optional) if non-negative, truncate the degree of the
+     *   model this value.
+     * @param[in] Mmax (optional) if non-negative, truncate the order of the
+     *   model this value.
+     * @exception GeographicErr if the data file cannot be found, is
+     *   unreadable, or is corrupt, or if \e Mmax > \e Nmax.
+     * @exception std::bad_alloc if the memory necessary for storing the model
+     *   can't be allocated.
+     *
+     * A filename is formed by appending ".wmm" (World Magnetic Model) to the
+     * name.  If \e path is specified (and is non-empty), then the file is
+     * loaded from directory, \e path.  Otherwise the path is given by the
+     * DefaultMagneticPath().
+     *
+     * This file contains the metadata which specifies the properties of the
+     * model.  The coefficients for the spherical harmonic sums are obtained
+     * from a file obtained by appending ".cof" to metadata file (so the
+     * filename ends in ".wwm.cof").
+     *
+     * The model is not tied to a particular ellipsoidal model of the earth.
+     * The final earth argument to the constructor specifies an ellipsoid to
+     * allow geodetic coordinates to the transformed into the spherical
+     * coordinates used in the spherical harmonic sum.
+     *
+     * If \e Nmax &ge; 0 and \e Mmax < 0, then \e Mmax is set to \e Nmax.
+     * After the model is loaded, the maximum degree and order of the model can
+     * be found by the Degree() and Order() methods.
+     **********************************************************************/
+    explicit MagneticModel(const std::string& name,
+                           const std::string& path = "",
+                           const Geocentric& earth = Geocentric::WGS84(),
+                           int Nmax = -1, int Mmax = -1);
+    ///@}
+
+    /** \name Compute the magnetic field
+     **********************************************************************/
+    ///@{
+    /**
+     * Evaluate the components of the geomagnetic field.
+     *
+     * @param[in] t the time (years).
+     * @param[in] lat latitude of the point (degrees).
+     * @param[in] lon longitude of the point (degrees).
+     * @param[in] h the height of the point above the ellipsoid (meters).
+     * @param[out] Bx the easterly component of the magnetic field (nanotesla).
+     * @param[out] By the northerly component of the magnetic field
+     *   (nanotesla).
+     * @param[out] Bz the vertical (up) component of the magnetic field
+     *   (nanotesla).
+     **********************************************************************/
+    void operator()(real t, real lat, real lon, real h,
+                    real& Bx, real& By, real& Bz) const {
+      real dummy;
+      Field(t, lat, lon, h, false, Bx, By, Bz, dummy, dummy, dummy);
+    }
+
+    /**
+     * Evaluate the components of the geomagnetic field and their time
+     * derivatives
+     *
+     * @param[in] t the time (years).
+     * @param[in] lat latitude of the point (degrees).
+     * @param[in] lon longitude of the point (degrees).
+     * @param[in] h the height of the point above the ellipsoid (meters).
+     * @param[out] Bx the easterly component of the magnetic field (nanotesla).
+     * @param[out] By the northerly component of the magnetic field
+     *   (nanotesla).
+     * @param[out] Bz the vertical (up) component of the magnetic field
+     *   (nanotesla).
+     * @param[out] Bxt the rate of change of \e Bx (nT/yr).
+     * @param[out] Byt the rate of change of \e By (nT/yr).
+     * @param[out] Bzt the rate of change of \e Bz (nT/yr).
+     **********************************************************************/
+    void operator()(real t, real lat, real lon, real h,
+                    real& Bx, real& By, real& Bz,
+                    real& Bxt, real& Byt, real& Bzt) const {
+      Field(t, lat, lon, h, true, Bx, By, Bz, Bxt, Byt, Bzt);
+    }
+
+    /**
+     * Create a MagneticCircle object to allow the geomagnetic field at many
+     * points with constant \e lat, \e h, and \e t and varying \e lon to be
+     * computed efficiently.
+     *
+     * @param[in] t the time (years).
+     * @param[in] lat latitude of the point (degrees).
+     * @param[in] h the height of the point above the ellipsoid (meters).
+     * @exception std::bad_alloc if the memory necessary for creating a
+     *   MagneticCircle can't be allocated.
+     * @return a MagneticCircle object whose MagneticCircle::operator()(real
+     *   lon) member function computes the field at particular values of \e
+     *   lon.
+     *
+     * If the field at several points on a circle of latitude need to be
+     * calculated then creating a MagneticCircle and using its member functions
+     * will be substantially faster, especially for high-degree models.
+     **********************************************************************/
+    MagneticCircle Circle(real t, real lat, real h) const;
+
+    /**
+     * Compute the magnetic field in geocentric coordinate.
+     *
+     * @param[in] t the time (years).
+     * @param[in] X geocentric coordinate (meters).
+     * @param[in] Y geocentric coordinate (meters).
+     * @param[in] Z geocentric coordinate (meters).
+     * @param[out] BX the \e X component of the magnetic field (nT).
+     * @param[out] BY the \e Y component of the magnetic field (nT).
+     * @param[out] BZ the \e Z component of the magnetic field (nT).
+     * @param[out] BXt the rate of change of \e BX (nT/yr).
+     * @param[out] BYt the rate of change of \e BY (nT/yr).
+     * @param[out] BZt the rate of change of \e BZ (nT/yr).
+     **********************************************************************/
+    void FieldGeocentric(real t, real X, real Y, real Z,
+                         real& BX, real& BY, real& BZ,
+                         real& BXt, real& BYt, real& BZt) const;
+
+    /**
+     * Compute various quantities dependent on the magnetic field.
+     *
+     * @param[in] Bx the \e x (easterly) component of the magnetic field (nT).
+     * @param[in] By the \e y (northerly) component of the magnetic field (nT).
+     * @param[in] Bz the \e z (vertical, up positive) component of the magnetic
+     *   field (nT).
+     * @param[out] H the horizontal magnetic field (nT).
+     * @param[out] F the total magnetic field (nT).
+     * @param[out] D the declination of the field (degrees east of north).
+     * @param[out] I the inclination of the field (degrees down from
+     *   horizontal).
+     **********************************************************************/
+    static void FieldComponents(real Bx, real By, real Bz,
+                                real& H, real& F, real& D, real& I) {
+      real Ht, Ft, Dt, It;
+      FieldComponents(Bx, By, Bz, real(0), real(1), real(0),
+                      H, F, D, I, Ht, Ft, Dt, It);
+    }
+
+    /**
+     * Compute various quantities dependent on the magnetic field and its rate
+     * of change.
+     *
+     * @param[in] Bx the \e x (easterly) component of the magnetic field (nT).
+     * @param[in] By the \e y (northerly) component of the magnetic field (nT).
+     * @param[in] Bz the \e z (vertical, up positive) component of the magnetic
+     *   field (nT).
+     * @param[in] Bxt the rate of change of \e Bx (nT/yr).
+     * @param[in] Byt the rate of change of \e By (nT/yr).
+     * @param[in] Bzt the rate of change of \e Bz (nT/yr).
+     * @param[out] H the horizontal magnetic field (nT).
+     * @param[out] F the total magnetic field (nT).
+     * @param[out] D the declination of the field (degrees east of north).
+     * @param[out] I the inclination of the field (degrees down from
+     *   horizontal).
+     * @param[out] Ht the rate of change of \e H (nT/yr).
+     * @param[out] Ft the rate of change of \e F (nT/yr).
+     * @param[out] Dt the rate of change of \e D (degrees/yr).
+     * @param[out] It the rate of change of \e I (degrees/yr).
+     **********************************************************************/
+    static void FieldComponents(real Bx, real By, real Bz,
+                                real Bxt, real Byt, real Bzt,
+                                real& H, real& F, real& D, real& I,
+                                real& Ht, real& Ft, real& Dt, real& It);
+    ///@}
+
+    /** \name Inspector functions
+     **********************************************************************/
+    ///@{
+    /**
+     * @return the description of the magnetic model, if available, from the
+     *   Description file in the data file; if absent, return "NONE".
+     **********************************************************************/
+    const std::string& Description() const { return _description; }
+
+    /**
+     * @return date of the model, if available, from the ReleaseDate field in
+     *   the data file; if absent, return "UNKNOWN".
+     **********************************************************************/
+    const std::string& DateTime() const { return _date; }
+
+    /**
+     * @return full file name used to load the magnetic model.
+     **********************************************************************/
+    const std::string& MagneticFile() const { return _filename; }
+
+    /**
+     * @return "name" used to load the magnetic model (from the first argument
+     *   of the constructor, but this may be overridden by the model file).
+     **********************************************************************/
+    const std::string& MagneticModelName() const { return _name; }
+
+    /**
+     * @return directory used to load the magnetic model.
+     **********************************************************************/
+    const std::string& MagneticModelDirectory() const { return _dir; }
+
+    /**
+     * @return the minimum height above the ellipsoid (in meters) for which
+     *   this MagneticModel should be used.
+     *
+     * Because the model will typically provide useful results
+     * slightly outside the range of allowed heights, no check of \e t
+     * argument is made by MagneticModel::operator()() or
+     * MagneticModel::Circle.
+     **********************************************************************/
+    Math::real MinHeight() const { return _hmin; }
+
+    /**
+     * @return the maximum height above the ellipsoid (in meters) for which
+     *   this MagneticModel should be used.
+     *
+     * Because the model will typically provide useful results
+     * slightly outside the range of allowed heights, no check of \e t
+     * argument is made by MagneticModel::operator()() or
+     * MagneticModel::Circle.
+     **********************************************************************/
+    Math::real MaxHeight() const { return _hmax; }
+
+    /**
+     * @return the minimum time (in years) for which this MagneticModel should
+     *   be used.
+     *
+     * Because the model will typically provide useful results
+     * slightly outside the range of allowed times, no check of \e t
+     * argument is made by MagneticModel::operator()() or
+     * MagneticModel::Circle.
+     **********************************************************************/
+    Math::real MinTime() const { return _tmin; }
+
+    /**
+     * @return the maximum time (in years) for which this MagneticModel should
+     *   be used.
+     *
+     * Because the model will typically provide useful results
+     * slightly outside the range of allowed times, no check of \e t
+     * argument is made by MagneticModel::operator()() or
+     * MagneticModel::Circle.
+     **********************************************************************/
+    Math::real MaxTime() const { return _tmax; }
+
+    /**
+     * @return \e a the equatorial radius of the ellipsoid (meters).  This is
+     *   the value of \e a inherited from the Geocentric object used in the
+     *   constructor.
+     **********************************************************************/
+    Math::real EquatorialRadius() const { return _earth.EquatorialRadius(); }
+
+    /**
+     * @return \e f the flattening of the ellipsoid.  This is the value
+     *   inherited from the Geocentric object used in the constructor.
+     **********************************************************************/
+    Math::real Flattening() const { return _earth.Flattening(); }
+
+    /**
+     * @return \e Nmax the maximum degree of the components of the model.
+     **********************************************************************/
+    int Degree() const { return _nmx; }
+
+    /**
+     * @return \e Mmax the maximum order of the components of the model.
+     **********************************************************************/
+    int Order() const { return _mmx; }
+
+    /**
+     * \deprecated An old name for EquatorialRadius().
+     **********************************************************************/
+    GEOGRAPHICLIB_DEPRECATED("Use EquatorialRadius()")
+    Math::real MajorRadius() const { return EquatorialRadius(); }
+    ///@}
+
+    /**
+     * @return the default path for magnetic model data files.
+     *
+     * This is the value of the environment variable
+     * GEOGRAPHICLIB_MAGNETIC_PATH, if set; otherwise, it is
+     * $GEOGRAPHICLIB_DATA/magnetic if the environment variable
+     * GEOGRAPHICLIB_DATA is set; otherwise, it is a compile-time default
+     * (/usr/local/share/GeographicLib/magnetic on non-Windows systems and
+     * C:/ProgramData/GeographicLib/magnetic on Windows systems).
+     **********************************************************************/
+    static std::string DefaultMagneticPath();
+
+    /**
+     * @return the default name for the magnetic model.
+     *
+     * This is the value of the environment variable
+     * GEOGRAPHICLIB_MAGNETIC_NAME, if set; otherwise, it is "wmm2020".  The
+     * MagneticModel class does not use this function; it is just provided as a
+     * convenience for a calling program when constructing a MagneticModel
+     * object.
+     **********************************************************************/
+    static std::string DefaultMagneticName();
+  };
+
+} // namespace GeographicLib
+
+#if defined(_MSC_VER)
+#  pragma warning (pop)
+#endif
+
+#endif  // GEOGRAPHICLIB_MAGNETICMODEL_HPP

+ 684 - 0
external/include/GeographicLib/Math.hpp

@@ -0,0 +1,684 @@
+/**
+ * \file Math.hpp
+ * \brief Header for GeographicLib::Math class
+ *
+ * Copyright (c) Charles Karney (2008-2020) <charles@karney.com> and licensed
+ * under the MIT/X11 License.  For more information, see
+ * https://geographiclib.sourceforge.io/
+ **********************************************************************/
+
+// Constants.hpp includes Math.hpp.  Place this include outside Math.hpp's
+// include guard to enforce this ordering.
+#include <GeographicLib/Constants.hpp>
+
+#if !defined(GEOGRAPHICLIB_MATH_HPP)
+#define GEOGRAPHICLIB_MATH_HPP 1
+
+#if !defined(GEOGRAPHICLIB_WORDS_BIGENDIAN)
+#  define GEOGRAPHICLIB_WORDS_BIGENDIAN 0
+#endif
+
+#if !defined(GEOGRAPHICLIB_HAVE_LONG_DOUBLE)
+#  define GEOGRAPHICLIB_HAVE_LONG_DOUBLE 0
+#endif
+
+#if !defined(GEOGRAPHICLIB_PRECISION)
+/**
+ * The precision of floating point numbers used in %GeographicLib.  1 means
+ * float (single precision); 2 (the default) means double; 3 means long double;
+ * 4 is reserved for quadruple precision.  Nearly all the testing has been
+ * carried out with doubles and that's the recommended configuration.  In order
+ * for long double to be used, GEOGRAPHICLIB_HAVE_LONG_DOUBLE needs to be
+ * defined.  Note that with Microsoft Visual Studio, long double is the same as
+ * double.
+ **********************************************************************/
+#  define GEOGRAPHICLIB_PRECISION 2
+#endif
+
+#include <cmath>
+#include <algorithm>
+#include <limits>
+
+#if GEOGRAPHICLIB_PRECISION == 4
+#include <boost/version.hpp>
+#include <boost/multiprecision/float128.hpp>
+#include <boost/math/special_functions.hpp>
+#elif GEOGRAPHICLIB_PRECISION == 5
+#include <mpreal.h>
+#endif
+
+#if GEOGRAPHICLIB_PRECISION > 3
+// volatile keyword makes no sense for multiprec types
+#define GEOGRAPHICLIB_VOLATILE
+// Signal a convergence failure with multiprec types by throwing an exception
+// at loop exit.
+#define GEOGRAPHICLIB_PANIC \
+  (throw GeographicLib::GeographicErr("Convergence failure"), false)
+#else
+#define GEOGRAPHICLIB_VOLATILE volatile
+// Ignore convergence failures with standard floating points types by allowing
+// loop to exit cleanly.
+#define GEOGRAPHICLIB_PANIC false
+#endif
+
+namespace GeographicLib {
+
+  /**
+   * \brief Mathematical functions needed by %GeographicLib
+   *
+   * Define mathematical functions in order to localize system dependencies and
+   * to provide generic versions of the functions.  In addition define a real
+   * type to be used by %GeographicLib.
+   *
+   * Example of use:
+   * \include example-Math.cpp
+   **********************************************************************/
+  class GEOGRAPHICLIB_EXPORT Math {
+  private:
+    void dummy();               // Static check for GEOGRAPHICLIB_PRECISION
+    Math();                     // Disable constructor
+  public:
+
+#if GEOGRAPHICLIB_HAVE_LONG_DOUBLE
+    /**
+     * The extended precision type for real numbers, used for some testing.
+     * This is long double on computers with this type; otherwise it is double.
+     **********************************************************************/
+    typedef long double extended;
+#else
+    typedef double extended;
+#endif
+
+#if GEOGRAPHICLIB_PRECISION == 2
+    /**
+     * The real type for %GeographicLib. Nearly all the testing has been done
+     * with \e real = double.  However, the algorithms should also work with
+     * float and long double (where available).  (<b>CAUTION</b>: reasonable
+     * accuracy typically cannot be obtained using floats.)
+     **********************************************************************/
+    typedef double real;
+#elif GEOGRAPHICLIB_PRECISION == 1
+    typedef float real;
+#elif GEOGRAPHICLIB_PRECISION == 3
+    typedef extended real;
+#elif GEOGRAPHICLIB_PRECISION == 4
+    typedef boost::multiprecision::float128 real;
+#elif GEOGRAPHICLIB_PRECISION == 5
+    typedef mpfr::mpreal real;
+#else
+    typedef double real;
+#endif
+
+    /**
+     * @return the number of bits of precision in a real number.
+     **********************************************************************/
+    static int digits();
+
+    /**
+     * Set the binary precision of a real number.
+     *
+     * @param[in] ndigits the number of bits of precision.
+     * @return the resulting number of bits of precision.
+     *
+     * This only has an effect when GEOGRAPHICLIB_PRECISION = 5.  See also
+     * Utility::set_digits for caveats about when this routine should be
+     * called.
+     **********************************************************************/
+    static int set_digits(int ndigits);
+
+    /**
+     * @return the number of decimal digits of precision in a real number.
+     **********************************************************************/
+    static int digits10();
+
+    /**
+     * Number of additional decimal digits of precision for real relative to
+     * double (0 for float).
+     **********************************************************************/
+    static int extra_digits();
+
+    /**
+     * true if the machine is big-endian.
+     **********************************************************************/
+    static const bool bigendian = GEOGRAPHICLIB_WORDS_BIGENDIAN;
+
+    /**
+     * @tparam T the type of the returned value.
+     * @return &pi;.
+     **********************************************************************/
+    template<typename T = real> static T pi() {
+      using std::atan2;
+      static const T pi = atan2(T(0), T(-1));
+      return pi;
+    }
+
+    /**
+     * @tparam T the type of the returned value.
+     * @return the number of radians in a degree.
+     **********************************************************************/
+    template<typename T = real> static T degree() {
+      static const T degree = pi<T>() / 180;
+      return degree;
+    }
+
+    /**
+     * Square a number.
+     *
+     * @tparam T the type of the argument and the returned value.
+     * @param[in] x
+     * @return <i>x</i><sup>2</sup>.
+     **********************************************************************/
+    template<typename T> static T sq(T x)
+    { return x * x; }
+
+    /**
+     * The hypotenuse function avoiding underflow and overflow.
+     *
+     * @tparam T the type of the arguments and the returned value.
+     * @param[in] x
+     * @param[in] y
+     * @return sqrt(<i>x</i><sup>2</sup> + <i>y</i><sup>2</sup>).
+     *
+     * \deprecated Use std::hypot(x, y).
+     **********************************************************************/
+    template<typename T>
+      GEOGRAPHICLIB_DEPRECATED("Use std::hypot(x, y)")
+      static T hypot(T x, T y);
+
+    /**
+     * exp(\e x) &minus; 1 accurate near \e x = 0.
+     *
+     * @tparam T the type of the argument and the returned value.
+     * @param[in] x
+     * @return exp(\e x) &minus; 1.
+     *
+     * \deprecated Use std::expm1(x).
+     **********************************************************************/
+    template<typename T>
+      GEOGRAPHICLIB_DEPRECATED("Use std::expm1(x)")
+      static T expm1(T x);
+
+    /**
+     * log(1 + \e x) accurate near \e x = 0.
+     *
+     * @tparam T the type of the argument and the returned value.
+     * @param[in] x
+     * @return log(1 + \e x).
+     *
+     * \deprecated Use std::log1p(x).
+     **********************************************************************/
+    template<typename T>
+      GEOGRAPHICLIB_DEPRECATED("Use std::log1p(x)")
+      static T log1p(T x);
+
+    /**
+     * The inverse hyperbolic sine function.
+     *
+     * @tparam T the type of the argument and the returned value.
+     * @param[in] x
+     * @return asinh(\e x).
+     *
+     * \deprecated Use std::asinh(x).
+     **********************************************************************/
+    template<typename T>
+      GEOGRAPHICLIB_DEPRECATED("Use std::asinh(x)")
+      static T asinh(T x);
+
+    /**
+     * The inverse hyperbolic tangent function.
+     *
+     * @tparam T the type of the argument and the returned value.
+     * @param[in] x
+     * @return atanh(\e x).
+     *
+     * \deprecated Use std::atanh(x).
+     **********************************************************************/
+    template<typename T>
+      GEOGRAPHICLIB_DEPRECATED("Use std::atanh(x)")
+      static T atanh(T x);
+
+    /**
+     * Copy the sign.
+     *
+     * @tparam T the type of the argument.
+     * @param[in] x gives the magitude of the result.
+     * @param[in] y gives the sign of the result.
+     * @return value with the magnitude of \e x and with the sign of \e y.
+     *
+     * This routine correctly handles the case \e y = &minus;0, returning
+     * &minus|<i>x</i>|.
+     *
+     * \deprecated Use std::copysign(x, y).
+     **********************************************************************/
+    template<typename T>
+      GEOGRAPHICLIB_DEPRECATED("Use std::copysign(x, y)")
+      static T copysign(T x, T y);
+
+    /**
+     * The cube root function.
+     *
+     * @tparam T the type of the argument and the returned value.
+     * @param[in] x
+     * @return the real cube root of \e x.
+     *
+     * \deprecated Use std::cbrt(x).
+     **********************************************************************/
+    template<typename T>
+      GEOGRAPHICLIB_DEPRECATED("Use std::cbrt(x)")
+      static T cbrt(T x);
+
+    /**
+     * The remainder function.
+     *
+     * @tparam T the type of the arguments and the returned value.
+     * @param[in] x
+     * @param[in] y
+     * @return the remainder of \e x/\e y in the range [&minus;\e y/2, \e y/2].
+     *
+     * \deprecated Use std::remainder(x).
+     **********************************************************************/
+    template<typename T>
+      GEOGRAPHICLIB_DEPRECATED("Use std::remainder(x)")
+      static T remainder(T x, T y);
+
+    /**
+     * The remquo function.
+     *
+     * @tparam T the type of the arguments and the returned value.
+     * @param[in] x
+     * @param[in] y
+     * @param[out] n the low 3 bits of the quotient
+     * @return the remainder of \e x/\e y in the range [&minus;\e y/2, \e y/2].
+     *
+     * \deprecated Use std::remquo(x, y, n).
+     **********************************************************************/
+    template<typename T>
+      GEOGRAPHICLIB_DEPRECATED("Use std::remquo(x, y, n)")
+      static T remquo(T x, T y, int* n);
+
+    /**
+     * The round function.
+     *
+     * @tparam T the type of the argument and the returned value.
+     * @param[in] x
+     * @return \e x round to the nearest integer (ties round away from 0).
+     *
+     * \deprecated Use std::round(x).
+     **********************************************************************/
+    template<typename T>
+      GEOGRAPHICLIB_DEPRECATED("Use std::round(x)")
+      static T round(T x);
+
+    /**
+     * The lround function.
+     *
+     * @tparam T the type of the argument.
+     * @param[in] x
+     * @return \e x round to the nearest integer as a long int (ties round away
+     *   from 0).
+     *
+     * If the result does not fit in a long int, the return value is undefined.
+     *
+     * \deprecated Use std::lround(x).
+     **********************************************************************/
+    template<typename T>
+      GEOGRAPHICLIB_DEPRECATED("Use std::lround(x)")
+      static long lround(T x);
+
+    /**
+     * Fused multiply and add.
+     *
+     * @tparam T the type of the arguments and the returned value.
+     * @param[in] x
+     * @param[in] y
+     * @param[in] z
+     * @return <i>xy</i> + <i>z</i>, correctly rounded (on those platforms with
+     *   support for the <code>fma</code> instruction).
+     *
+     * On platforms without the <code>fma</code> instruction, no attempt is
+     * made to improve on the result of a rounded multiplication followed by a
+     * rounded addition.
+     *
+     * \deprecated Use std::fma(x, y, z).
+     **********************************************************************/
+    template<typename T>
+      GEOGRAPHICLIB_DEPRECATED("Use std::fma(x, y, z)")
+      static T fma(T x, T y, T z);
+
+    /**
+     * Normalize a two-vector.
+     *
+     * @tparam T the type of the argument and the returned value.
+     * @param[in,out] x on output set to <i>x</i>/hypot(<i>x</i>, <i>y</i>).
+     * @param[in,out] y on output set to <i>y</i>/hypot(<i>x</i>, <i>y</i>).
+     **********************************************************************/
+    template<typename T> static void norm(T& x, T& y) {
+#if defined(_MSC_VER) && defined(_M_IX86)
+      // hypot for Visual Studio (A=win32) fails monotonicity, e.g., with
+      //   x  = 0.6102683302836215
+      //   y1 = 0.7906090004346522
+      //   y2 = y1 + 1e-16
+      // the test
+      //   hypot(x, y2) >= hypot(x, y1)
+      // fails.  Reported 2021-03-14:
+      //   https://developercommunity.visualstudio.com/t/1369259
+      // See also:
+      //   https://bugs.python.org/issue43088
+      using std::sqrt; T h = sqrt(x * x + y * y);
+#else
+      using std::hypot; T h = hypot(x, y);
+#endif
+      x /= h; y /= h;
+    }
+
+    /**
+     * The error-free sum of two numbers.
+     *
+     * @tparam T the type of the argument and the returned value.
+     * @param[in] u
+     * @param[in] v
+     * @param[out] t the exact error given by (\e u + \e v) - \e s.
+     * @return \e s = round(\e u + \e v).
+     *
+     * See D. E. Knuth, TAOCP, Vol 2, 4.2.2, Theorem B.  (Note that \e t can be
+     * the same as one of the first two arguments.)
+     **********************************************************************/
+    template<typename T> static T sum(T u, T v, T& t);
+
+    /**
+     * Evaluate a polynomial.
+     *
+     * @tparam T the type of the arguments and returned value.
+     * @param[in] N the order of the polynomial.
+     * @param[in] p the coefficient array (of size \e N + 1).
+     * @param[in] x the variable.
+     * @return the value of the polynomial.
+     *
+     * Evaluate <i>y</i> = &sum;<sub><i>n</i>=0..<i>N</i></sub>
+     * <i>p</i><sub><i>n</i></sub> <i>x</i><sup><i>N</i>&minus;<i>n</i></sup>.
+     * Return 0 if \e N &lt; 0.  Return <i>p</i><sub>0</sub>, if \e N = 0 (even
+     * if \e x is infinite or a nan).  The evaluation uses Horner's method.
+     **********************************************************************/
+    template<typename T> static T polyval(int N, const T p[], T x) {
+    // This used to employ Math::fma; but that's too slow and it seemed not to
+    // improve the accuracy noticeably.  This might change when there's direct
+    // hardware support for fma.
+      T y = N < 0 ? 0 : *p++;
+      while (--N >= 0) y = y * x + *p++;
+      return y;
+    }
+
+    /**
+     * Normalize an angle.
+     *
+     * @tparam T the type of the argument and returned value.
+     * @param[in] x the angle in degrees.
+     * @return the angle reduced to the range (&minus;180&deg;, 180&deg;].
+     *
+     * The range of \e x is unrestricted.
+     **********************************************************************/
+    template<typename T> static T AngNormalize(T x) {
+      using std::remainder;
+      x = remainder(x, T(360)); return x != -180 ? x : 180;
+    }
+
+    /**
+     * Normalize a latitude.
+     *
+     * @tparam T the type of the argument and returned value.
+     * @param[in] x the angle in degrees.
+     * @return x if it is in the range [&minus;90&deg;, 90&deg;], otherwise
+     *   return NaN.
+     **********************************************************************/
+    template<typename T> static T LatFix(T x)
+    { using std::abs; return abs(x) > 90 ? NaN<T>() : x; }
+
+    /**
+     * The exact difference of two angles reduced to
+     * (&minus;180&deg;, 180&deg;].
+     *
+     * @tparam T the type of the arguments and returned value.
+     * @param[in] x the first angle in degrees.
+     * @param[in] y the second angle in degrees.
+     * @param[out] e the error term in degrees.
+     * @return \e d, the truncated value of \e y &minus; \e x.
+     *
+     * This computes \e z = \e y &minus; \e x exactly, reduced to
+     * (&minus;180&deg;, 180&deg;]; and then sets \e z = \e d + \e e where \e d
+     * is the nearest representable number to \e z and \e e is the truncation
+     * error.  If \e d = &minus;180, then \e e &gt; 0; If \e d = 180, then \e e
+     * &le; 0.
+     **********************************************************************/
+    template<typename T> static T AngDiff(T x, T y, T& e) {
+      using std::remainder;
+      T t, d = AngNormalize(sum(remainder(-x, T(360)),
+                                remainder( y, T(360)), t));
+      // Here y - x = d + t (mod 360), exactly, where d is in (-180,180] and
+      // abs(t) <= eps (eps = 2^-45 for doubles).  The only case where the
+      // addition of t takes the result outside the range (-180,180] is d = 180
+      // and t > 0.  The case, d = -180 + eps, t = -eps, can't happen, since
+      // sum would have returned the exact result in such a case (i.e., given t
+      // = 0).
+      return sum(d == 180 && t > 0 ? -180 : d, t, e);
+    }
+
+    /**
+     * Difference of two angles reduced to [&minus;180&deg;, 180&deg;]
+     *
+     * @tparam T the type of the arguments and returned value.
+     * @param[in] x the first angle in degrees.
+     * @param[in] y the second angle in degrees.
+     * @return \e y &minus; \e x, reduced to the range [&minus;180&deg;,
+     *   180&deg;].
+     *
+     * The result is equivalent to computing the difference exactly, reducing
+     * it to (&minus;180&deg;, 180&deg;] and rounding the result.  Note that
+     * this prescription allows &minus;180&deg; to be returned (e.g., if \e x
+     * is tiny and negative and \e y = 180&deg;).
+     **********************************************************************/
+    template<typename T> static T AngDiff(T x, T y)
+    { T e; return AngDiff(x, y, e); }
+
+    /**
+     * Coarsen a value close to zero.
+     *
+     * @tparam T the type of the argument and returned value.
+     * @param[in] x
+     * @return the coarsened value.
+     *
+     * The makes the smallest gap in \e x = 1/16 &minus; nextafter(1/16, 0) =
+     * 1/2<sup>57</sup> for reals = 0.7 pm on the earth if \e x is an angle in
+     * degrees.  (This is about 1000 times more resolution than we get with
+     * angles around 90&deg;.)  We use this to avoid having to deal with near
+     * singular cases when \e x is non-zero but tiny (e.g.,
+     * 10<sup>&minus;200</sup>).  This converts &minus;0 to +0; however tiny
+     * negative numbers get converted to &minus;0.
+     **********************************************************************/
+    template<typename T> static T AngRound(T x);
+
+    /**
+     * Evaluate the sine and cosine function with the argument in degrees
+     *
+     * @tparam T the type of the arguments.
+     * @param[in] x in degrees.
+     * @param[out] sinx sin(<i>x</i>).
+     * @param[out] cosx cos(<i>x</i>).
+     *
+     * The results obey exactly the elementary properties of the trigonometric
+     * functions, e.g., sin 9&deg; = cos 81&deg; = &minus; sin 123456789&deg;.
+     * If x = &minus;0, then \e sinx = &minus;0; this is the only case where
+     * &minus;0 is returned.
+     **********************************************************************/
+    template<typename T> static void sincosd(T x, T& sinx, T& cosx);
+
+    /**
+     * Evaluate the sine function with the argument in degrees
+     *
+     * @tparam T the type of the argument and the returned value.
+     * @param[in] x in degrees.
+     * @return sin(<i>x</i>).
+     **********************************************************************/
+    template<typename T> static T sind(T x);
+
+    /**
+     * Evaluate the cosine function with the argument in degrees
+     *
+     * @tparam T the type of the argument and the returned value.
+     * @param[in] x in degrees.
+     * @return cos(<i>x</i>).
+     **********************************************************************/
+    template<typename T> static T cosd(T x);
+
+    /**
+     * Evaluate the tangent function with the argument in degrees
+     *
+     * @tparam T the type of the argument and the returned value.
+     * @param[in] x in degrees.
+     * @return tan(<i>x</i>).
+     *
+     * If \e x = &plusmn;90&deg;, then a suitably large (but finite) value is
+     * returned.
+     **********************************************************************/
+    template<typename T> static T tand(T x);
+
+    /**
+     * Evaluate the atan2 function with the result in degrees
+     *
+     * @tparam T the type of the arguments and the returned value.
+     * @param[in] y
+     * @param[in] x
+     * @return atan2(<i>y</i>, <i>x</i>) in degrees.
+     *
+     * The result is in the range (&minus;180&deg; 180&deg;].  N.B.,
+     * atan2d(&plusmn;0, &minus;1) = +180&deg;; atan2d(&minus;&epsilon;,
+     * &minus;1) = &minus;180&deg;, for &epsilon; positive and tiny;
+     * atan2d(&plusmn;0, +1) = &plusmn;0&deg;.
+     **********************************************************************/
+    template<typename T> static T atan2d(T y, T x);
+
+    /**
+     * Evaluate the atan function with the result in degrees
+     *
+     * @tparam T the type of the argument and the returned value.
+     * @param[in] x
+     * @return atan(<i>x</i>) in degrees.
+     **********************************************************************/
+   template<typename T> static T atand(T x);
+
+    /**
+     * Evaluate <i>e</i> atanh(<i>e x</i>)
+     *
+     * @tparam T the type of the argument and the returned value.
+     * @param[in] x
+     * @param[in] es the signed eccentricity =  sign(<i>e</i><sup>2</sup>)
+     *    sqrt(|<i>e</i><sup>2</sup>|)
+     * @return <i>e</i> atanh(<i>e x</i>)
+     *
+     * If <i>e</i><sup>2</sup> is negative (<i>e</i> is imaginary), the
+     * expression is evaluated in terms of atan.
+     **********************************************************************/
+    template<typename T> static T eatanhe(T x, T es);
+
+    /**
+     * tan&chi; in terms of tan&phi;
+     *
+     * @tparam T the type of the argument and the returned value.
+     * @param[in] tau &tau; = tan&phi;
+     * @param[in] es the signed eccentricity = sign(<i>e</i><sup>2</sup>)
+     *   sqrt(|<i>e</i><sup>2</sup>|)
+     * @return &tau;&prime; = tan&chi;
+     *
+     * See Eqs. (7--9) of
+     * C. F. F. Karney,
+     * <a href="https://doi.org/10.1007/s00190-011-0445-3">
+     * Transverse Mercator with an accuracy of a few nanometers,</a>
+     * J. Geodesy 85(8), 475--485 (Aug. 2011)
+     * (preprint
+     * <a href="https://arxiv.org/abs/1002.1417">arXiv:1002.1417</a>).
+     **********************************************************************/
+    template<typename T> static T taupf(T tau, T es);
+
+    /**
+     * tan&phi; in terms of tan&chi;
+     *
+     * @tparam T the type of the argument and the returned value.
+     * @param[in] taup &tau;&prime; = tan&chi;
+     * @param[in] es the signed eccentricity = sign(<i>e</i><sup>2</sup>)
+     *   sqrt(|<i>e</i><sup>2</sup>|)
+     * @return &tau; = tan&phi;
+     *
+     * See Eqs. (19--21) of
+     * C. F. F. Karney,
+     * <a href="https://doi.org/10.1007/s00190-011-0445-3">
+     * Transverse Mercator with an accuracy of a few nanometers,</a>
+     * J. Geodesy 85(8), 475--485 (Aug. 2011)
+     * (preprint
+     * <a href="https://arxiv.org/abs/1002.1417">arXiv:1002.1417</a>).
+     **********************************************************************/
+    template<typename T> static T tauf(T taup, T es);
+
+    /**
+     * Test for finiteness.
+     *
+     * @tparam T the type of the argument.
+     * @param[in] x
+     * @return true if number is finite, false if NaN or infinite.
+     *
+     * \deprecated Use std::isfinite(x).
+     **********************************************************************/
+    template<typename T>
+      GEOGRAPHICLIB_DEPRECATED("Use std::isfinite(x)")
+      static bool isfinite(T x);
+
+    /**
+     * The NaN (not a number)
+     *
+     * @tparam T the type of the returned value.
+     * @return NaN if available, otherwise return the max real of type T.
+     **********************************************************************/
+    template<typename T = real> static T NaN();
+
+    /**
+     * Test for NaN.
+     *
+     * @tparam T the type of the argument.
+     * @param[in] x
+     * @return true if argument is a NaN.
+     *
+     * \deprecated Use std::isnan(x).
+     **********************************************************************/
+    template<typename T>
+      GEOGRAPHICLIB_DEPRECATED("Use std::isnan(x)")
+      static bool isnan(T x);
+
+    /**
+     * Infinity
+     *
+     * @tparam T the type of the returned value.
+     * @return infinity if available, otherwise return the max real.
+     **********************************************************************/
+    template<typename T = real> static T infinity();
+
+    /**
+     * Swap the bytes of a quantity
+     *
+     * @tparam T the type of the argument and the returned value.
+     * @param[in] x
+     * @return x with its bytes swapped.
+     **********************************************************************/
+    template<typename T> static T swab(T x) {
+      union {
+        T r;
+        unsigned char c[sizeof(T)];
+      } b;
+      b.r = x;
+      for (int i = sizeof(T)/2; i--; )
+        std::swap(b.c[i], b.c[sizeof(T) - 1 - i]);
+      return b.r;
+    }
+
+  };
+
+} // namespace GeographicLib
+
+#endif  // GEOGRAPHICLIB_MATH_HPP

+ 837 - 0
external/include/GeographicLib/NearestNeighbor.hpp

@@ -0,0 +1,837 @@
+/**
+ * \file NearestNeighbor.hpp
+ * \brief Header for GeographicLib::NearestNeighbor class
+ *
+ * Copyright (c) Charles Karney (2016-2020) <charles@karney.com> and licensed
+ * under the MIT/X11 License.  For more information, see
+ * https://geographiclib.sourceforge.io/
+ **********************************************************************/
+
+#if !defined(GEOGRAPHICLIB_NEARESTNEIGHBOR_HPP)
+#define GEOGRAPHICLIB_NEARESTNEIGHBOR_HPP 1
+
+#include <algorithm>            // for nth_element, max_element, etc.
+#include <vector>
+#include <queue>                // for priority_queue
+#include <utility>              // for swap + pair
+#include <cstring>
+#include <limits>
+#include <cmath>
+#include <iostream>
+#include <sstream>
+// Only for GeographicLib::GeographicErr
+#include <GeographicLib/Constants.hpp>
+
+#if defined(GEOGRAPHICLIB_HAVE_BOOST_SERIALIZATION) && \
+  GEOGRAPHICLIB_HAVE_BOOST_SERIALIZATION
+#include <boost/serialization/nvp.hpp>
+#include <boost/serialization/split_member.hpp>
+#include <boost/serialization/array.hpp>
+#include <boost/serialization/vector.hpp>
+#endif
+
+#if defined(_MSC_VER)
+// Squelch warnings about constant conditional expressions
+#  pragma warning (push)
+#  pragma warning (disable: 4127)
+#endif
+
+namespace GeographicLib {
+
+  /**
+   * \brief Nearest-neighbor calculations
+   *
+   * This class solves the nearest-neighbor problm using a vantage-point tree
+   * as described in \ref nearest.
+   *
+   * This class is templated so that it can handle arbitrary metric spaces as
+   * follows:
+   *
+   * @tparam dist_t the type used for measuring distances; it can be a real or
+   *   signed integer type; in typical geodetic applications, \e dist_t might
+   *   be <code>double</code>.
+   * @tparam pos_t the type for specifying the positions of points; geodetic
+   *   application might bundled the latitude and longitude into a
+   *   <code>std::pair<dist_t, dist_t></code>.
+   * @tparam distfun_t the type of a function object which takes takes two
+   *   positions (of type \e pos_t) and returns the distance (of type \e
+   *   dist_t); in geodetic applications, this might be a class which is
+   *   constructed with a Geodesic object and which implements a member
+   *   function with a signature <code>dist_t operator() (const pos_t&, const
+   *   pos_t&) const</code>, which returns the geodesic distance between two
+   *   points.
+   *
+   * \note The distance measure must satisfy the triangle inequality, \f$
+   * d(a,c) \le d(a,b) + d(b,c) \f$ for all points \e a, \e b, \e c.  The
+   * geodesic distance (given by Geodesic::Inverse) does, while the great
+   * ellipse distance and the rhumb line distance <i>do not</i>.  If you use
+   * the ordinary Euclidean distance, i.e., \f$ \sqrt{(x_a-x_b)^2 +
+   * (y_a-y_b)^2} \f$ for two dimensions, don't be tempted to leave out the
+   * square root in the interests of "efficiency"; the squared distance does
+   * not satisfy the triangle inequality!
+   *
+   * \note This is a "header-only" implementation and, as such, depends in a
+   * minimal way on the rest of GeographicLib (the only dependency is through
+   * the use of GeographicLib::GeographicErr for handling compile-time and
+   * run-time exceptions).  Therefore, it is easy to extract this class from
+   * the rest of GeographicLib and use it as a stand-alone facility.
+   *
+   * The \e dist_t type must support numeric_limits queries (specifically:
+   * is_signed, is_integer, max(), digits).
+   *
+   * The NearestNeighbor object is constructed with a vector of points (type \e
+   * pos_t) and a distance function (type \e distfun_t).  However the object
+   * does \e not store the points.  When querying the object with Search(),
+   * it's necessary to supply the same vector of points and the same distance
+   * function.
+   *
+   * There's no capability in this implementation to add or remove points from
+   * the set.  Instead Initialize() should be called to re-initialize the
+   * object with the modified vector of points.
+   *
+   * Because of the overhead in constructing a NearestNeighbor object for a
+   * large set of points, functions Save() and Load() are provided to save the
+   * object to an external file.  operator<<(), operator>>() and <a
+   * href="https://www.boost.org/libs/serialization/doc"> Boost
+   * serialization</a> can also be used to save and restore a NearestNeighbor
+   * object.  This is illustrated in the example.
+   *
+   * Example of use:
+   * \include example-NearestNeighbor.cpp
+   **********************************************************************/
+  template <typename dist_t, typename pos_t, class distfun_t>
+  class NearestNeighbor {
+    // For tracking changes to the I/O format
+    static const int version = 1;
+    // This is what we get "free"; but if sizeof(dist_t) = 1 (unlikely), allow
+    // 4 slots (and this accommodates the default value bucket = 4).
+    static const int maxbucket =
+      (2 + ((4 * sizeof(dist_t)) / sizeof(int) >= 2 ?
+            (4 * sizeof(dist_t)) / sizeof(int) : 2));
+  public:
+
+    /**
+     * Default constructor for NearestNeighbor.
+     *
+     * This is equivalent to specifying an empty set of points.
+     **********************************************************************/
+    NearestNeighbor() : _numpoints(0), _bucket(0), _cost(0) {}
+
+    /**
+     * Constructor for NearestNeighbor.
+     *
+     * @param[in] pts a vector of points to include in the set.
+     * @param[in] dist the distance function object.
+     * @param[in] bucket the size of the buckets at the leaf nodes; this must
+     *   lie in [0, 2 + 4*sizeof(dist_t)/sizeof(int)] (default 4).
+     * @exception GeographicErr if the value of \e bucket is out of bounds or
+     *   the size of \e pts is too big for an int.
+     * @exception std::bad_alloc if memory for the tree can't be allocated.
+     *
+     * \e pts may contain coincident points (i.e., the distance between them
+     * vanishes); these are treated as distinct.
+     *
+     * The choice of \e bucket is a tradeoff between space and efficiency.  A
+     * larger \e bucket decreases the size of the NearestNeighbor object which
+     * scales as pts.size() / max(1, bucket) and reduces the number of distance
+     * calculations to construct the object by log2(bucket) * pts.size().
+     * However each search then requires about bucket additional distance
+     * calculations.
+     *
+     * \warning The distances computed by \e dist must satisfy the standard
+     * metric conditions.  If not, the results are undefined.  Neither the data
+     * in \e pts nor the query points should contain NaNs or infinities because
+     * such data violates the metric conditions.
+     *
+     * \warning The same arguments \e pts and \e dist must be provided
+     * to the Search() function.
+     **********************************************************************/
+    NearestNeighbor(const std::vector<pos_t>& pts, const distfun_t& dist,
+                    int bucket = 4) {
+      Initialize(pts, dist, bucket);
+    }
+
+    /**
+     * Initialize or re-initialize NearestNeighbor.
+     *
+     * @param[in] pts a vector of points to include in the tree.
+     * @param[in] dist the distance function object.
+     * @param[in] bucket the size of the buckets at the leaf nodes; this must
+     *   lie in [0, 2 + 4*sizeof(dist_t)/sizeof(int)] (default 4).
+     * @exception GeographicErr if the value of \e bucket is out of bounds or
+     *   the size of \e pts is too big for an int.
+     * @exception std::bad_alloc if memory for the tree can't be allocated.
+     *
+     * See also the documentation on the constructor.
+     *
+     * If an exception is thrown, the state of the NearestNeighbor is
+     * unchanged.
+     **********************************************************************/
+    void Initialize(const std::vector<pos_t>& pts, const distfun_t& dist,
+                    int bucket = 4) {
+      static_assert(std::numeric_limits<dist_t>::is_signed,
+                    "dist_t must be a signed type");
+      if (!( 0 <= bucket && bucket <= maxbucket ))
+        throw GeographicLib::GeographicErr
+          ("bucket must lie in [0, 2 + 4*sizeof(dist_t)/sizeof(int)]");
+      if (pts.size() > size_t(std::numeric_limits<int>::max()))
+        throw GeographicLib::GeographicErr("pts array too big");
+      // the pair contains distance+id
+      std::vector<item> ids(pts.size());
+      for (int k = int(ids.size()); k--;)
+        ids[k] = std::make_pair(dist_t(0), k);
+      int cost = 0;
+      std::vector<Node> tree;
+      init(pts, dist, bucket, tree, ids, cost,
+           0, int(ids.size()), int(ids.size()/2));
+      _tree.swap(tree);
+      _numpoints = int(pts.size());
+      _bucket = bucket;
+      _mc = _sc = 0;
+      _cost = cost; _c1 = _k = _cmax = 0;
+      _cmin = std::numeric_limits<int>::max();
+    }
+
+    /**
+     * Search the NearestNeighbor.
+     *
+     * @param[in] pts the vector of points used for initialization.
+     * @param[in] dist the distance function object used for initialization.
+     * @param[in] query the query point.
+     * @param[out] ind a vector of indices to the closest points found.
+     * @param[in] k the number of points to search for (default = 1).
+     * @param[in] maxdist only return points with distances of \e maxdist or
+     *   less from \e query (default is the maximum \e dist_t).
+     * @param[in] mindist only return points with distances of more than
+     *   \e mindist from \e query (default = &minus;1).
+     * @param[in] exhaustive whether to do an exhaustive search (default true).
+     * @param[in] tol the tolerance on the results (default 0).
+     * @return the distance to the closest point found (&minus;1 if no points
+     *   are found).
+     * @exception GeographicErr if \e pts has a different size from that used
+     *   to construct the object.
+     *
+     * The indices returned in \e ind are sorted by distance from \e query
+     * (closest first).
+     *
+     * The simplest invocation is with just the 4 non-optional arguments.  This
+     * returns the closest distance and the index to the closest point in
+     * <i>ind</i><sub>0</sub>.  If there are several points equally close, then
+     * <i>ind</i><sub>0</sub> gives the index of an arbirary one of them.  If
+     * there's no closest point (because the set of points is empty), then \e
+     * ind is empty and &minus;1 is returned.
+     *
+     * With \e exhaustive = true and \e tol = 0 (their default values), this
+     * finds the indices of \e k closest neighbors to \e query whose distances
+     * to \e query are in (\e mindist, \e maxdist].  If \e mindist and \e
+     * maxdist have their default values, then these bounds have no effect.  If
+     * \e query is one of the points in the tree, then set \e mindist = 0 to
+     * prevent this point (and other coincident points) from being returned.
+     *
+     * If \e exhaustive = false, exit as soon as \e k results satisfying the
+     * distance criteria are found.  If less than \e k results are returned
+     * then the search was exhaustive even if \e exhaustive = false.
+     *
+     * If \e tol is positive, do an approximate search; in this case the
+     * results are to be interpreted as follows: if the <i>k</i>'th distance is
+     * \e dk, then all results with distances less than or equal \e dk &minus;
+     * \e tol are correct; all others are suspect &mdash; there may be other
+     * closer results with distances greater or equal to \e dk &minus; \e tol.
+     * If less than \e k results are found, then the search is exact.
+     *
+     * \e mindist should be used to exclude a "small" neighborhood of the query
+     * point (relative to the average spacing of the data).  If \e mindist is
+     * large, the efficiency of the search deteriorates.
+     *
+     * \note Only the shortest distance is returned (as as the function value).
+     * The distances to other points (indexed by <i>ind</i><sub><i>j</i></sub>
+     * for \e j > 0) can be found by invoking \e dist again.
+     *
+     * \warning The arguments \e pts and \e dist must be identical to those
+     * used to initialize the NearestNeighbor; if not, this function will
+     * return some meaningless result (however, if the size of \e pts is wrong,
+     * this function throw an exception).
+     *
+     * \warning The query point cannot be a NaN or infinite because then the
+     * metric conditions are violated.
+     **********************************************************************/
+    dist_t Search(const std::vector<pos_t>& pts, const distfun_t& dist,
+                  const pos_t& query,
+                  std::vector<int>& ind,
+                  int k = 1,
+                  dist_t maxdist = std::numeric_limits<dist_t>::max(),
+                  dist_t mindist = -1,
+                  bool exhaustive = true,
+                  dist_t tol = 0) const {
+      if (_numpoints != int(pts.size()))
+          throw GeographicLib::GeographicErr("pts array has wrong size");
+      std::priority_queue<item> results;
+      if (_numpoints > 0 && k > 0 && maxdist > mindist) {
+        // distance to the kth closest point so far
+        dist_t tau = maxdist;
+        // first is negative of how far query is outside boundary of node
+        // +1 if on boundary or inside
+        // second is node index
+        std::priority_queue<item> todo;
+        todo.push(std::make_pair(dist_t(1), int(_tree.size()) - 1));
+        int c = 0;
+        while (!todo.empty()) {
+          int n = todo.top().second;
+          dist_t d = -todo.top().first;
+          todo.pop();
+          dist_t tau1 = tau - tol;
+          // compare tau and d again since tau may have become smaller.
+          if (!( n >= 0 && tau1 >= d )) continue;
+          const Node& current = _tree[n];
+          dist_t dst = 0;   // to suppress warning about uninitialized variable
+          bool exitflag = false, leaf = current.index < 0;
+          for (int i = 0; i < (leaf ? _bucket : 1); ++i) {
+            int index = leaf ? current.leaves[i] : current.index;
+            if (index < 0) break;
+            dst = dist(pts[index], query);
+            ++c;
+
+            if (dst > mindist && dst <= tau) {
+              if (int(results.size()) == k) results.pop();
+              results.push(std::make_pair(dst, index));
+              if (int(results.size()) == k) {
+                if (exhaustive)
+                  tau = results.top().first;
+                else {
+                  exitflag = true;
+                  break;
+                }
+                if (tau <= tol) {
+                  exitflag = true;
+                  break;
+                }
+              }
+            }
+          }
+          if (exitflag) break;
+
+          if (current.index < 0) continue;
+          tau1 = tau - tol;
+          for (int l = 0; l < 2; ++l) {
+            if (current.data.child[l] >= 0 &&
+                dst + current.data.upper[l] >= mindist) {
+              if (dst < current.data.lower[l]) {
+                d = current.data.lower[l] - dst;
+                if (tau1 >= d)
+                  todo.push(std::make_pair(-d, current.data.child[l]));
+              } else if (dst > current.data.upper[l]) {
+                d = dst - current.data.upper[l];
+                if (tau1 >= d)
+                  todo.push(std::make_pair(-d, current.data.child[l]));
+              } else
+                todo.push(std::make_pair(dist_t(1), current.data.child[l]));
+            }
+          }
+        }
+        ++_k;
+        _c1 += c;
+        double omc = _mc;
+        _mc += (c - omc) / _k;
+        _sc += (c - omc) * (c - _mc);
+        if (c > _cmax) _cmax = c;
+        if (c < _cmin) _cmin = c;
+      }
+
+      dist_t d = -1;
+      ind.resize(results.size());
+
+      for (int i = int(ind.size()); i--;) {
+        ind[i] = int(results.top().second);
+        if (i == 0) d = results.top().first;
+        results.pop();
+      }
+      return d;
+
+    }
+
+    /**
+     * @return the total number of points in the set.
+     **********************************************************************/
+    int NumPoints() const { return _numpoints; }
+
+    /**
+     * Write the object to an I/O stream.
+     *
+     * @param[in,out] os the stream to write to.
+     * @param[in] bin if true (the default) save in binary mode.
+     * @exception std::bad_alloc if memory for the string representation of the
+     *   object can't be allocated.
+     *
+     * The counters tracking the statistics of searches are not saved; however
+     * the initializtion cost is saved.  The format of the binary saves is \e
+     * not portable.
+     *
+     * \note <a href="https://www.boost.org/libs/serialization/doc">
+     * Boost serialization</a> can also be used to save and restore a
+     * NearestNeighbor object.  This requires that the
+     * GEOGRAPHICLIB_HAVE_BOOST_SERIALIZATION macro be defined.
+     **********************************************************************/
+    void Save(std::ostream& os, bool bin = true) const {
+      int realspec = std::numeric_limits<dist_t>::digits *
+        (std::numeric_limits<dist_t>::is_integer ? -1 : 1);
+      if (bin) {
+        char id[] = "NearestNeighbor_";
+        os.write(id, 16);
+        int buf[6];
+        buf[0] = version;
+        buf[1] = realspec;
+        buf[2] = _bucket;
+        buf[3] = _numpoints;
+        buf[4] = int(_tree.size());
+        buf[5] = _cost;
+        os.write(reinterpret_cast<const char *>(buf), 6 * sizeof(int));
+        for (int i = 0; i < int(_tree.size()); ++i) {
+          const Node& node = _tree[i];
+          os.write(reinterpret_cast<const char *>(&node.index), sizeof(int));
+          if (node.index >= 0) {
+            os.write(reinterpret_cast<const char *>(node.data.lower),
+                     2 * sizeof(dist_t));
+            os.write(reinterpret_cast<const char *>(node.data.upper),
+                     2 * sizeof(dist_t));
+            os.write(reinterpret_cast<const char *>(node.data.child),
+                     2 * sizeof(int));
+          } else {
+            os.write(reinterpret_cast<const char *>(node.leaves),
+                     _bucket * sizeof(int));
+          }
+        }
+      } else {
+        std::stringstream ostring;
+          // Ensure enough precision for type dist_t.  With C++11, max_digits10
+          // can be used instead.
+        if (!std::numeric_limits<dist_t>::is_integer) {
+          static const int prec
+            = int(std::ceil(std::numeric_limits<dist_t>::digits *
+                            std::log10(2.0) + 1));
+          ostring.precision(prec);
+        }
+        ostring << version << " " << realspec << " " << _bucket << " "
+                << _numpoints << " " << _tree.size() << " " << _cost;
+        for (int i = 0; i < int(_tree.size()); ++i) {
+          const Node& node = _tree[i];
+          ostring << "\n" << node.index;
+          if (node.index >= 0) {
+            for (int l = 0; l < 2; ++l)
+              ostring << " " << node.data.lower[l] << " " << node.data.upper[l]
+                      << " " << node.data.child[l];
+          } else {
+            for (int l = 0; l < _bucket; ++l)
+              ostring << " " << node.leaves[l];
+          }
+        }
+        os << ostring.str();
+      }
+    }
+
+    /**
+     * Read the object from an I/O stream.
+     *
+     * @param[in,out] is the stream to read from
+     * @param[in] bin if true (the default) load in binary mode.
+     * @exception GeographicErr if the state read from \e is is illegal.
+     * @exception std::bad_alloc if memory for the tree can't be allocated.
+     *
+     * The counters tracking the statistics of searches are reset by this
+     * operation.  Binary data must have been saved on a machine with the same
+     * architecture.  If an exception is thrown, the state of the
+     * NearestNeighbor is unchanged.
+     *
+     * \note <a href="https://www.boost.org/libs/serialization/doc">
+     * Boost serialization</a> can also be used to save and restore a
+     * NearestNeighbor object.  This requires that the
+     * GEOGRAPHICLIB_HAVE_BOOST_SERIALIZATION macro be defined.
+     *
+     * \warning The same arguments \e pts and \e dist used for
+     * initialization must be provided to the Search() function.
+     **********************************************************************/
+    void Load(std::istream& is, bool bin = true) {
+      int version1, realspec, bucket, numpoints, treesize, cost;
+      if (bin) {
+        char id[17];
+        is.read(id, 16);
+        id[16] = '\0';
+        if (!(std::strcmp(id, "NearestNeighbor_") == 0))
+          throw GeographicLib::GeographicErr("Bad ID");
+        is.read(reinterpret_cast<char *>(&version1), sizeof(int));
+        is.read(reinterpret_cast<char *>(&realspec), sizeof(int));
+        is.read(reinterpret_cast<char *>(&bucket), sizeof(int));
+        is.read(reinterpret_cast<char *>(&numpoints), sizeof(int));
+        is.read(reinterpret_cast<char *>(&treesize), sizeof(int));
+        is.read(reinterpret_cast<char *>(&cost), sizeof(int));
+      } else {
+        if (!( is >> version1 >> realspec >> bucket >> numpoints >> treesize
+               >> cost ))
+          throw GeographicLib::GeographicErr("Bad header");
+      }
+      if (!( version1 == version ))
+        throw GeographicLib::GeographicErr("Incompatible version");
+      if (!( realspec == std::numeric_limits<dist_t>::digits *
+             (std::numeric_limits<dist_t>::is_integer ? -1 : 1) ))
+        throw GeographicLib::GeographicErr("Different dist_t types");
+      if (!( 0 <= bucket && bucket <= maxbucket ))
+        throw GeographicLib::GeographicErr("Bad bucket size");
+      if (!( 0 <= treesize && treesize <= numpoints ))
+        throw
+          GeographicLib::GeographicErr("Bad number of points or tree size");
+      if (!( 0 <= cost ))
+        throw GeographicLib::GeographicErr("Bad value for cost");
+      std::vector<Node> tree;
+      tree.reserve(treesize);
+      for (int i = 0; i < treesize; ++i) {
+        Node node;
+        if (bin) {
+          is.read(reinterpret_cast<char *>(&node.index), sizeof(int));
+          if (node.index >= 0) {
+            is.read(reinterpret_cast<char *>(node.data.lower),
+                    2 * sizeof(dist_t));
+            is.read(reinterpret_cast<char *>(node.data.upper),
+                    2 * sizeof(dist_t));
+            is.read(reinterpret_cast<char *>(node.data.child),
+                    2 * sizeof(int));
+          } else {
+            is.read(reinterpret_cast<char *>(node.leaves),
+                    bucket * sizeof(int));
+            for (int l = bucket; l < maxbucket; ++l)
+              node.leaves[l] = 0;
+          }
+        } else {
+          if (!( is >> node.index ))
+            throw GeographicLib::GeographicErr("Bad index");
+          if (node.index >= 0) {
+            for (int l = 0; l < 2; ++l) {
+              if (!( is >> node.data.lower[l] >> node.data.upper[l]
+                     >> node.data.child[l] ))
+                throw GeographicLib::GeographicErr("Bad node data");
+            }
+          } else {
+            // Must be at least one valid leaf followed by a sequence end
+            // markers (-1).
+            for (int l = 0; l < bucket; ++l) {
+              if (!( is >> node.leaves[l] ))
+                throw GeographicLib::GeographicErr("Bad leaf data");
+            }
+            for (int l = bucket; l < maxbucket; ++l)
+              node.leaves[l] = 0;
+          }
+        }
+        node.Check(numpoints, treesize, bucket);
+        tree.push_back(node);
+      }
+      _tree.swap(tree);
+      _numpoints = numpoints;
+      _bucket = bucket;
+      _mc = _sc = 0;
+      _cost = cost; _c1 = _k = _cmax = 0;
+      _cmin = std::numeric_limits<int>::max();
+    }
+
+    /**
+     * Write the object to stream \e os as text.
+     *
+     * @param[in,out] os the output stream.
+     * @param[in] t the NearestNeighbor object to be saved.
+     * @exception std::bad_alloc if memory for the string representation of the
+     *   object can't be allocated.
+     **********************************************************************/
+    friend std::ostream& operator<<(std::ostream& os, const NearestNeighbor& t)
+    { t.Save(os, false); return os; }
+
+    /**
+     * Read the object from stream \e is as text.
+     *
+     * @param[in,out] is the input stream.
+     * @param[out] t the NearestNeighbor object to be loaded.
+     * @exception GeographicErr if the state read from \e is is illegal.
+     * @exception std::bad_alloc if memory for the tree can't be allocated.
+     **********************************************************************/
+    friend std::istream& operator>>(std::istream& is, NearestNeighbor& t)
+    { t.Load(is, false); return is; }
+
+    /**
+     * Swap with another NearestNeighbor object.
+     *
+     * @param[in,out] t the NearestNeighbor object to swap with.
+     **********************************************************************/
+    void swap(NearestNeighbor& t) {
+      std::swap(_numpoints, t._numpoints);
+      std::swap(_bucket, t._bucket);
+      std::swap(_cost, t._cost);
+      _tree.swap(t._tree);
+      std::swap(_mc, t._mc);
+      std::swap(_sc, t._sc);
+      std::swap(_c1, t._c1);
+      std::swap(_k, t._k);
+      std::swap(_cmin, t._cmin);
+      std::swap(_cmax, t._cmax);
+    }
+
+    /**
+     * The accumulated statistics on the searches so far.
+     *
+     * @param[out] setupcost the cost of initializing the NearestNeighbor.
+     * @param[out] numsearches the number of calls to Search().
+     * @param[out] searchcost the total cost of the calls to Search().
+     * @param[out] mincost the minimum cost of a Search().
+     * @param[out] maxcost the maximum cost of a Search().
+     * @param[out] mean the mean cost of a Search().
+     * @param[out] sd the standard deviation in the cost of a Search().
+     *
+     * Here "cost" measures the number of distance calculations needed.  Note
+     * that the accumulation of statistics is \e not thread safe.
+     **********************************************************************/
+    void Statistics(int& setupcost, int& numsearches, int& searchcost,
+                    int& mincost, int& maxcost,
+                    double& mean, double& sd) const {
+      setupcost = _cost; numsearches = _k; searchcost = _c1;
+      mincost = _cmin; maxcost = _cmax;
+      mean = _mc; sd = std::sqrt(_sc / (_k - 1));
+    }
+
+    /**
+     * Reset the counters for the accumulated statistics on the searches so
+     * far.
+     **********************************************************************/
+    void ResetStatistics() const {
+      _mc = _sc = 0;
+      _c1 = _k = _cmax = 0;
+      _cmin = std::numeric_limits<int>::max();
+    }
+
+  private:
+    // Package up a dist_t and an int.  We will want to sort on the dist_t so
+    // put it first.
+    typedef std::pair<dist_t, int> item;
+    // \cond SKIP
+    class Node {
+    public:
+      struct bounds {
+        dist_t lower[2], upper[2]; // bounds on inner/outer distances
+        int child[2];
+      };
+      union {
+        bounds data;
+        int leaves[maxbucket];
+      };
+      int index;
+
+      Node()
+        : index(-1)
+      {
+        for (int i = 0; i < 2; ++i) {
+          data.lower[i] = data.upper[i] = 0;
+          data.child[i] = -1;
+        }
+      }
+
+      // Sanity check on a Node
+      void Check(int numpoints, int treesize, int bucket) const {
+        if (!( -1 <= index && index < numpoints ))
+          throw GeographicLib::GeographicErr("Bad index");
+        if (index >= 0) {
+          if (!( -1 <= data.child[0] && data.child[0] < treesize &&
+                 -1 <= data.child[1] && data.child[1] < treesize ))
+            throw GeographicLib::GeographicErr("Bad child pointers");
+          if (!( 0 <= data.lower[0] && data.lower[0] <= data.upper[0] &&
+                 data.upper[0] <= data.lower[1] &&
+                 data.lower[1] <= data.upper[1] ))
+            throw GeographicLib::GeographicErr("Bad bounds");
+        } else {
+          // Must be at least one valid leaf followed by a sequence end markers
+          // (-1).
+          bool start = true;
+          for (int l = 0; l < bucket; ++l) {
+            if (!( (start ?
+                    ((l == 0 ? 0 : -1) <= leaves[l] && leaves[l] < numpoints) :
+                    leaves[l] == -1) ))
+              throw GeographicLib::GeographicErr("Bad leaf data");
+            start = leaves[l] >= 0;
+          }
+          for (int l = bucket; l < maxbucket; ++l) {
+            if (leaves[l] != 0)
+              throw GeographicLib::GeographicErr("Bad leaf data");
+          }
+        }
+      }
+
+#if defined(GEOGRAPHICLIB_HAVE_BOOST_SERIALIZATION) && \
+  GEOGRAPHICLIB_HAVE_BOOST_SERIALIZATION
+      friend class boost::serialization::access;
+      template<class Archive>
+      void save(Archive& ar, const unsigned int) const {
+        ar & boost::serialization::make_nvp("index", index);
+        if (index < 0)
+          ar & boost::serialization::make_nvp("leaves", leaves);
+        else
+          ar & boost::serialization::make_nvp("lower", data.lower)
+            & boost::serialization::make_nvp("upper", data.upper)
+            & boost::serialization::make_nvp("child", data.child);
+      }
+      template<class Archive>
+      void load(Archive& ar, const unsigned int) {
+        ar & boost::serialization::make_nvp("index", index);
+        if (index < 0)
+          ar & boost::serialization::make_nvp("leaves", leaves);
+        else
+          ar & boost::serialization::make_nvp("lower", data.lower)
+            & boost::serialization::make_nvp("upper", data.upper)
+            & boost::serialization::make_nvp("child", data.child);
+      }
+      template<class Archive>
+      void serialize(Archive& ar, const unsigned int file_version)
+      { boost::serialization::split_member(ar, *this, file_version); }
+#endif
+    };
+    // \endcond
+#if defined(GEOGRAPHICLIB_HAVE_BOOST_SERIALIZATION) && \
+  GEOGRAPHICLIB_HAVE_BOOST_SERIALIZATION
+    friend class boost::serialization::access;
+    template<class Archive> void save(Archive& ar, const unsigned) const {
+      int realspec = std::numeric_limits<dist_t>::digits *
+        (std::numeric_limits<dist_t>::is_integer ? -1 : 1);
+      // Need to use version1, otherwise load error in debug mode on Linux:
+      // undefined reference to GeographicLib::NearestNeighbor<...>::version.
+      int version1 = version;
+      ar & boost::serialization::make_nvp("version", version1)
+        & boost::serialization::make_nvp("realspec", realspec)
+        & boost::serialization::make_nvp("bucket", _bucket)
+        & boost::serialization::make_nvp("numpoints", _numpoints)
+        & boost::serialization::make_nvp("cost", _cost)
+        & boost::serialization::make_nvp("tree", _tree);
+    }
+    template<class Archive> void load(Archive& ar, const unsigned) {
+      int version1, realspec, bucket, numpoints, cost;
+      ar & boost::serialization::make_nvp("version", version1);
+      if (version1 != version)
+        throw GeographicLib::GeographicErr("Incompatible version");
+      std::vector<Node> tree;
+      ar & boost::serialization::make_nvp("realspec", realspec);
+      if (!( realspec == std::numeric_limits<dist_t>::digits *
+             (std::numeric_limits<dist_t>::is_integer ? -1 : 1) ))
+        throw GeographicLib::GeographicErr("Different dist_t types");
+      ar & boost::serialization::make_nvp("bucket", bucket);
+      if (!( 0 <= bucket && bucket <= maxbucket ))
+        throw GeographicLib::GeographicErr("Bad bucket size");
+      ar & boost::serialization::make_nvp("numpoints", numpoints)
+        & boost::serialization::make_nvp("cost", cost)
+        & boost::serialization::make_nvp("tree", tree);
+      if (!( 0 <= int(tree.size()) && int(tree.size()) <= numpoints ))
+        throw
+          GeographicLib::GeographicErr("Bad number of points or tree size");
+      for (int i = 0; i < int(tree.size()); ++i)
+        tree[i].Check(numpoints, int(tree.size()), bucket);
+      _tree.swap(tree);
+      _numpoints = numpoints;
+      _bucket = bucket;
+      _mc = _sc = 0;
+      _cost = cost; _c1 = _k = _cmax = 0;
+      _cmin = std::numeric_limits<int>::max();
+    }
+    template<class Archive>
+    void serialize(Archive& ar, const unsigned int file_version)
+    { boost::serialization::split_member(ar, *this, file_version); }
+#endif
+
+    int _numpoints, _bucket, _cost;
+    std::vector<Node> _tree;
+    // Counters to track stastistics on the cost of searches
+    mutable double _mc, _sc;
+    mutable int _c1, _k, _cmin, _cmax;
+
+    int init(const std::vector<pos_t>& pts, const distfun_t& dist, int bucket,
+             std::vector<Node>& tree, std::vector<item>& ids, int& cost,
+             int l, int u, int vp) {
+
+      if (u == l)
+        return -1;
+      Node node;
+
+      if (u - l > (bucket == 0 ? 1 : bucket)) {
+
+        // choose a vantage point and move it to the start
+        int i = vp;
+        std::swap(ids[l], ids[i]);
+
+        int m = (u + l + 1) / 2;
+
+        for (int k = l + 1; k < u; ++k) {
+          ids[k].first = dist(pts[ids[l].second], pts[ids[k].second]);
+          ++cost;
+        }
+        // partition around the median distance
+        std::nth_element(ids.begin() + l + 1,
+                         ids.begin() + m,
+                         ids.begin() + u);
+        node.index = ids[l].second;
+        if (m > l + 1) {        // node.child[0] is possibly empty
+          typename std::vector<item>::iterator
+            t = std::min_element(ids.begin() + l + 1, ids.begin() + m);
+          node.data.lower[0] = t->first;
+          t = std::max_element(ids.begin() + l + 1, ids.begin() + m);
+          node.data.upper[0] = t->first;
+          // Use point with max distance as vantage point; this point act as a
+          // "corner" point and leads to a good partition.
+          node.data.child[0] = init(pts, dist, bucket, tree, ids, cost,
+                                    l + 1, m, int(t - ids.begin()));
+        }
+        typename std::vector<item>::iterator
+          t = std::max_element(ids.begin() + m, ids.begin() + u);
+        node.data.lower[1] = ids[m].first;
+        node.data.upper[1] = t->first;
+        // Use point with max distance as vantage point here too
+        node.data.child[1] = init(pts, dist, bucket, tree, ids, cost,
+                                  m, u, int(t - ids.begin()));
+      } else {
+        if (bucket == 0)
+          node.index = ids[l].second;
+        else {
+          node.index = -1;
+          // Sort the bucket entries so that the tree is independent of the
+          // implementation of nth_element.
+          std::sort(ids.begin() + l, ids.begin() + u);
+          for (int i = l; i < u; ++i)
+            node.leaves[i-l] = ids[i].second;
+          for (int i = u - l; i < bucket; ++i)
+            node.leaves[i] = -1;
+          for (int i = bucket; i < maxbucket; ++i)
+            node.leaves[i] = 0;
+        }
+      }
+
+      tree.push_back(node);
+      return int(tree.size()) - 1;
+    }
+
+  };
+
+} // namespace GeographicLib
+
+namespace std {
+
+  /**
+   * Swap two GeographicLib::NearestNeighbor objects.
+   *
+   * @tparam dist_t the type used for measuring distances.
+   * @tparam pos_t the type for specifying the positions of points.
+   * @tparam distfun_t the type for a function object which calculates
+   *   distances between points.
+   * @param[in,out] a the first GeographicLib::NearestNeighbor to swap.
+   * @param[in,out] b the second GeographicLib::NearestNeighbor to swap.
+   **********************************************************************/
+  template <typename dist_t, typename pos_t, class distfun_t>
+  void swap(GeographicLib::NearestNeighbor<dist_t, pos_t, distfun_t>& a,
+            GeographicLib::NearestNeighbor<dist_t, pos_t, distfun_t>& b) {
+    a.swap(b);
+  }
+
+} // namespace std
+
+#if defined(_MSC_VER)
+#  pragma warning (pop)
+#endif
+
+#endif  // GEOGRAPHICLIB_NEARESTNEIGHBOR_HPP

+ 400 - 0
external/include/GeographicLib/NormalGravity.hpp

@@ -0,0 +1,400 @@
+/**
+ * \file NormalGravity.hpp
+ * \brief Header for GeographicLib::NormalGravity class
+ *
+ * Copyright (c) Charles Karney (2011-2020) <charles@karney.com> and licensed
+ * under the MIT/X11 License.  For more information, see
+ * https://geographiclib.sourceforge.io/
+ **********************************************************************/
+
+#if !defined(GEOGRAPHICLIB_NORMALGRAVITY_HPP)
+#define GEOGRAPHICLIB_NORMALGRAVITY_HPP 1
+
+#include <GeographicLib/Constants.hpp>
+#include <GeographicLib/Geocentric.hpp>
+
+namespace GeographicLib {
+
+  /**
+   * \brief The normal gravity of the earth
+   *
+   * "Normal" gravity refers to an idealization of the earth which is modeled
+   * as an rotating ellipsoid.  The eccentricity of the ellipsoid, the rotation
+   * speed, and the distribution of mass within the ellipsoid are such that the
+   * ellipsoid is a "level ellipoid", a surface of constant potential
+   * (gravitational plus centrifugal).  The acceleration due to gravity is
+   * therefore perpendicular to the surface of the ellipsoid.
+   *
+   * Because the distribution of mass within the ellipsoid is unspecified, only
+   * the potential exterior to the ellipsoid is well defined.  In this class,
+   * the mass is assumed to be to concentrated on a "focal disc" of radius,
+   * (<i>a</i><sup>2</sup> &minus; <i>b</i><sup>2</sup>)<sup>1/2</sup>, where
+   * \e a is the equatorial radius of the ellipsoid and \e b is its polar
+   * semi-axis.  In the case of an oblate ellipsoid, the mass is concentrated
+   * on a "focal rod" of length 2(<i>b</i><sup>2</sup> &minus;
+   * <i>a</i><sup>2</sup>)<sup>1/2</sup>.  As a result the potential is well
+   * defined everywhere.
+   *
+   * There is a closed solution to this problem which is implemented here.
+   * Series "approximations" are only used to evaluate certain combinations of
+   * elementary functions where use of the closed expression results in a loss
+   * of accuracy for small arguments due to cancellation of the leading terms.
+   * However these series include sufficient terms to give full machine
+   * precision.
+   *
+   * Although the formulation used in this class applies to ellipsoids with
+   * arbitrary flattening, in practice, its use should be limited to about
+   * <i>b</i>/\e a &isin; [0.01, 100] or \e f &isin; [&minus;99, 0.99].
+   *
+   * Definitions:
+   * - <i>V</i><sub>0</sub>, the gravitational contribution to the normal
+   *   potential;
+   * - &Phi;, the rotational contribution to the normal potential;
+   * - \e U = <i>V</i><sub>0</sub> + &Phi;, the total potential;
+   * - <b>&Gamma;</b> = &nabla;<i>V</i><sub>0</sub>, the acceleration due to
+   *   mass of the earth;
+   * - <b>f</b> = &nabla;&Phi;, the centrifugal acceleration;
+   * - <b>&gamma;</b> = &nabla;\e U = <b>&Gamma;</b> + <b>f</b>, the normal
+   *   acceleration;
+   * - \e X, \e Y, \e Z, geocentric coordinates;
+   * - \e x, \e y, \e z, local cartesian coordinates used to denote the east,
+   *   north and up directions.
+   *
+   * References:
+   * - C. Somigliana, Teoria generale del campo gravitazionale dell'ellissoide
+   *   di rotazione, Mem. Soc. Astron. Ital, <b>4</b>, 541--599 (1929).
+   * - W. A. Heiskanen and H. Moritz, Physical Geodesy (Freeman, San
+   *   Francisco, 1967), Secs. 1-19, 2-7, 2-8 (2-9, 2-10), 6-2 (6-3).
+   * - B. Hofmann-Wellenhof, H. Moritz, Physical Geodesy (Second edition,
+   *   Springer, 2006) https://doi.org/10.1007/978-3-211-33545-1
+   * - H. Moritz, Geodetic Reference System 1980, J. Geodesy 54(3), 395-405
+   *   (1980) https://doi.org/10.1007/BF02521480
+   *
+   * For more information on normal gravity see \ref normalgravity.
+   *
+   * Example of use:
+   * \include example-NormalGravity.cpp
+   **********************************************************************/
+
+  class GEOGRAPHICLIB_EXPORT NormalGravity {
+  private:
+    static const int maxit_ = 20;
+    typedef Math::real real;
+    friend class GravityModel;
+    real _a, _GM, _omega, _f, _J2, _omega2, _aomega2;
+    real _e2, _ep2, _b, _E, _U0, _gammae, _gammap, _Q0, _k, _fstar;
+    Geocentric _earth;
+    static real atanzz(real x, bool alt) {
+      // This routine obeys the identity
+      //   atanzz(x, alt) = atanzz(-x/(1+x), !alt)
+      //
+      // Require x >= -1.  Best to call with alt, s.t. x >= 0; this results in
+      // a call to atan, instead of asin, or to asinh, instead of atanh.
+      using std::sqrt; using std::abs; using std::atan; using std::asin;
+      using std::asinh; using std::atanh;
+      real z = sqrt(abs(x));
+      return x == 0 ? 1 :
+        (alt ?
+         (!(x < 0) ? asinh(z) : asin(z)) / sqrt(abs(x) / (1 + x)) :
+         (!(x < 0) ? atan(z) : atanh(z)) / z);
+    }
+    static real atan7series(real x);
+    static real atan5series(real x);
+    static real Qf(real x, bool alt);
+    static real Hf(real x, bool alt);
+    static real QH3f(real x, bool alt);
+    real Jn(int n) const;
+    void Initialize(real a, real GM, real omega, real f_J2, bool geometricp);
+  public:
+
+    /** \name Setting up the normal gravity
+     **********************************************************************/
+    ///@{
+    /**
+     * Constructor for the normal gravity.
+     *
+     * @param[in] a equatorial radius (meters).
+     * @param[in] GM mass constant of the ellipsoid
+     *   (meters<sup>3</sup>/seconds<sup>2</sup>); this is the product of \e G
+     *   the gravitational constant and \e M the mass of the earth (usually
+     *   including the mass of the earth's atmosphere).
+     * @param[in] omega the angular velocity (rad s<sup>&minus;1</sup>).
+     * @param[in] f_J2 either the flattening of the ellipsoid \e f or the
+     *   the dynamical form factor \e J2.
+     * @param[out] geometricp if true (the default), then \e f_J2 denotes the
+     *   flattening, else it denotes the dynamical form factor \e J2.
+     * @exception if \e a is not positive or if the other parameters do not
+     *   obey the restrictions given below.
+     *
+     * The shape of the ellipsoid can be given in one of two ways:
+     * - geometrically (\e geomtricp = true), the ellipsoid is defined by the
+     *   flattening \e f = (\e a &minus; \e b) / \e a, where \e a and \e b are
+     *   the equatorial radius and the polar semi-axis.  The parameters should
+     *   obey \e a &gt; 0, \e f &lt; 1.  There are no restrictions on \e GM or
+     *   \e omega, in particular, \e GM need not be positive.
+     * - physically (\e geometricp = false), the ellipsoid is defined by the
+     *   dynamical form factor <i>J</i><sub>2</sub> = (\e C &minus; \e A) /
+     *   <i>Ma</i><sup>2</sup>, where \e A and \e C are the equatorial and
+     *   polar moments of inertia and \e M is the mass of the earth.  The
+     *   parameters should obey \e a &gt; 0, \e GM &gt; 0 and \e J2 &lt; 1/3
+     *   &minus; (<i>omega</i><sup>2</sup><i>a</i><sup>3</sup>/<i>GM</i>)
+     *   8/(45&pi;).  There is no restriction on \e omega.
+     **********************************************************************/
+    NormalGravity(real a, real GM, real omega, real f_J2,
+                  bool geometricp = true);
+
+    /**
+     * A default constructor for the normal gravity.  This sets up an
+     * uninitialized object and is used by GravityModel which constructs this
+     * object before it has read in the parameters for the reference ellipsoid.
+     **********************************************************************/
+    NormalGravity() : _a(-1) {}
+    ///@}
+
+    /** \name Compute the gravity
+     **********************************************************************/
+    ///@{
+    /**
+     * Evaluate the gravity on the surface of the ellipsoid.
+     *
+     * @param[in] lat the geographic latitude (degrees).
+     * @return &gamma; the acceleration due to gravity, positive downwards
+     *   (m s<sup>&minus;2</sup>).
+     *
+     * Due to the axial symmetry of the ellipsoid, the result is independent of
+     * the value of the longitude.  This acceleration is perpendicular to the
+     * surface of the ellipsoid.  It includes the effects of the earth's
+     * rotation.
+     **********************************************************************/
+    Math::real SurfaceGravity(real lat) const;
+
+    /**
+     * Evaluate the gravity at an arbitrary point above (or below) the
+     * ellipsoid.
+     *
+     * @param[in] lat the geographic latitude (degrees).
+     * @param[in] h the height above the ellipsoid (meters).
+     * @param[out] gammay the northerly component of the acceleration
+     *   (m s<sup>&minus;2</sup>).
+     * @param[out] gammaz the upward component of the acceleration
+     *   (m s<sup>&minus;2</sup>); this is usually negative.
+     * @return \e U the corresponding normal potential
+     *   (m<sup>2</sup> s<sup>&minus;2</sup>).
+     *
+     * Due to the axial symmetry of the ellipsoid, the result is independent of
+     * the value of the longitude and the easterly component of the
+     * acceleration vanishes, \e gammax = 0.  The function includes the effects
+     * of the earth's rotation.  When \e h = 0, this function gives \e gammay =
+     * 0 and the returned value matches that of NormalGravity::SurfaceGravity.
+     **********************************************************************/
+    Math::real Gravity(real lat, real h, real& gammay, real& gammaz)
+      const;
+
+    /**
+     * Evaluate the components of the acceleration due to gravity and the
+     * centrifugal acceleration in geocentric coordinates.
+     *
+     * @param[in] X geocentric coordinate of point (meters).
+     * @param[in] Y geocentric coordinate of point (meters).
+     * @param[in] Z geocentric coordinate of point (meters).
+     * @param[out] gammaX the \e X component of the acceleration
+     *   (m s<sup>&minus;2</sup>).
+     * @param[out] gammaY the \e Y component of the acceleration
+     *   (m s<sup>&minus;2</sup>).
+     * @param[out] gammaZ the \e Z component of the acceleration
+     *   (m s<sup>&minus;2</sup>).
+     * @return \e U = <i>V</i><sub>0</sub> + &Phi; the sum of the
+     *   gravitational and centrifugal potentials
+     *   (m<sup>2</sup> s<sup>&minus;2</sup>).
+     *
+     * The acceleration given by <b>&gamma;</b> = &nabla;\e U =
+     * &nabla;<i>V</i><sub>0</sub> + &nabla;&Phi; = <b>&Gamma;</b> + <b>f</b>.
+     **********************************************************************/
+    Math::real U(real X, real Y, real Z,
+                 real& gammaX, real& gammaY, real& gammaZ) const;
+
+    /**
+     * Evaluate the components of the acceleration due to the gravitational
+     * force in geocentric coordinates.
+     *
+     * @param[in] X geocentric coordinate of point (meters).
+     * @param[in] Y geocentric coordinate of point (meters).
+     * @param[in] Z geocentric coordinate of point (meters).
+     * @param[out] GammaX the \e X component of the acceleration due to the
+     *   gravitational force (m s<sup>&minus;2</sup>).
+     * @param[out] GammaY the \e Y component of the acceleration due to the
+     * @param[out] GammaZ the \e Z component of the acceleration due to the
+     *   gravitational force (m s<sup>&minus;2</sup>).
+     * @return <i>V</i><sub>0</sub> the gravitational potential
+     *   (m<sup>2</sup> s<sup>&minus;2</sup>).
+     *
+     * This function excludes the centrifugal acceleration and is appropriate
+     * to use for space applications.  In terrestrial applications, the
+     * function NormalGravity::U (which includes this effect) should usually be
+     * used.
+     **********************************************************************/
+    Math::real V0(real X, real Y, real Z,
+                  real& GammaX, real& GammaY, real& GammaZ) const;
+
+    /**
+     * Evaluate the centrifugal acceleration in geocentric coordinates.
+     *
+     * @param[in] X geocentric coordinate of point (meters).
+     * @param[in] Y geocentric coordinate of point (meters).
+     * @param[out] fX the \e X component of the centrifugal acceleration
+     *   (m s<sup>&minus;2</sup>).
+     * @param[out] fY the \e Y component of the centrifugal acceleration
+     *   (m s<sup>&minus;2</sup>).
+     * @return &Phi; the centrifugal potential (m<sup>2</sup>
+     *   s<sup>&minus;2</sup>).
+     *
+     * &Phi; is independent of \e Z, thus \e fZ = 0.  This function
+     * NormalGravity::U sums the results of NormalGravity::V0 and
+     * NormalGravity::Phi.
+     **********************************************************************/
+    Math::real Phi(real X, real Y, real& fX, real& fY) const;
+    ///@}
+
+    /** \name Inspector functions
+     **********************************************************************/
+    ///@{
+    /**
+     * @return true if the object has been initialized.
+     **********************************************************************/
+    bool Init() const { return _a > 0; }
+
+    /**
+     * @return \e a the equatorial radius of the ellipsoid (meters).  This is
+     *   the value used in the constructor.
+     **********************************************************************/
+    Math::real EquatorialRadius() const
+    { return Init() ? _a : Math::NaN(); }
+
+    /**
+     * @return \e GM the mass constant of the ellipsoid
+     *   (m<sup>3</sup> s<sup>&minus;2</sup>).  This is the value used in the
+     *   constructor.
+     **********************************************************************/
+    Math::real MassConstant() const
+    { return Init() ? _GM : Math::NaN(); }
+
+    /**
+     * @return <i>J</i><sub><i>n</i></sub> the dynamical form factors of the
+     *   ellipsoid.
+     *
+     * If \e n = 2 (the default), this is the value of <i>J</i><sub>2</sub>
+     * used in the constructor.  Otherwise it is the zonal coefficient of the
+     * Legendre harmonic sum of the normal gravitational potential.  Note that
+     * <i>J</i><sub><i>n</i></sub> = 0 if \e n is odd.  In most gravity
+     * applications, fully normalized Legendre functions are used and the
+     * corresponding coefficient is <i>C</i><sub><i>n</i>0</sub> =
+     * &minus;<i>J</i><sub><i>n</i></sub> / sqrt(2 \e n + 1).
+     **********************************************************************/
+    Math::real DynamicalFormFactor(int n = 2) const
+    { return Init() ? ( n == 2 ? _J2 : Jn(n)) : Math::NaN(); }
+
+    /**
+     * @return &omega; the angular velocity of the ellipsoid (rad
+     *   s<sup>&minus;1</sup>).  This is the value used in the constructor.
+     **********************************************************************/
+    Math::real AngularVelocity() const
+    { return Init() ? _omega : Math::NaN(); }
+
+    /**
+     * @return <i>f</i> the flattening of the ellipsoid (\e a &minus; \e b)/\e
+     *   a.
+     **********************************************************************/
+    Math::real Flattening() const
+    { return Init() ? _f : Math::NaN(); }
+
+    /**
+     * @return &gamma;<sub>e</sub> the normal gravity at equator (m
+     *   s<sup>&minus;2</sup>).
+     **********************************************************************/
+    Math::real EquatorialGravity() const
+    { return Init() ? _gammae : Math::NaN(); }
+
+    /**
+     * @return &gamma;<sub>p</sub> the normal gravity at poles (m
+     *   s<sup>&minus;2</sup>).
+     **********************************************************************/
+    Math::real PolarGravity() const
+    { return Init() ? _gammap : Math::NaN(); }
+
+    /**
+     * @return <i>f*</i> the gravity flattening (&gamma;<sub>p</sub> &minus;
+     *   &gamma;<sub>e</sub>) / &gamma;<sub>e</sub>.
+     **********************************************************************/
+    Math::real GravityFlattening() const
+    { return Init() ? _fstar : Math::NaN(); }
+
+    /**
+     * @return <i>U</i><sub>0</sub> the constant normal potential for the
+     *   surface of the ellipsoid (m<sup>2</sup> s<sup>&minus;2</sup>).
+     **********************************************************************/
+    Math::real SurfacePotential() const
+    { return Init() ? _U0 : Math::NaN(); }
+
+    /**
+     * @return the Geocentric object used by this instance.
+     **********************************************************************/
+    const Geocentric& Earth() const { return _earth; }
+
+    /**
+     * \deprecated An old name for EquatorialRadius().
+     **********************************************************************/
+    GEOGRAPHICLIB_DEPRECATED("Use EquatorialRadius()")
+    Math::real MajorRadius() const { return EquatorialRadius(); }
+    ///@}
+
+    /**
+     * A global instantiation of NormalGravity for the WGS84 ellipsoid.
+     **********************************************************************/
+    static const NormalGravity& WGS84();
+
+    /**
+     * A global instantiation of NormalGravity for the GRS80 ellipsoid.
+     **********************************************************************/
+    static const NormalGravity& GRS80();
+
+    /**
+     * Compute the flattening from the dynamical form factor.
+     *
+     * @param[in] a equatorial radius (meters).
+     * @param[in] GM mass constant of the ellipsoid
+     *   (meters<sup>3</sup>/seconds<sup>2</sup>); this is the product of \e G
+     *   the gravitational constant and \e M the mass of the earth (usually
+     *   including the mass of the earth's atmosphere).
+     * @param[in] omega the angular velocity (rad s<sup>&minus;1</sup>).
+     * @param[in] J2 the dynamical form factor.
+     * @return \e f the flattening of the ellipsoid.
+     *
+     * This routine requires \e a &gt; 0, \e GM &gt; 0, \e J2 &lt; 1/3 &minus;
+     * <i>omega</i><sup>2</sup><i>a</i><sup>3</sup>/<i>GM</i> 8/(45&pi;).  A
+     * NaN is returned if these conditions do not hold.  The restriction to
+     * positive \e GM is made because for negative \e GM two solutions are
+     * possible.
+     **********************************************************************/
+    static Math::real J2ToFlattening(real a, real GM, real omega, real J2);
+
+    /**
+     * Compute the dynamical form factor from the flattening.
+     *
+     * @param[in] a equatorial radius (meters).
+     * @param[in] GM mass constant of the ellipsoid
+     *   (meters<sup>3</sup>/seconds<sup>2</sup>); this is the product of \e G
+     *   the gravitational constant and \e M the mass of the earth (usually
+     *   including the mass of the earth's atmosphere).
+     * @param[in] omega the angular velocity (rad s<sup>&minus;1</sup>).
+     * @param[in] f the flattening of the ellipsoid.
+     * @return \e J2 the dynamical form factor.
+     *
+     * This routine requires \e a &gt; 0, \e GM &ne; 0, \e f &lt; 1.  The
+     * values of these parameters are not checked.
+     **********************************************************************/
+    static Math::real FlatteningToJ2(real a, real GM, real omega, real f);
+  };
+
+} // namespace GeographicLib
+
+#endif  // GEOGRAPHICLIB_NORMALGRAVITY_HPP

+ 255 - 0
external/include/GeographicLib/OSGB.hpp

@@ -0,0 +1,255 @@
+/**
+ * \file OSGB.hpp
+ * \brief Header for GeographicLib::OSGB class
+ *
+ * Copyright (c) Charles Karney (2010-2020) <charles@karney.com> and licensed
+ * under the MIT/X11 License.  For more information, see
+ * https://geographiclib.sourceforge.io/
+ **********************************************************************/
+
+#if !defined(GEOGRAPHICLIB_OSGB_HPP)
+#define GEOGRAPHICLIB_OSGB_HPP 1
+
+#include <GeographicLib/Constants.hpp>
+#include <GeographicLib/TransverseMercator.hpp>
+
+#if defined(_MSC_VER)
+// Squelch warnings about dll vs string
+#  pragma warning (push)
+#  pragma warning (disable: 4251)
+#endif
+
+namespace GeographicLib {
+
+  /**
+   * \brief Ordnance Survey grid system for Great Britain
+   *
+   * The class implements the coordinate system used by the Ordnance Survey for
+   * maps of Great Britain and conversions to the grid reference system.
+   *
+   * See
+   * - <a href="http://www.ordnancesurvey.co.uk/docs/support/guide-coordinate-systems-great-britain.pdf">
+   *   A guide to coordinate systems in Great Britain</a>
+   * - <a href="http://www.ordnancesurvey.co.uk/docs/support/national-grid.pdf">
+   *   Guide to the National Grid</a>
+   *
+   * \warning the latitudes and longitudes for the Ordnance Survey grid
+   * system do not use the WGS84 datum.  Do not use the values returned by this
+   * class in the UTMUPS, MGRS, or Geoid classes without first converting the
+   * datum (and vice versa).
+   *
+   * Example of use:
+   * \include example-OSGB.cpp
+   **********************************************************************/
+  class GEOGRAPHICLIB_EXPORT OSGB {
+  private:
+    typedef Math::real real;
+    static const char* const letters_;
+    static const char* const digits_;
+    static const TransverseMercator& OSGBTM();
+    enum {
+      base_ = 10,
+      tile_ = 100000,
+      tilelevel_ = 5,
+      tilegrid_ = 5,
+      tileoffx_ = 2 * tilegrid_,
+      tileoffy_ = 1 * tilegrid_,
+      minx_ = - tileoffx_ * tile_,
+      miny_ = - tileoffy_ * tile_,
+      maxx_ = (tilegrid_*tilegrid_ - tileoffx_) * tile_,
+      maxy_ = (tilegrid_*tilegrid_ - tileoffy_) * tile_,
+      // Maximum precision is um
+      maxprec_ = 5 + 6,
+    };
+    static real computenorthoffset();
+    static void CheckCoords(real x, real y);
+    OSGB();                     // Disable constructor
+  public:
+
+    /**
+     * Forward projection, from geographic to OSGB coordinates.
+     *
+     * @param[in] lat latitude of point (degrees).
+     * @param[in] lon longitude of point (degrees).
+     * @param[out] x easting of point (meters).
+     * @param[out] y northing of point (meters).
+     * @param[out] gamma meridian convergence at point (degrees).
+     * @param[out] k scale of projection at point.
+     *
+     * \e lat should be in the range [&minus;90&deg;, 90&deg;].
+     **********************************************************************/
+    static void Forward(real lat, real lon,
+                        real& x, real& y, real& gamma, real& k) {
+      OSGBTM().Forward(OriginLongitude(), lat, lon, x, y, gamma, k);
+      x += FalseEasting();
+      y += computenorthoffset();
+    }
+
+    /**
+     * Reverse projection, from OSGB coordinates to geographic.
+     *
+     * @param[in] x easting of point (meters).
+     * @param[in] y northing of point (meters).
+     * @param[out] lat latitude of point (degrees).
+     * @param[out] lon longitude of point (degrees).
+     * @param[out] gamma meridian convergence at point (degrees).
+     * @param[out] k scale of projection at point.
+     *
+     * The value of \e lon returned is in the range [&minus;180&deg;,
+     * 180&deg;].
+     **********************************************************************/
+
+    static void Reverse(real x, real y,
+                        real& lat, real& lon, real& gamma, real& k) {
+      x -= FalseEasting();
+      y -= computenorthoffset();
+      OSGBTM().Reverse(OriginLongitude(), x, y, lat, lon, gamma, k);
+    }
+
+    /**
+     * OSGB::Forward without returning the convergence and scale.
+     **********************************************************************/
+    static void Forward(real lat, real lon, real& x, real& y) {
+      real gamma, k;
+      Forward(lat, lon, x, y, gamma, k);
+    }
+
+    /**
+     * OSGB::Reverse without returning the convergence and scale.
+     **********************************************************************/
+    static void Reverse(real x, real y, real& lat, real& lon) {
+      real gamma, k;
+      Reverse(x, y, lat, lon, gamma, k);
+    }
+
+    /**
+     * Convert OSGB coordinates to a grid reference.
+     *
+     * @param[in] x easting of point (meters).
+     * @param[in] y northing of point (meters).
+     * @param[in] prec precision relative to 100 km.
+     * @param[out] gridref National Grid reference.
+     * @exception GeographicErr if \e prec, \e x, or \e y is outside its
+     *   allowed range.
+     * @exception std::bad_alloc if the memory for \e gridref can't be
+     *   allocatied.
+     *
+     * \e prec specifies the precision of the grid reference string as follows:
+     * - prec = 0 (min), 100km
+     * - prec = 1, 10km
+     * - prec = 2, 1km
+     * - prec = 3, 100m
+     * - prec = 4, 10m
+     * - prec = 5, 1m
+     * - prec = 6, 0.1m
+     * - prec = 11 (max), 1&mu;m
+     *
+     * The easting must be in the range [&minus;1000 km, 1500 km) and the
+     * northing must be in the range [&minus;500 km, 2000 km).  These bounds
+     * are consistent with rules for the letter designations for the grid
+     * system.
+     *
+     * If \e x or \e y is NaN, the returned grid reference is "INVALID".
+     **********************************************************************/
+    static void GridReference(real x, real y, int prec, std::string& gridref);
+
+    /**
+     * Convert OSGB coordinates to a grid reference.
+     *
+     * @param[in] gridref National Grid reference.
+     * @param[out] x easting of point (meters).
+     * @param[out] y northing of point (meters).
+     * @param[out] prec precision relative to 100 km.
+     * @param[in] centerp if true (default), return center of the grid square,
+     *   else return SW (lower left) corner.
+     * @exception GeographicErr if \e gridref is illegal.
+     *
+     * The grid reference must be of the form: two letters (not including I)
+     * followed by an even number of digits (up to 22).
+     *
+     * If the first 2 characters of \e gridref are "IN", then \e x and \e y are
+     * set to NaN and \e prec is set to &minus;2.
+     **********************************************************************/
+    static void GridReference(const std::string& gridref,
+                              real& x, real& y, int& prec,
+                              bool centerp = true);
+
+    /** \name Inspector functions
+     **********************************************************************/
+    ///@{
+    /**
+     * @return \e a the equatorial radius of the Airy 1830 ellipsoid (meters).
+     *
+     * This is 20923713 ft converted to meters using the rule 1 ft =
+     * 10<sup>9.48401603&minus;10</sup> m.  The Airy 1830 value is returned
+     * because the OSGB projection is based on this ellipsoid.  The conversion
+     * factor from feet to meters is the one used for the 1936 retriangulation
+     * of Britain; see Section A.1 (p. 37) of <i>A guide to coordinate systems
+     * in Great Britain</i>, v2.2 (Dec. 2013).
+     **********************************************************************/
+    static Math::real EquatorialRadius() {
+    // result is about 6377563.3960320664406 m
+      using std::pow;
+      return pow(real(10), real(48401603 - 100000000) / 100000000)
+        * real(20923713);
+    }
+
+    /**
+     * @return \e f the inverse flattening of the Airy 1830 ellipsoid.
+     *
+     * For the Airy 1830 ellipsoid, \e a = 20923713 ft and \e b = 20853810 ft;
+     * thus the flattening = (20923713 &minus; 20853810)/20923713 =
+     * 7767/2324857 = 1/299.32496459...  (The Airy 1830 value is returned
+     * because the OSGB projection is based on this ellipsoid.)
+     **********************************************************************/
+    static Math::real Flattening()
+    { return real(20923713 - 20853810) / real(20923713); }
+
+    /**
+     * @return \e k0 central scale for the OSGB projection (0.9996012717...).
+     *
+     * C. J. Mugnier, Grids &amp; Datums, PE&amp;RS, Oct. 2003, states that
+     * this is defined as 10<sup>9.9998268&minus;10</sup>.
+     **********************************************************************/
+    static Math::real CentralScale() {
+      using std::pow;
+      return pow(real(10), real(9998268 - 10000000) / 10000000);
+    }
+
+    /**
+     * @return latitude of the origin for the OSGB projection (49 degrees).
+     **********************************************************************/
+    static Math::real OriginLatitude() { return real(49); }
+
+    /**
+     * @return longitude of the origin for the OSGB projection (&minus;2
+     *   degrees).
+     **********************************************************************/
+    static Math::real OriginLongitude() { return real(-2); }
+
+    /**
+     * @return false northing the OSGB projection (&minus;100000 meters).
+     **********************************************************************/
+    static Math::real FalseNorthing() { return real(-100000); }
+
+    /**
+     * @return false easting the OSGB projection (400000 meters).
+     **********************************************************************/
+    static Math::real FalseEasting() { return real(400000); }
+
+    /**
+     * \deprecated An old name for EquatorialRadius().
+     **********************************************************************/
+    GEOGRAPHICLIB_DEPRECATED("Use EquatorialRadius()")
+    static Math::real MajorRadius() { return EquatorialRadius(); }
+    ///@}
+
+  };
+
+} // namespace GeographicLib
+
+#if defined(_MSC_VER)
+#  pragma warning (pop)
+#endif
+
+#endif  // GEOGRAPHICLIB_OSGB_HPP

+ 160 - 0
external/include/GeographicLib/PolarStereographic.hpp

@@ -0,0 +1,160 @@
+/**
+ * \file PolarStereographic.hpp
+ * \brief Header for GeographicLib::PolarStereographic class
+ *
+ * Copyright (c) Charles Karney (2008-2020) <charles@karney.com> and licensed
+ * under the MIT/X11 License.  For more information, see
+ * https://geographiclib.sourceforge.io/
+ **********************************************************************/
+
+#if !defined(GEOGRAPHICLIB_POLARSTEREOGRAPHIC_HPP)
+#define GEOGRAPHICLIB_POLARSTEREOGRAPHIC_HPP 1
+
+#include <GeographicLib/Constants.hpp>
+
+namespace GeographicLib {
+
+  /**
+   * \brief Polar stereographic projection
+   *
+   * Implementation taken from the report,
+   * - J. P. Snyder,
+   *   <a href="http://pubs.er.usgs.gov/usgspubs/pp/pp1395"> Map Projections: A
+   *   Working Manual</a>, USGS Professional Paper 1395 (1987),
+   *   pp. 160--163.
+   *
+   * This is a straightforward implementation of the equations in Snyder except
+   * that Newton's method is used to invert the projection.
+   *
+   * This class also returns the meridian convergence \e gamma and scale \e k.
+   * The meridian convergence is the bearing of grid north (the \e y axis)
+   * measured clockwise from true north.
+   *
+   * Example of use:
+   * \include example-PolarStereographic.cpp
+   **********************************************************************/
+  class GEOGRAPHICLIB_EXPORT PolarStereographic {
+  private:
+    typedef Math::real real;
+    real _a, _f, _e2, _es, _e2m, _c;
+    real _k0;
+  public:
+
+    /**
+     * Constructor for a ellipsoid with
+     *
+     * @param[in] a equatorial radius (meters).
+     * @param[in] f flattening of ellipsoid.  Setting \e f = 0 gives a sphere.
+     *   Negative \e f gives a prolate ellipsoid.
+     * @param[in] k0 central scale factor.
+     * @exception GeographicErr if \e a, (1 &minus; \e f) \e a, or \e k0 is
+     *   not positive.
+     **********************************************************************/
+    PolarStereographic(real a, real f, real k0);
+
+    /**
+     * Set the scale for the projection.
+     *
+     * @param[in] lat (degrees) assuming \e northp = true.
+     * @param[in] k scale at latitude \e lat (default 1).
+     * @exception GeographicErr \e k is not positive.
+     * @exception GeographicErr if \e lat is not in (&minus;90&deg;,
+     *   90&deg;].
+     **********************************************************************/
+    void SetScale(real lat, real k = real(1));
+
+    /**
+     * Forward projection, from geographic to polar stereographic.
+     *
+     * @param[in] northp the pole which is the center of projection (true means
+     *   north, false means south).
+     * @param[in] lat latitude of point (degrees).
+     * @param[in] lon longitude of point (degrees).
+     * @param[out] x easting of point (meters).
+     * @param[out] y northing of point (meters).
+     * @param[out] gamma meridian convergence at point (degrees).
+     * @param[out] k scale of projection at point.
+     *
+     * No false easting or northing is added.  \e lat should be in the range
+     * (&minus;90&deg;, 90&deg;] for \e northp = true and in the range
+     * [&minus;90&deg;, 90&deg;) for \e northp = false.
+     **********************************************************************/
+    void Forward(bool northp, real lat, real lon,
+                 real& x, real& y, real& gamma, real& k) const;
+
+    /**
+     * Reverse projection, from polar stereographic to geographic.
+     *
+     * @param[in] northp the pole which is the center of projection (true means
+     *   north, false means south).
+     * @param[in] x easting of point (meters).
+     * @param[in] y northing of point (meters).
+     * @param[out] lat latitude of point (degrees).
+     * @param[out] lon longitude of point (degrees).
+     * @param[out] gamma meridian convergence at point (degrees).
+     * @param[out] k scale of projection at point.
+     *
+     * No false easting or northing is added.  The value of \e lon returned is
+     * in the range [&minus;180&deg;, 180&deg;].
+     **********************************************************************/
+    void Reverse(bool northp, real x, real y,
+                 real& lat, real& lon, real& gamma, real& k) const;
+
+    /**
+     * PolarStereographic::Forward without returning the convergence and scale.
+     **********************************************************************/
+    void Forward(bool northp, real lat, real lon,
+                 real& x, real& y) const {
+      real gamma, k;
+      Forward(northp, lat, lon, x, y, gamma, k);
+    }
+
+    /**
+     * PolarStereographic::Reverse without returning the convergence and scale.
+     **********************************************************************/
+    void Reverse(bool northp, real x, real y,
+                 real& lat, real& lon) const {
+      real gamma, k;
+      Reverse(northp, x, y, lat, lon, gamma, k);
+    }
+
+    /** \name Inspector functions
+     **********************************************************************/
+    ///@{
+    /**
+     * @return \e a the equatorial radius of the ellipsoid (meters).  This is
+     *   the value used in the constructor.
+     **********************************************************************/
+    Math::real EquatorialRadius() const { return _a; }
+
+    /**
+     * @return \e f the flattening of the ellipsoid.  This is the value used in
+     *   the constructor.
+     **********************************************************************/
+    Math::real Flattening() const { return _f; }
+
+    /**
+     * The central scale for the projection.  This is the value of \e k0 used
+     * in the constructor and is the scale at the pole unless overridden by
+     * PolarStereographic::SetScale.
+     **********************************************************************/
+    Math::real CentralScale() const { return _k0; }
+
+    /**
+     * \deprecated An old name for EquatorialRadius().
+     **********************************************************************/
+    GEOGRAPHICLIB_DEPRECATED("Use EquatorialRadius()")
+    Math::real MajorRadius() const { return EquatorialRadius(); }
+    ///@}
+
+    /**
+     * A global instantiation of PolarStereographic with the WGS84 ellipsoid
+     * and the UPS scale factor.  However, unlike UPS, no false easting or
+     * northing is added.
+     **********************************************************************/
+    static const PolarStereographic& UPS();
+  };
+
+} // namespace GeographicLib
+
+#endif  // GEOGRAPHICLIB_POLARSTEREOGRAPHIC_HPP

+ 325 - 0
external/include/GeographicLib/PolygonArea.hpp

@@ -0,0 +1,325 @@
+/**
+ * \file PolygonArea.hpp
+ * \brief Header for GeographicLib::PolygonAreaT class
+ *
+ * Copyright (c) Charles Karney (2010-2021) <charles@karney.com> and licensed
+ * under the MIT/X11 License.  For more information, see
+ * https://geographiclib.sourceforge.io/
+ **********************************************************************/
+
+#if !defined(GEOGRAPHICLIB_POLYGONAREA_HPP)
+#define GEOGRAPHICLIB_POLYGONAREA_HPP 1
+
+#include <GeographicLib/Geodesic.hpp>
+#include <GeographicLib/GeodesicExact.hpp>
+#include <GeographicLib/Rhumb.hpp>
+#include <GeographicLib/Accumulator.hpp>
+
+namespace GeographicLib {
+
+  /**
+   * \brief Polygon areas
+   *
+   * This computes the area of a polygon whose edges are geodesics using the
+   * method given in Section 6 of
+   * - C. F. F. Karney,
+   *   <a href="https://doi.org/10.1007/s00190-012-0578-z">
+   *   Algorithms for geodesics</a>,
+   *   J. Geodesy <b>87</b>, 43--55 (2013);
+   *   DOI: <a href="https://doi.org/10.1007/s00190-012-0578-z">
+   *   10.1007/s00190-012-0578-z</a>;
+   *   addenda:
+   *   <a href="https://geographiclib.sourceforge.io/geod-addenda.html">
+   *   geod-addenda.html</a>.
+   *
+   * Arbitrarily complex polygons are allowed.  In the case self-intersecting
+   * of polygons the area is accumulated "algebraically", e.g., the areas of
+   * the 2 loops in a figure-8 polygon will partially cancel.
+   *
+   * This class lets you add vertices and edges one at a time to the polygon.
+   * The sequence must start with a vertex and thereafter vertices and edges
+   * can be added in any order.  Any vertex after the first creates a new edge
+   * which is the \e shortest geodesic from the previous vertex.  In some
+   * cases there may be two or many such shortest geodesics and the area is
+   * then not uniquely defined.  In this case, either add an intermediate
+   * vertex or add the edge \e as an edge (by defining its direction and
+   * length).
+   *
+   * The area and perimeter are accumulated at two times the standard floating
+   * point precision to guard against the loss of accuracy with many-sided
+   * polygons.  At any point you can ask for the perimeter and area so far.
+   * There's an option to treat the points as defining a polyline instead of a
+   * polygon; in that case, only the perimeter is computed.
+   *
+   * This is a templated class to allow it to be used with Geodesic,
+   * GeodesicExact, and Rhumb.  GeographicLib::PolygonArea,
+   * GeographicLib::PolygonAreaExact, and GeographicLib::PolygonAreaRhumb are
+   * typedefs for these cases.
+   *
+   * For GeographicLib::PolygonArea (edges defined by Geodesic), an upper bound
+   * on the error is about 0.1 m<sup>2</sup> per vertex.  However this is a
+   * wildly pessimistic estimate in most cases.  A more realistic estimate of
+   * the error is given by a test involving 10<sup>7</sup> approximately
+   * regular polygons on the WGS84 ellipsoid.  The centers and the orientations
+   * of the polygons were uniformly distributed, the number of vertices was
+   * log-uniformly distributed in [3, 300], and the center to vertex distance
+   * log-uniformly distributed in [0.1 m, 9000 km].
+   *
+   * Using double precision (the standard precision for GeographicLib), the
+   * maximum error in the perimeter was 200 nm, and the maximum error in the
+   * area was<pre>
+   *     0.0013 m^2 for perimeter < 10 km
+   *     0.0070 m^2 for perimeter < 100 km
+   *     0.070 m^2 for perimeter < 1000 km
+   *     0.11 m^2 for all perimeters
+   * </pre>
+   * The errors are given in terms of the perimeter, because it is expected
+   * that the errors depend mainly on the number of edges and the edge lengths.
+   *
+   * Using long doubles (GEOGRPAHICLIB_PRECISION = 3), the maximum error in the
+   * perimeter was 200 pm, and the maximum error in the area was<pre>
+   *     0.7 mm^2 for perim < 10 km
+   *     3.2 mm^2 for perimeter < 100 km
+   *     21 mm^2 for perimeter < 1000 km
+   *     45 mm^2 for all perimeters
+   * </pre>
+   *
+   * @tparam GeodType the geodesic class to use.
+   *
+   * Example of use:
+   * \include example-PolygonArea.cpp
+   *
+   * <a href="Planimeter.1.html">Planimeter</a> is a command-line utility
+   * providing access to the functionality of PolygonAreaT.
+   **********************************************************************/
+
+  template <class GeodType = Geodesic>
+  class PolygonAreaT {
+  private:
+    typedef Math::real real;
+    GeodType _earth;
+    real _area0;                // Full ellipsoid area
+    bool _polyline;             // Assume polyline (don't close and skip area)
+    unsigned _mask;
+    unsigned _num;
+    int _crossings;
+    Accumulator<> _areasum, _perimetersum;
+    real _lat0, _lon0, _lat1, _lon1;
+    static int transit(real lon1, real lon2) {
+      // Return 1 or -1 if crossing prime meridian in east or west direction.
+      // Otherwise return zero.
+      // Compute lon12 the same way as Geodesic::Inverse.
+      lon1 = Math::AngNormalize(lon1);
+      lon2 = Math::AngNormalize(lon2);
+      real lon12 = Math::AngDiff(lon1, lon2);
+      // Treat 0 as negative in these tests.  This balances +/- 180 being
+      // treated as positive, i.e., +180.
+      int cross =
+        lon1 <= 0 && lon2 > 0 && lon12 > 0 ? 1 :
+        (lon2 <= 0 && lon1 > 0 && lon12 < 0 ? -1 : 0);
+      return cross;
+    }
+    // an alternate version of transit to deal with longitudes in the direct
+    // problem.
+    static int transitdirect(real lon1, real lon2) {
+      // Compute exactly the parity of
+      //   int(ceil(lon2 / 360)) - int(ceil(lon1 / 360))
+      using std::remainder;
+      lon1 = remainder(lon1, real(720));
+      lon2 = remainder(lon2, real(720));
+      return ( (lon2 <= 0 && lon2 > -360 ? 1 : 0) -
+               (lon1 <= 0 && lon1 > -360 ? 1 : 0) );
+    }
+    void Remainder(Accumulator<>& a) const { a.remainder(_area0); }
+    void Remainder(real& a) const {
+      using std::remainder;
+      a = remainder(a, _area0);
+    }
+    template <typename T>
+    void AreaReduce(T& area, int crossings, bool reverse, bool sign) const;
+  public:
+
+    /**
+     * Constructor for PolygonAreaT.
+     *
+     * @param[in] earth the Geodesic object to use for geodesic calculations.
+     * @param[in] polyline if true that treat the points as defining a polyline
+     *   instead of a polygon (default = false).
+     **********************************************************************/
+    PolygonAreaT(const GeodType& earth, bool polyline = false)
+      : _earth(earth)
+      , _area0(_earth.EllipsoidArea())
+      , _polyline(polyline)
+      , _mask(GeodType::LATITUDE | GeodType::LONGITUDE | GeodType::DISTANCE |
+              (_polyline ? GeodType::NONE :
+               GeodType::AREA | GeodType::LONG_UNROLL))
+    { Clear(); }
+
+    /**
+     * Clear PolygonAreaT, allowing a new polygon to be started.
+     **********************************************************************/
+    void Clear() {
+      _num = 0;
+      _crossings = 0;
+      _areasum = 0;
+      _perimetersum = 0;
+      _lat0 = _lon0 = _lat1 = _lon1 = Math::NaN();
+    }
+
+    /**
+     * Add a point to the polygon or polyline.
+     *
+     * @param[in] lat the latitude of the point (degrees).
+     * @param[in] lon the longitude of the point (degrees).
+     *
+     * \e lat should be in the range [&minus;90&deg;, 90&deg;].
+     **********************************************************************/
+    void AddPoint(real lat, real lon);
+
+    /**
+     * Add an edge to the polygon or polyline.
+     *
+     * @param[in] azi azimuth at current point (degrees).
+     * @param[in] s distance from current point to next point (meters).
+     *
+     * This does nothing if no points have been added yet.  Use
+     * PolygonAreaT::CurrentPoint to determine the position of the new vertex.
+     **********************************************************************/
+    void AddEdge(real azi, real s);
+
+    /**
+     * Return the results so far.
+     *
+     * @param[in] reverse if true then clockwise (instead of counter-clockwise)
+     *   traversal counts as a positive area.
+     * @param[in] sign if true then return a signed result for the area if
+     *   the polygon is traversed in the "wrong" direction instead of returning
+     *   the area for the rest of the earth.
+     * @param[out] perimeter the perimeter of the polygon or length of the
+     *   polyline (meters).
+     * @param[out] area the area of the polygon (meters<sup>2</sup>); only set
+     *   if \e polyline is false in the constructor.
+     * @return the number of points.
+     *
+     * More points can be added to the polygon after this call.
+     **********************************************************************/
+    unsigned Compute(bool reverse, bool sign,
+                     real& perimeter, real& area) const;
+
+    /**
+     * Return the results assuming a tentative final test point is added;
+     * however, the data for the test point is not saved.  This lets you report
+     * a running result for the perimeter and area as the user moves the mouse
+     * cursor.  Ordinary floating point arithmetic is used to accumulate the
+     * data for the test point; thus the area and perimeter returned are less
+     * accurate than if PolygonAreaT::AddPoint and PolygonAreaT::Compute are
+     * used.
+     *
+     * @param[in] lat the latitude of the test point (degrees).
+     * @param[in] lon the longitude of the test point (degrees).
+     * @param[in] reverse if true then clockwise (instead of counter-clockwise)
+     *   traversal counts as a positive area.
+     * @param[in] sign if true then return a signed result for the area if
+     *   the polygon is traversed in the "wrong" direction instead of returning
+     *   the area for the rest of the earth.
+     * @param[out] perimeter the approximate perimeter of the polygon or length
+     *   of the polyline (meters).
+     * @param[out] area the approximate area of the polygon
+     *   (meters<sup>2</sup>); only set if polyline is false in the
+     *   constructor.
+     * @return the number of points.
+     *
+     * \e lat should be in the range [&minus;90&deg;, 90&deg;].
+     **********************************************************************/
+    unsigned TestPoint(real lat, real lon, bool reverse, bool sign,
+                       real& perimeter, real& area) const;
+
+    /**
+     * Return the results assuming a tentative final test point is added via an
+     * azimuth and distance; however, the data for the test point is not saved.
+     * This lets you report a running result for the perimeter and area as the
+     * user moves the mouse cursor.  Ordinary floating point arithmetic is used
+     * to accumulate the data for the test point; thus the area and perimeter
+     * returned are less accurate than if PolygonAreaT::AddEdge and
+     * PolygonAreaT::Compute are used.
+     *
+     * @param[in] azi azimuth at current point (degrees).
+     * @param[in] s distance from current point to final test point (meters).
+     * @param[in] reverse if true then clockwise (instead of counter-clockwise)
+     *   traversal counts as a positive area.
+     * @param[in] sign if true then return a signed result for the area if
+     *   the polygon is traversed in the "wrong" direction instead of returning
+     *   the area for the rest of the earth.
+     * @param[out] perimeter the approximate perimeter of the polygon or length
+     *   of the polyline (meters).
+     * @param[out] area the approximate area of the polygon
+     *   (meters<sup>2</sup>); only set if polyline is false in the
+     *   constructor.
+     * @return the number of points.
+     **********************************************************************/
+    unsigned TestEdge(real azi, real s, bool reverse, bool sign,
+                      real& perimeter, real& area) const;
+
+    /** \name Inspector functions
+     **********************************************************************/
+    ///@{
+    /**
+     * @return \e a the equatorial radius of the ellipsoid (meters).  This is
+     *   the value inherited from the Geodesic object used in the constructor.
+     **********************************************************************/
+
+    Math::real EquatorialRadius() const { return _earth.EquatorialRadius(); }
+
+    /**
+     * @return \e f the flattening of the ellipsoid.  This is the value
+     *   inherited from the Geodesic object used in the constructor.
+     **********************************************************************/
+    Math::real Flattening() const { return _earth.Flattening(); }
+
+    /**
+     * Report the previous vertex added to the polygon or polyline.
+     *
+     * @param[out] lat the latitude of the point (degrees).
+     * @param[out] lon the longitude of the point (degrees).
+     *
+     * If no points have been added, then NaNs are returned.  Otherwise, \e lon
+     * will be in the range [&minus;180&deg;, 180&deg;].
+     **********************************************************************/
+    void CurrentPoint(real& lat, real& lon) const
+    { lat = _lat1; lon = _lon1; }
+
+    /**
+     * \deprecated An old name for EquatorialRadius().
+     **********************************************************************/
+    GEOGRAPHICLIB_DEPRECATED("Use EquatorialRadius()")
+    Math::real MajorRadius() const { return EquatorialRadius(); }
+    ///@}
+  };
+
+  /**
+   * @relates PolygonAreaT
+   *
+   * Polygon areas using Geodesic.  This should be used if the flattening is
+   * small.
+   **********************************************************************/
+  typedef PolygonAreaT<Geodesic> PolygonArea;
+
+  /**
+   * @relates PolygonAreaT
+   *
+   * Polygon areas using GeodesicExact.  (But note that the implementation of
+   * areas in GeodesicExact uses a high order series and this is only accurate
+   * for modest flattenings.)
+   **********************************************************************/
+  typedef PolygonAreaT<GeodesicExact> PolygonAreaExact;
+
+  /**
+   * @relates PolygonAreaT
+   *
+   * Polygon areas using Rhumb.
+   **********************************************************************/
+  typedef PolygonAreaT<Rhumb> PolygonAreaRhumb;
+
+} // namespace GeographicLib
+
+#endif  // GEOGRAPHICLIB_POLYGONAREA_HPP

+ 621 - 0
external/include/GeographicLib/Rhumb.hpp

@@ -0,0 +1,621 @@
+/**
+ * \file Rhumb.hpp
+ * \brief Header for GeographicLib::Rhumb and GeographicLib::RhumbLine classes
+ *
+ * Copyright (c) Charles Karney (2014-2021) <charles@karney.com> and licensed
+ * under the MIT/X11 License.  For more information, see
+ * https://geographiclib.sourceforge.io/
+ **********************************************************************/
+
+#if !defined(GEOGRAPHICLIB_RHUMB_HPP)
+#define GEOGRAPHICLIB_RHUMB_HPP 1
+
+#include <GeographicLib/Constants.hpp>
+#include <GeographicLib/Ellipsoid.hpp>
+
+#if !defined(GEOGRAPHICLIB_RHUMBAREA_ORDER)
+/**
+ * The order of the series approximation used in rhumb area calculations.
+ * GEOGRAPHICLIB_RHUMBAREA_ORDER can be set to any integer in [4, 8].
+ **********************************************************************/
+#  define GEOGRAPHICLIB_RHUMBAREA_ORDER \
+  (GEOGRAPHICLIB_PRECISION == 2 ? 6 : \
+   (GEOGRAPHICLIB_PRECISION == 1 ? 4 : 8))
+#endif
+
+namespace GeographicLib {
+
+  class RhumbLine;
+  template <class T> class PolygonAreaT;
+
+  /**
+   * \brief Solve of the direct and inverse rhumb problems.
+   *
+   * The path of constant azimuth between two points on a ellipsoid at (\e
+   * lat1, \e lon1) and (\e lat2, \e lon2) is called the rhumb line (also
+   * called the loxodrome).  Its length is \e s12 and its azimuth is \e azi12.
+   * (The azimuth is the heading measured clockwise from north.)
+   *
+   * Given \e lat1, \e lon1, \e azi12, and \e s12, we can determine \e lat2,
+   * and \e lon2.  This is the \e direct rhumb problem and its solution is
+   * given by the function Rhumb::Direct.
+   *
+   * Given \e lat1, \e lon1, \e lat2, and \e lon2, we can determine \e azi12
+   * and \e s12.  This is the \e inverse rhumb problem, whose solution is given
+   * by Rhumb::Inverse.  This finds the shortest such rhumb line, i.e., the one
+   * that wraps no more than half way around the earth.  If the end points are
+   * on opposite meridians, there are two shortest rhumb lines and the
+   * east-going one is chosen.
+   *
+   * These routines also optionally calculate the area under the rhumb line, \e
+   * S12.  This is the area, measured counter-clockwise, of the rhumb line
+   * quadrilateral with corners (<i>lat1</i>,<i>lon1</i>), (0,<i>lon1</i>),
+   * (0,<i>lon2</i>), and (<i>lat2</i>,<i>lon2</i>).
+   *
+   * Note that rhumb lines may be appreciably longer (up to 50%) than the
+   * corresponding Geodesic.  For example the distance between London Heathrow
+   * and Tokyo Narita via the rhumb line is 11400 km which is 18% longer than
+   * the geodesic distance 9600 km.
+   *
+   * For more information on rhumb lines see \ref rhumb.
+   *
+   * Example of use:
+   * \include example-Rhumb.cpp
+   **********************************************************************/
+
+  class GEOGRAPHICLIB_EXPORT Rhumb {
+  private:
+    typedef Math::real real;
+    friend class RhumbLine;
+    template <class T> friend class PolygonAreaT;
+    Ellipsoid _ell;
+    bool _exact;
+    real _c2;
+    static const int tm_maxord = GEOGRAPHICLIB_TRANSVERSEMERCATOR_ORDER;
+    static const int maxpow_ = GEOGRAPHICLIB_RHUMBAREA_ORDER;
+    // _R[0] unused
+    real _R[maxpow_ + 1];
+    static real gd(real x)
+    { using std::atan; using std::sinh; return atan(sinh(x)); }
+
+    // Use divided differences to determine (mu2 - mu1) / (psi2 - psi1)
+    // accurately
+    //
+    // Definition: Df(x,y,d) = (f(x) - f(y)) / (x - y)
+    // See:
+    //   W. M. Kahan and R. J. Fateman,
+    //   Symbolic computation of divided differences,
+    //   SIGSAM Bull. 33(3), 7-28 (1999)
+    //   https://doi.org/10.1145/334714.334716
+    //   http://www.cs.berkeley.edu/~fateman/papers/divdiff.pdf
+
+    static real Dlog(real x, real y) {
+      using std::sqrt; using std::asinh;
+      real t = x - y;
+      // Change
+      //
+      //   atanh(t / (x + y))
+      //
+      // to
+      //
+      //   asinh(t / (2 * sqrt(x*y)))
+      //
+      // to avoid taking atanh(1) when x is large and y is 1.  N.B., this
+      // routine is invoked with positive x and y, so no need to guard against
+      // taking the sqrt of a negative quantity.  This fixes bogus results for
+      // the area being returning when an endpoint is at a pole.
+      return t != 0 ? 2 * asinh(t / (2 * sqrt(x*y))) / t : 1 / x;
+    }
+    // N.B., x and y are in degrees
+    static real Dtan(real x, real y) {
+      real d = x - y, tx = Math::tand(x), ty = Math::tand(y), txy = tx * ty;
+      return d != 0 ?
+        (2 * txy > -1 ? (1 + txy) * Math::tand(d) : tx - ty) /
+        (d * Math::degree()) :
+        1 + txy;
+    }
+    static real Datan(real x, real y) {
+      using std::atan;
+      real d = x - y, xy = x * y;
+      return d != 0 ?
+        (2 * xy > -1 ? atan( d / (1 + xy) ) : atan(x) - atan(y)) / d :
+        1 / (1 + xy);
+    }
+    static real Dsin(real x, real y) {
+      using std::sin; using std::cos;
+      real d = (x - y) / 2;
+      return cos((x + y)/2) * (d != 0 ? sin(d) / d : 1);
+    }
+    static real Dsinh(real x, real y) {
+      using std::sinh; using std::cosh;
+      real d = (x - y) / 2;
+      return cosh((x + y) / 2) * (d != 0 ? sinh(d) / d : 1);
+    }
+    static real Dcosh(real x, real y) {
+      using std::sinh;
+      real d = (x - y) / 2;
+      return sinh((x + y) / 2) * (d != 0 ? sinh(d) / d : 1);
+    }
+    static real Dasinh(real x, real y) {
+      using std::asinh; using std::hypot;
+      real d = x - y,
+        hx = hypot(real(1), x), hy = hypot(real(1), y);
+      return d != 0 ?
+        asinh(x*y > 0 ? d * (x + y) / (x*hy + y*hx) : x*hy - y*hx) / d :
+        1 / hx;
+    }
+    static real Dgd(real x, real y) {
+      using std::sinh;
+      return Datan(sinh(x), sinh(y)) * Dsinh(x, y);
+    }
+    // N.B., x and y are the tangents of the angles
+    static real Dgdinv(real x, real y)
+    { return Dasinh(x, y) / Datan(x, y); }
+    // Copied from LambertConformalConic...
+    // Deatanhe(x,y) = eatanhe((x-y)/(1-e^2*x*y))/(x-y)
+    real Deatanhe(real x, real y) const {
+      real t = x - y, d = 1 - _ell._e2 * x * y;
+      return t != 0 ? Math::eatanhe(t / d, _ell._es) / t : _ell._e2 / d;
+    }
+    // (E(x) - E(y)) / (x - y) -- E = incomplete elliptic integral of 2nd kind
+    real DE(real x, real y) const;
+    // (mux - muy) / (phix - phiy) using elliptic integrals
+    real DRectifying(real latx, real laty) const;
+    // (psix - psiy) / (phix - phiy)
+    real DIsometric(real latx, real laty) const;
+
+    // (sum(c[j]*sin(2*j*x),j=1..n) - sum(c[j]*sin(2*j*x),j=1..n)) / (x - y)
+    static real SinCosSeries(bool sinp,
+                             real x, real y, const real c[], int n);
+    // (mux - muy) / (chix - chiy) using Krueger's series
+    real DConformalToRectifying(real chix, real chiy) const;
+    // (chix - chiy) / (mux - muy) using Krueger's series
+    real DRectifyingToConformal(real mux, real muy) const;
+
+    // (mux - muy) / (psix - psiy)
+    // N.B., psix and psiy are in degrees
+    real DIsometricToRectifying(real psix, real psiy) const;
+    // (psix - psiy) / (mux - muy)
+    real DRectifyingToIsometric(real mux, real muy) const;
+
+    real MeanSinXi(real psi1, real psi2) const;
+
+    // The following two functions (with lots of ignored arguments) mimic the
+    // interface to the corresponding Geodesic function.  These are needed by
+    // PolygonAreaT.
+    void GenDirect(real lat1, real lon1, real azi12,
+                   bool, real s12, unsigned outmask,
+                   real& lat2, real& lon2, real&, real&, real&, real&, real&,
+                   real& S12) const {
+      GenDirect(lat1, lon1, azi12, s12, outmask, lat2, lon2, S12);
+    }
+    void GenInverse(real lat1, real lon1, real lat2, real lon2,
+                    unsigned outmask, real& s12, real& azi12,
+                    real&, real& , real& , real& , real& S12) const {
+      GenInverse(lat1, lon1, lat2, lon2, outmask, s12, azi12, S12);
+    }
+  public:
+
+    /**
+     * Bit masks for what calculations to do.  They specify which results to
+     * return in the general routines Rhumb::GenDirect and Rhumb::GenInverse
+     * routines.  RhumbLine::mask is a duplication of this enum.
+     **********************************************************************/
+    enum mask {
+      /**
+       * No output.
+       * @hideinitializer
+       **********************************************************************/
+      NONE          = 0U,
+      /**
+       * Calculate latitude \e lat2.
+       * @hideinitializer
+       **********************************************************************/
+      LATITUDE      = 1U<<7,
+      /**
+       * Calculate longitude \e lon2.
+       * @hideinitializer
+       **********************************************************************/
+      LONGITUDE     = 1U<<8,
+      /**
+       * Calculate azimuth \e azi12.
+       * @hideinitializer
+       **********************************************************************/
+      AZIMUTH       = 1U<<9,
+      /**
+       * Calculate distance \e s12.
+       * @hideinitializer
+       **********************************************************************/
+      DISTANCE      = 1U<<10,
+      /**
+       * Calculate area \e S12.
+       * @hideinitializer
+       **********************************************************************/
+      AREA          = 1U<<14,
+      /**
+       * Unroll \e lon2 in the direct calculation.
+       * @hideinitializer
+       **********************************************************************/
+      LONG_UNROLL   = 1U<<15,
+      /**
+       * Calculate everything.  (LONG_UNROLL is not included in this mask.)
+       * @hideinitializer
+       **********************************************************************/
+      ALL           = 0x7F80U,
+    };
+
+    /**
+     * Constructor for a ellipsoid with
+     *
+     * @param[in] a equatorial radius (meters).
+     * @param[in] f flattening of ellipsoid.  Setting \e f = 0 gives a sphere.
+     *   Negative \e f gives a prolate ellipsoid.
+     * @param[in] exact if true (the default) use an addition theorem for
+     *   elliptic integrals to compute divided differences; otherwise use
+     *   series expansion (accurate for |<i>f</i>| < 0.01).
+     * @exception GeographicErr if \e a or (1 &minus; \e f) \e a is not
+     *   positive.
+     *
+     * See \ref rhumb, for a detailed description of the \e exact parameter.
+     **********************************************************************/
+    Rhumb(real a, real f, bool exact = true);
+
+    /**
+     * Solve the direct rhumb problem returning also the area.
+     *
+     * @param[in] lat1 latitude of point 1 (degrees).
+     * @param[in] lon1 longitude of point 1 (degrees).
+     * @param[in] azi12 azimuth of the rhumb line (degrees).
+     * @param[in] s12 distance between point 1 and point 2 (meters); it can be
+     *   negative.
+     * @param[out] lat2 latitude of point 2 (degrees).
+     * @param[out] lon2 longitude of point 2 (degrees).
+     * @param[out] S12 area under the rhumb line (meters<sup>2</sup>).
+     *
+     * \e lat1 should be in the range [&minus;90&deg;, 90&deg;].  The value of
+     * \e lon2 returned is in the range [&minus;180&deg;, 180&deg;].
+     *
+     * If point 1 is a pole, the cosine of its latitude is taken to be
+     * 1/&epsilon;<sup>2</sup> (where &epsilon; is 2<sup>-52</sup>).  This
+     * position, which is extremely close to the actual pole, allows the
+     * calculation to be carried out in finite terms.  If \e s12 is large
+     * enough that the rhumb line crosses a pole, the longitude of point 2
+     * is indeterminate (a NaN is returned for \e lon2 and \e S12).
+     **********************************************************************/
+    void Direct(real lat1, real lon1, real azi12, real s12,
+                real& lat2, real& lon2, real& S12) const {
+      GenDirect(lat1, lon1, azi12, s12,
+                LATITUDE | LONGITUDE | AREA, lat2, lon2, S12);
+    }
+
+    /**
+     * Solve the direct rhumb problem without the area.
+     **********************************************************************/
+    void Direct(real lat1, real lon1, real azi12, real s12,
+                real& lat2, real& lon2) const {
+      real t;
+      GenDirect(lat1, lon1, azi12, s12, LATITUDE | LONGITUDE, lat2, lon2, t);
+    }
+
+    /**
+     * The general direct rhumb problem.  Rhumb::Direct is defined in terms
+     * of this function.
+     *
+     * @param[in] lat1 latitude of point 1 (degrees).
+     * @param[in] lon1 longitude of point 1 (degrees).
+     * @param[in] azi12 azimuth of the rhumb line (degrees).
+     * @param[in] s12 distance between point 1 and point 2 (meters); it can be
+     *   negative.
+     * @param[in] outmask a bitor'ed combination of Rhumb::mask values
+     *   specifying which of the following parameters should be set.
+     * @param[out] lat2 latitude of point 2 (degrees).
+     * @param[out] lon2 longitude of point 2 (degrees).
+     * @param[out] S12 area under the rhumb line (meters<sup>2</sup>).
+     *
+     * The Rhumb::mask values possible for \e outmask are
+     * - \e outmask |= Rhumb::LATITUDE for the latitude \e lat2;
+     * - \e outmask |= Rhumb::LONGITUDE for the latitude \e lon2;
+     * - \e outmask |= Rhumb::AREA for the area \e S12;
+     * - \e outmask |= Rhumb::ALL for all of the above;
+     * - \e outmask |= Rhumb::LONG_UNROLL to unroll \e lon2 instead of wrapping
+     *   it into the range [&minus;180&deg;, 180&deg;].
+     * .
+     * With the Rhumb::LONG_UNROLL bit set, the quantity \e lon2 &minus;
+     * \e lon1 indicates how many times and in what sense the rhumb line
+     * encircles the ellipsoid.
+     **********************************************************************/
+    void GenDirect(real lat1, real lon1, real azi12, real s12,
+                   unsigned outmask, real& lat2, real& lon2, real& S12) const;
+
+    /**
+     * Solve the inverse rhumb problem returning also the area.
+     *
+     * @param[in] lat1 latitude of point 1 (degrees).
+     * @param[in] lon1 longitude of point 1 (degrees).
+     * @param[in] lat2 latitude of point 2 (degrees).
+     * @param[in] lon2 longitude of point 2 (degrees).
+     * @param[out] s12 rhumb distance between point 1 and point 2 (meters).
+     * @param[out] azi12 azimuth of the rhumb line (degrees).
+     * @param[out] S12 area under the rhumb line (meters<sup>2</sup>).
+     *
+     * The shortest rhumb line is found.  If the end points are on opposite
+     * meridians, there are two shortest rhumb lines and the east-going one is
+     * chosen.  \e lat1 and \e lat2 should be in the range [&minus;90&deg;,
+     * 90&deg;].  The value of \e azi12 returned is in the range
+     * [&minus;180&deg;, 180&deg;].
+     *
+     * If either point is a pole, the cosine of its latitude is taken to be
+     * 1/&epsilon;<sup>2</sup> (where &epsilon; is 2<sup>-52</sup>).  This
+     * position, which is extremely close to the actual pole, allows the
+     * calculation to be carried out in finite terms.
+     **********************************************************************/
+    void Inverse(real lat1, real lon1, real lat2, real lon2,
+                 real& s12, real& azi12, real& S12) const {
+      GenInverse(lat1, lon1, lat2, lon2,
+                 DISTANCE | AZIMUTH | AREA, s12, azi12, S12);
+    }
+
+    /**
+     * Solve the inverse rhumb problem without the area.
+     **********************************************************************/
+    void Inverse(real lat1, real lon1, real lat2, real lon2,
+                 real& s12, real& azi12) const {
+      real t;
+      GenInverse(lat1, lon1, lat2, lon2, DISTANCE | AZIMUTH, s12, azi12, t);
+    }
+
+    /**
+     * The general inverse rhumb problem.  Rhumb::Inverse is defined in terms
+     * of this function.
+     *
+     * @param[in] lat1 latitude of point 1 (degrees).
+     * @param[in] lon1 longitude of point 1 (degrees).
+     * @param[in] lat2 latitude of point 2 (degrees).
+     * @param[in] lon2 longitude of point 2 (degrees).
+     * @param[in] outmask a bitor'ed combination of Rhumb::mask values
+     *   specifying which of the following parameters should be set.
+     * @param[out] s12 rhumb distance between point 1 and point 2 (meters).
+     * @param[out] azi12 azimuth of the rhumb line (degrees).
+     * @param[out] S12 area under the rhumb line (meters<sup>2</sup>).
+     *
+     * The Rhumb::mask values possible for \e outmask are
+     * - \e outmask |= Rhumb::DISTANCE for the latitude \e s12;
+     * - \e outmask |= Rhumb::AZIMUTH for the latitude \e azi12;
+     * - \e outmask |= Rhumb::AREA for the area \e S12;
+     * - \e outmask |= Rhumb::ALL for all of the above;
+     **********************************************************************/
+    void GenInverse(real lat1, real lon1, real lat2, real lon2,
+                    unsigned outmask,
+                    real& s12, real& azi12, real& S12) const;
+
+    /**
+     * Set up to compute several points on a single rhumb line.
+     *
+     * @param[in] lat1 latitude of point 1 (degrees).
+     * @param[in] lon1 longitude of point 1 (degrees).
+     * @param[in] azi12 azimuth of the rhumb line (degrees).
+     * @return a RhumbLine object.
+     *
+     * \e lat1 should be in the range [&minus;90&deg;, 90&deg;].
+     *
+     * If point 1 is a pole, the cosine of its latitude is taken to be
+     * 1/&epsilon;<sup>2</sup> (where &epsilon; is 2<sup>-52</sup>).  This
+     * position, which is extremely close to the actual pole, allows the
+     * calculation to be carried out in finite terms.
+     **********************************************************************/
+    RhumbLine Line(real lat1, real lon1, real azi12) const;
+
+    /** \name Inspector functions.
+     **********************************************************************/
+    ///@{
+
+    /**
+     * @return \e a the equatorial radius of the ellipsoid (meters).  This is
+     *   the value used in the constructor.
+     **********************************************************************/
+    Math::real EquatorialRadius() const { return _ell.EquatorialRadius(); }
+
+    /**
+     * @return \e f the  flattening of the ellipsoid.  This is the
+     *   value used in the constructor.
+     **********************************************************************/
+    Math::real Flattening() const { return _ell.Flattening(); }
+
+    /**
+     * @return total area of ellipsoid in meters<sup>2</sup>.  The area of a
+     *   polygon encircling a pole can be found by adding
+     *   Geodesic::EllipsoidArea()/2 to the sum of \e S12 for each side of the
+     *   polygon.
+     **********************************************************************/
+    Math::real EllipsoidArea() const { return _ell.Area(); }
+
+    /**
+     * \deprecated An old name for EquatorialRadius().
+     **********************************************************************/
+    GEOGRAPHICLIB_DEPRECATED("Use EquatorialRadius()")
+    Math::real MajorRadius() const { return EquatorialRadius(); }
+    ///@}
+
+    /**
+     * A global instantiation of Rhumb with the parameters for the WGS84
+     * ellipsoid.
+     **********************************************************************/
+    static const Rhumb& WGS84();
+  };
+
+  /**
+   * \brief Find a sequence of points on a single rhumb line.
+   *
+   * RhumbLine facilitates the determination of a series of points on a single
+   * rhumb line.  The starting point (\e lat1, \e lon1) and the azimuth \e
+   * azi12 are specified in the call to Rhumb::Line which returns a RhumbLine
+   * object.  RhumbLine.Position returns the location of point 2 (and,
+   * optionally, the corresponding area, \e S12) a distance \e s12 along the
+   * rhumb line.
+   *
+   * There is no public constructor for this class.  (Use Rhumb::Line to create
+   * an instance.)  The Rhumb object used to create a RhumbLine must stay in
+   * scope as long as the RhumbLine.
+   *
+   * Example of use:
+   * \include example-RhumbLine.cpp
+   **********************************************************************/
+
+  class GEOGRAPHICLIB_EXPORT RhumbLine {
+  private:
+    typedef Math::real real;
+    friend class Rhumb;
+    const Rhumb& _rh;
+    bool _exact;                // TODO: RhumbLine::_exact is unused; retire
+    real _lat1, _lon1, _azi12, _salp, _calp, _mu1, _psi1, _r1;
+    // copy assignment not allowed
+    RhumbLine& operator=(const RhumbLine&) = delete;
+    RhumbLine(const Rhumb& rh, real lat1, real lon1, real azi12,
+              bool exact);
+  public:
+    /**
+     * Construction is via default copy constructor.
+     **********************************************************************/
+    RhumbLine(const RhumbLine&) = default;
+    /**
+     * This is a duplication of Rhumb::mask.
+     **********************************************************************/
+    enum mask {
+      /**
+       * No output.
+       * @hideinitializer
+       **********************************************************************/
+      NONE          = Rhumb::NONE,
+      /**
+       * Calculate latitude \e lat2.
+       * @hideinitializer
+       **********************************************************************/
+      LATITUDE      = Rhumb::LATITUDE,
+      /**
+       * Calculate longitude \e lon2.
+       * @hideinitializer
+       **********************************************************************/
+      LONGITUDE     = Rhumb::LONGITUDE,
+      /**
+       * Calculate azimuth \e azi12.
+       * @hideinitializer
+       **********************************************************************/
+      AZIMUTH       = Rhumb::AZIMUTH,
+      /**
+       * Calculate distance \e s12.
+       * @hideinitializer
+       **********************************************************************/
+      DISTANCE      = Rhumb::DISTANCE,
+      /**
+       * Calculate area \e S12.
+       * @hideinitializer
+       **********************************************************************/
+      AREA          = Rhumb::AREA,
+      /**
+       * Unroll \e lon2 in the direct calculation.
+       * @hideinitializer
+       **********************************************************************/
+      LONG_UNROLL   = Rhumb::LONG_UNROLL,
+      /**
+       * Calculate everything.  (LONG_UNROLL is not included in this mask.)
+       * @hideinitializer
+       **********************************************************************/
+      ALL           = Rhumb::ALL,
+    };
+
+    /**
+     * Compute the position of point 2 which is a distance \e s12 (meters) from
+     * point 1.  The area is also computed.
+     *
+     * @param[in] s12 distance between point 1 and point 2 (meters); it can be
+     *   negative.
+     * @param[out] lat2 latitude of point 2 (degrees).
+     * @param[out] lon2 longitude of point 2 (degrees).
+     * @param[out] S12 area under the rhumb line (meters<sup>2</sup>).
+     *
+     * The value of \e lon2 returned is in the range [&minus;180&deg;,
+     * 180&deg;].
+     *
+     * If \e s12 is large enough that the rhumb line crosses a pole, the
+     * longitude of point 2 is indeterminate (a NaN is returned for \e lon2 and
+     * \e S12).
+     **********************************************************************/
+    void Position(real s12, real& lat2, real& lon2, real& S12) const {
+      GenPosition(s12, LATITUDE | LONGITUDE | AREA, lat2, lon2, S12);
+    }
+
+    /**
+     * Compute the position of point 2 which is a distance \e s12 (meters) from
+     * point 1.  The area is not computed.
+     **********************************************************************/
+    void Position(real s12, real& lat2, real& lon2) const {
+      real t;
+      GenPosition(s12, LATITUDE | LONGITUDE, lat2, lon2, t);
+    }
+
+    /**
+     * The general position routine.  RhumbLine::Position is defined in term so
+     * this function.
+     *
+     * @param[in] s12 distance between point 1 and point 2 (meters); it can be
+     *   negative.
+     * @param[in] outmask a bitor'ed combination of RhumbLine::mask values
+     *   specifying which of the following parameters should be set.
+     * @param[out] lat2 latitude of point 2 (degrees).
+     * @param[out] lon2 longitude of point 2 (degrees).
+     * @param[out] S12 area under the rhumb line (meters<sup>2</sup>).
+     *
+     * The RhumbLine::mask values possible for \e outmask are
+     * - \e outmask |= RhumbLine::LATITUDE for the latitude \e lat2;
+     * - \e outmask |= RhumbLine::LONGITUDE for the latitude \e lon2;
+     * - \e outmask |= RhumbLine::AREA for the area \e S12;
+     * - \e outmask |= RhumbLine::ALL for all of the above;
+     * - \e outmask |= RhumbLine::LONG_UNROLL to unroll \e lon2 instead of
+     *   wrapping it into the range [&minus;180&deg;, 180&deg;].
+     * .
+     * With the RhumbLine::LONG_UNROLL bit set, the quantity \e lon2 &minus; \e
+     * lon1 indicates how many times and in what sense the rhumb line encircles
+     * the ellipsoid.
+     *
+     * If \e s12 is large enough that the rhumb line crosses a pole, the
+     * longitude of point 2 is indeterminate (a NaN is returned for \e lon2 and
+     * \e S12).
+     **********************************************************************/
+    void GenPosition(real s12, unsigned outmask,
+                     real& lat2, real& lon2, real& S12) const;
+
+    /** \name Inspector functions
+     **********************************************************************/
+    ///@{
+
+    /**
+     * @return \e lat1 the latitude of point 1 (degrees).
+     **********************************************************************/
+    Math::real Latitude() const { return _lat1; }
+
+    /**
+     * @return \e lon1 the longitude of point 1 (degrees).
+     **********************************************************************/
+    Math::real Longitude() const { return _lon1; }
+
+    /**
+     * @return \e azi12 the azimuth of the rhumb line (degrees).
+     **********************************************************************/
+    Math::real Azimuth() const { return  _azi12; }
+
+    /**
+     * @return \e a the equatorial radius of the ellipsoid (meters).  This is
+     *   the value inherited from the Rhumb object used in the constructor.
+     **********************************************************************/
+    Math::real EquatorialRadius() const { return _rh.EquatorialRadius(); }
+
+    /**
+     * @return \e f the flattening of the ellipsoid.  This is the value
+     *   inherited from the Rhumb object used in the constructor.
+     **********************************************************************/
+    Math::real Flattening() const { return _rh.Flattening(); }
+  };
+
+} // namespace GeographicLib
+
+#endif  // GEOGRAPHICLIB_RHUMB_HPP

+ 384 - 0
external/include/GeographicLib/SphericalEngine.hpp

@@ -0,0 +1,384 @@
+/**
+ * \file SphericalEngine.hpp
+ * \brief Header for GeographicLib::SphericalEngine class
+ *
+ * Copyright (c) Charles Karney (2011-2019) <charles@karney.com> and licensed
+ * under the MIT/X11 License.  For more information, see
+ * https://geographiclib.sourceforge.io/
+ **********************************************************************/
+
+#if !defined(GEOGRAPHICLIB_SPHERICALENGINE_HPP)
+#define GEOGRAPHICLIB_SPHERICALENGINE_HPP 1
+
+#include <vector>
+#include <istream>
+#include <GeographicLib/Constants.hpp>
+
+#if defined(_MSC_VER)
+// Squelch warnings about dll vs vector
+#  pragma warning (push)
+#  pragma warning (disable: 4251)
+#endif
+
+namespace GeographicLib {
+
+  class CircularEngine;
+
+  /**
+   * \brief The evaluation engine for SphericalHarmonic
+   *
+   * This serves as the backend to SphericalHarmonic, SphericalHarmonic1, and
+   * SphericalHarmonic2.  Typically end-users will not have to access this
+   * class directly.
+   *
+   * See SphericalEngine.cpp for more information on the implementation.
+   *
+   * Example of use:
+   * \include example-SphericalEngine.cpp
+   **********************************************************************/
+
+  class GEOGRAPHICLIB_EXPORT SphericalEngine {
+  private:
+    typedef Math::real real;
+    // CircularEngine needs access to sqrttable, scale
+    friend class CircularEngine;
+    // Return the table of the square roots of integers
+    static std::vector<real>& sqrttable();
+    // An internal scaling of the coefficients to avoid overflow in
+    // intermediate calculations.
+    static real scale() {
+      using std::pow;
+      static const real
+        // Need extra real because, since C++11, pow(float, int) returns double
+        s = real(pow(real(std::numeric_limits<real>::radix),
+                     -3 * (std::numeric_limits<real>::max_exponent < (1<<14) ?
+                           std::numeric_limits<real>::max_exponent : (1<<14))
+                     / 5));
+      return s;
+    }
+    // Move latitudes near the pole off the axis by this amount.
+    static real eps() {
+      using std::sqrt;
+      return std::numeric_limits<real>::epsilon() *
+        sqrt(std::numeric_limits<real>::epsilon());
+    }
+    SphericalEngine();          // Disable constructor
+  public:
+    /**
+     * Supported normalizations for associated Legendre polynomials.
+     **********************************************************************/
+    enum normalization {
+      /**
+       * Fully normalized associated Legendre polynomials.  See
+       * SphericalHarmonic::FULL for documentation.
+       *
+       * @hideinitializer
+       **********************************************************************/
+      FULL = 0,
+      /**
+       * Schmidt semi-normalized associated Legendre polynomials.  See
+       * SphericalHarmonic::SCHMIDT for documentation.
+       *
+       * @hideinitializer
+       **********************************************************************/
+      SCHMIDT = 1,
+    };
+
+    /**
+     * \brief Package up coefficients for SphericalEngine
+     *
+     * This packages up the \e C, \e S coefficients and information about how
+     * the coefficients are stored into a single structure.  This allows a
+     * vector of type SphericalEngine::coeff to be passed to
+     * SphericalEngine::Value.  This class also includes functions to aid
+     * indexing into \e C and \e S.
+     *
+     * The storage layout of the coefficients is documented in
+     * SphericalHarmonic and SphericalHarmonic::SphericalHarmonic.
+     **********************************************************************/
+    class GEOGRAPHICLIB_EXPORT coeff {
+    private:
+      int _Nx, _nmx, _mmx;
+      std::vector<real>::const_iterator _Cnm;
+      std::vector<real>::const_iterator _Snm;
+    public:
+      /**
+       * A default constructor
+       **********************************************************************/
+      coeff() : _Nx(-1) , _nmx(-1) , _mmx(-1) {}
+      /**
+       * The general constructor.
+       *
+       * @param[in] C a vector of coefficients for the cosine terms.
+       * @param[in] S a vector of coefficients for the sine terms.
+       * @param[in] N the degree giving storage layout for \e C and \e S.
+       * @param[in] nmx the maximum degree to be used.
+       * @param[in] mmx the maximum order to be used.
+       * @exception GeographicErr if \e N, \e nmx, and \e mmx do not satisfy
+       *   \e N &ge; \e nmx &ge; \e mmx &ge; &minus;1.
+       * @exception GeographicErr if \e C or \e S is not big enough to hold the
+       *   coefficients.
+       * @exception std::bad_alloc if the memory for the square root table
+       *   can't be allocated.
+       **********************************************************************/
+      coeff(const std::vector<real>& C,
+            const std::vector<real>& S,
+            int N, int nmx, int mmx)
+        : _Nx(N)
+        , _nmx(nmx)
+        , _mmx(mmx)
+        , _Cnm(C.begin())
+        , _Snm(S.begin())
+      {
+        if (!((_Nx >= _nmx && _nmx >= _mmx && _mmx >= 0) ||
+              // If mmx = -1 then the sums are empty so require nmx = -1 also.
+              (_nmx == -1 && _mmx == -1)))
+          throw GeographicErr("Bad indices for coeff");
+        if (!(index(_nmx, _mmx) < int(C.size()) &&
+              index(_nmx, _mmx) < int(S.size()) + (_Nx + 1)))
+          throw GeographicErr("Arrays too small in coeff");
+        SphericalEngine::RootTable(_nmx);
+      }
+      /**
+       * The constructor for full coefficient vectors.
+       *
+       * @param[in] C a vector of coefficients for the cosine terms.
+       * @param[in] S a vector of coefficients for the sine terms.
+       * @param[in] N the maximum degree and order.
+       * @exception GeographicErr if \e N does not satisfy \e N &ge; &minus;1.
+       * @exception GeographicErr if \e C or \e S is not big enough to hold the
+       *   coefficients.
+       * @exception std::bad_alloc if the memory for the square root table
+       *   can't be allocated.
+       **********************************************************************/
+      coeff(const std::vector<real>& C,
+            const std::vector<real>& S,
+            int N)
+        : _Nx(N)
+        , _nmx(N)
+        , _mmx(N)
+        , _Cnm(C.begin())
+        , _Snm(S.begin())
+      {
+        if (!(_Nx >= -1))
+          throw GeographicErr("Bad indices for coeff");
+        if (!(index(_nmx, _mmx) < int(C.size()) &&
+              index(_nmx, _mmx) < int(S.size()) + (_Nx + 1)))
+          throw GeographicErr("Arrays too small in coeff");
+        SphericalEngine::RootTable(_nmx);
+      }
+      /**
+       * @return \e N the degree giving storage layout for \e C and \e S.
+       **********************************************************************/
+      int N() const { return _Nx; }
+      /**
+       * @return \e nmx the maximum degree to be used.
+       **********************************************************************/
+      int nmx() const { return _nmx; }
+      /**
+       * @return \e mmx the maximum order to be used.
+       **********************************************************************/
+      int mmx() const { return _mmx; }
+      /**
+       * The one-dimensional index into \e C and \e S.
+       *
+       * @param[in] n the degree.
+       * @param[in] m the order.
+       * @return the one-dimensional index.
+       **********************************************************************/
+      int index(int n, int m) const
+      { return m * _Nx - m * (m - 1) / 2 + n; }
+      /**
+       * An element of \e C.
+       *
+       * @param[in] k the one-dimensional index.
+       * @return the value of the \e C coefficient.
+       **********************************************************************/
+      Math::real Cv(int k) const { return *(_Cnm + k); }
+      /**
+       * An element of \e S.
+       *
+       * @param[in] k the one-dimensional index.
+       * @return the value of the \e S coefficient.
+       **********************************************************************/
+      Math::real Sv(int k) const { return *(_Snm + (k - (_Nx + 1))); }
+      /**
+       * An element of \e C with checking.
+       *
+       * @param[in] k the one-dimensional index.
+       * @param[in] n the requested degree.
+       * @param[in] m the requested order.
+       * @param[in] f a multiplier.
+       * @return the value of the \e C coefficient multiplied by \e f in \e n
+       *   and \e m are in range else 0.
+       **********************************************************************/
+      Math::real Cv(int k, int n, int m, real f) const
+      { return m > _mmx || n > _nmx ? 0 : *(_Cnm + k) * f; }
+      /**
+       * An element of \e S with checking.
+       *
+       * @param[in] k the one-dimensional index.
+       * @param[in] n the requested degree.
+       * @param[in] m the requested order.
+       * @param[in] f a multiplier.
+       * @return the value of the \e S coefficient multiplied by \e f in \e n
+       *   and \e m are in range else 0.
+       **********************************************************************/
+      Math::real Sv(int k, int n, int m, real f) const
+      { return m > _mmx || n > _nmx ? 0 : *(_Snm + (k - (_Nx + 1))) * f; }
+
+      /**
+       * The size of the coefficient vector for the cosine terms.
+       *
+       * @param[in] N the maximum degree.
+       * @param[in] M the maximum order.
+       * @return the size of the vector of cosine terms as stored in column
+       *   major order.
+       **********************************************************************/
+      static int Csize(int N, int M)
+      { return (M + 1) * (2 * N - M + 2) / 2; }
+
+      /**
+       * The size of the coefficient vector for the sine terms.
+       *
+       * @param[in] N the maximum degree.
+       * @param[in] M the maximum order.
+       * @return the size of the vector of cosine terms as stored in column
+       *   major order.
+       **********************************************************************/
+      static int Ssize(int N, int M)
+      { return Csize(N, M) - (N + 1); }
+
+      /**
+       * Load coefficients from a binary stream.
+       *
+       * @param[in] stream the input stream.
+       * @param[in,out] N The maximum degree of the coefficients.
+       * @param[in,out] M The maximum order of the coefficients.
+       * @param[out] C The vector of cosine coefficients.
+       * @param[out] S The vector of sine coefficients.
+       * @param[in] truncate if false (the default) then \e N and \e M are
+       *   determined by the values in the binary stream; otherwise, the input
+       *   values of \e N and \e M are used to truncate the coefficients read
+       *   from the stream at the given degree and order.
+       * @exception GeographicErr if \e N and \e M do not satisfy \e N &ge;
+       *   \e M &ge; &minus;1.
+       * @exception GeographicErr if there's an error reading the data.
+       * @exception std::bad_alloc if the memory for \e C or \e S can't be
+       *   allocated.
+       *
+       * \e N and \e M are read as 4-byte ints.  \e C and \e S are resized to
+       * accommodate all the coefficients (with the \e m = 0 coefficients for
+       * \e S excluded) and the data for these coefficients read as 8-byte
+       * doubles.  The coefficients are stored in column major order.  The
+       * bytes in the stream should use little-endian ordering.  IEEE floating
+       * point is assumed for the coefficients.
+       **********************************************************************/
+      static void readcoeffs(std::istream& stream, int& N, int& M,
+                             std::vector<real>& C, std::vector<real>& S,
+                             bool truncate = false);
+    };
+
+    /**
+     * Evaluate a spherical harmonic sum and its gradient.
+     *
+     * @tparam gradp should the gradient be calculated.
+     * @tparam norm the normalization for the associated Legendre polynomials.
+     * @tparam L the number of terms in the coefficients.
+     * @param[in] c an array of coeff objects.
+     * @param[in] f array of coefficient multipliers.  f[0] should be 1.
+     * @param[in] x the \e x component of the cartesian position.
+     * @param[in] y the \e y component of the cartesian position.
+     * @param[in] z the \e z component of the cartesian position.
+     * @param[in] a the normalizing radius.
+     * @param[out] gradx the \e x component of the gradient.
+     * @param[out] grady the \e y component of the gradient.
+     * @param[out] gradz the \e z component of the gradient.
+     * @result the spherical harmonic sum.
+     *
+     * See the SphericalHarmonic class for the definition of the sum.  The
+     * coefficients used by this function are, for example, c[0].Cv + f[1] *
+     * c[1].Cv + ... + f[L&minus;1] * c[L&minus;1].Cv.  (Note that f[0] is \e
+     * not used.)  The upper limits on the sum are determined by c[0].nmx() and
+     * c[0].mmx(); these limits apply to \e all the components of the
+     * coefficients.  The parameters \e gradp, \e norm, and \e L are template
+     * parameters, to allow more optimization to be done at compile time.
+     *
+     * Clenshaw summation is used which permits the evaluation of the sum
+     * without the need to allocate temporary arrays.  Thus this function never
+     * throws an exception.
+     **********************************************************************/
+    template<bool gradp, normalization norm, int L>
+      static Math::real Value(const coeff c[], const real f[],
+                              real x, real y, real z, real a,
+                              real& gradx, real& grady, real& gradz);
+
+    /**
+     * Create a CircularEngine object
+     *
+     * @tparam gradp should the gradient be calculated.
+     * @tparam norm the normalization for the associated Legendre polynomials.
+     * @tparam L the number of terms in the coefficients.
+     * @param[in] c an array of coeff objects.
+     * @param[in] f array of coefficient multipliers.  f[0] should be 1.
+     * @param[in] p the radius of the circle = sqrt(<i>x</i><sup>2</sup> +
+     *   <i>y</i><sup>2</sup>).
+     * @param[in] z the height of the circle.
+     * @param[in] a the normalizing radius.
+     * @exception std::bad_alloc if the memory for the CircularEngine can't be
+     *   allocated.
+     * @result the CircularEngine object.
+     *
+     * If you need to evaluate the spherical harmonic sum for several points
+     * with constant \e f, \e p = sqrt(<i>x</i><sup>2</sup> +
+     * <i>y</i><sup>2</sup>), \e z, and \e a, it is more efficient to construct
+     * call SphericalEngine::Circle to give a CircularEngine object and then
+     * call CircularEngine::operator()() with arguments <i>x</i>/\e p and
+     * <i>y</i>/\e p.
+     **********************************************************************/
+    template<bool gradp, normalization norm, int L>
+      static CircularEngine Circle(const coeff c[], const real f[],
+                                   real p, real z, real a);
+    /**
+     * Check that the static table of square roots is big enough and enlarge it
+     * if necessary.
+     *
+     * @param[in] N the maximum degree to be used in SphericalEngine.
+     * @exception std::bad_alloc if the memory for the square root table can't
+     *   be allocated.
+     *
+     * Typically, there's no need for an end-user to call this routine, because
+     * the constructors for SphericalEngine::coeff do so.  However, since this
+     * updates a static table, there's a possible race condition in a
+     * multi-threaded environment.  Because this routine does nothing if the
+     * table is already large enough, one way to avoid race conditions is to
+     * call this routine at program start up (when it's still single threaded),
+     * supplying the largest degree that your program will use.  E.g., \code
+     GeographicLib::SphericalEngine::RootTable(2190);
+     \endcode
+     * suffices to accommodate extant magnetic and gravity models.
+     **********************************************************************/
+    static void RootTable(int N);
+
+    /**
+     * Clear the static table of square roots and release the memory.  Call
+     * this only when you are sure you no longer will be using SphericalEngine.
+     * Your program will crash if you call SphericalEngine after calling this
+     * routine.
+     *
+     * \warning It's safest not to call this routine at all.  (The space used
+     * by the table is modest.)
+     **********************************************************************/
+    static void ClearRootTable() {
+      std::vector<real> temp(0);
+      sqrttable().swap(temp);
+    }
+  };
+
+} // namespace GeographicLib
+
+#if defined(_MSC_VER)
+#  pragma warning (pop)
+#endif
+
+#endif  // GEOGRAPHICLIB_SPHERICALENGINE_HPP

+ 356 - 0
external/include/GeographicLib/SphericalHarmonic.hpp

@@ -0,0 +1,356 @@
+/**
+ * \file SphericalHarmonic.hpp
+ * \brief Header for GeographicLib::SphericalHarmonic class
+ *
+ * Copyright (c) Charles Karney (2011-2019) <charles@karney.com> and licensed
+ * under the MIT/X11 License.  For more information, see
+ * https://geographiclib.sourceforge.io/
+ **********************************************************************/
+
+#if !defined(GEOGRAPHICLIB_SPHERICALHARMONIC_HPP)
+#define GEOGRAPHICLIB_SPHERICALHARMONIC_HPP 1
+
+#include <vector>
+#include <GeographicLib/Constants.hpp>
+#include <GeographicLib/SphericalEngine.hpp>
+#include <GeographicLib/CircularEngine.hpp>
+
+namespace GeographicLib {
+
+  /**
+   * \brief Spherical harmonic series
+   *
+   * This class evaluates the spherical harmonic sum \verbatim
+   V(x, y, z) = sum(n = 0..N)[ q^(n+1) * sum(m = 0..n)[
+     (C[n,m] * cos(m*lambda) + S[n,m] * sin(m*lambda)) *
+     P[n,m](cos(theta)) ] ]
+   \endverbatim
+   * where
+   * - <i>p</i><sup>2</sup> = <i>x</i><sup>2</sup> + <i>y</i><sup>2</sup>,
+   * - <i>r</i><sup>2</sup> = <i>p</i><sup>2</sup> + <i>z</i><sup>2</sup>,
+   * - \e q = <i>a</i>/<i>r</i>,
+   * - &theta; = atan2(\e p, \e z) = the spherical \e colatitude,
+   * - &lambda; = atan2(\e y, \e x) = the longitude.
+   * - P<sub><i>nm</i></sub>(\e t) is the associated Legendre polynomial of
+   *   degree \e n and order \e m.
+   *
+   * Two normalizations are supported for P<sub><i>nm</i></sub>
+   * - fully normalized denoted by SphericalHarmonic::FULL.
+   * - Schmidt semi-normalized denoted by SphericalHarmonic::SCHMIDT.
+   *
+   * Clenshaw summation is used for the sums over both \e n and \e m.  This
+   * allows the computation to be carried out without the need for any
+   * temporary arrays.  See SphericalEngine.cpp for more information on the
+   * implementation.
+   *
+   * References:
+   * - C. W. Clenshaw,
+   *   <a href="https://doi.org/10.1090/S0025-5718-1955-0071856-0">
+   *   A note on the summation of Chebyshev series</a>,
+   *   %Math. Tables Aids Comput. 9(51), 118--120 (1955).
+   * - R. E. Deakin, Derivatives of the earth's potentials, Geomatics
+   *   Research Australasia 68, 31--60, (June 1998).
+   * - W. A. Heiskanen and H. Moritz, Physical Geodesy, (Freeman, San
+   *   Francisco, 1967).  (See Sec. 1-14, for a definition of Pbar.)
+   * - S. A. Holmes and W. E. Featherstone,
+   *   <a href="https://doi.org/10.1007/s00190-002-0216-2">
+   *   A unified approach to the Clenshaw summation and the recursive
+   *   computation of very high degree and order normalised associated Legendre
+   *   functions</a>, J. Geodesy 76(5), 279--299 (2002).
+   * - C. C. Tscherning and K. Poder,
+   *   <a href="http://cct.gfy.ku.dk/publ_cct/cct80.pdf">
+   *   Some geodetic applications of Clenshaw summation</a>,
+   *   Boll. Geod. Sci. Aff. 41(4), 349--375 (1982).
+   *
+   * Example of use:
+   * \include example-SphericalHarmonic.cpp
+   **********************************************************************/
+
+  class GEOGRAPHICLIB_EXPORT SphericalHarmonic {
+  public:
+    /**
+     * Supported normalizations for the associated Legendre polynomials.
+     **********************************************************************/
+    enum normalization {
+      /**
+       * Fully normalized associated Legendre polynomials.
+       *
+       * These are defined by
+       * <i>P</i><sub><i>nm</i></sub><sup>full</sup>(\e z)
+       * = (&minus;1)<sup><i>m</i></sup>
+       * sqrt(\e k (2\e n + 1) (\e n &minus; \e m)! / (\e n + \e m)!)
+       * <b>P</b><sub><i>n</i></sub><sup><i>m</i></sup>(\e z), where
+       * <b>P</b><sub><i>n</i></sub><sup><i>m</i></sup>(\e z) is Ferrers
+       * function (also known as the Legendre function on the cut or the
+       * associated Legendre polynomial) https://dlmf.nist.gov/14.7.E10 and
+       * \e k = 1 for \e m = 0 and \e k = 2 otherwise.
+       *
+       * The mean squared value of
+       * <i>P</i><sub><i>nm</i></sub><sup>full</sup>(cos&theta;)
+       * cos(<i>m</i>&lambda;) and
+       * <i>P</i><sub><i>nm</i></sub><sup>full</sup>(cos&theta;)
+       * sin(<i>m</i>&lambda;) over the sphere is 1.
+       *
+       * @hideinitializer
+       **********************************************************************/
+      FULL = SphericalEngine::FULL,
+      /**
+       * Schmidt semi-normalized associated Legendre polynomials.
+       *
+       * These are defined by
+       * <i>P</i><sub><i>nm</i></sub><sup>schmidt</sup>(\e z)
+       * = (&minus;1)<sup><i>m</i></sup>
+       * sqrt(\e k (\e n &minus; \e m)! / (\e n + \e m)!)
+       * <b>P</b><sub><i>n</i></sub><sup><i>m</i></sup>(\e z), where
+       * <b>P</b><sub><i>n</i></sub><sup><i>m</i></sup>(\e z) is Ferrers
+       * function (also known as the Legendre function on the cut or the
+       * associated Legendre polynomial) https://dlmf.nist.gov/14.7.E10 and
+       * \e k = 1 for \e m = 0 and \e k = 2 otherwise.
+       *
+       * The mean squared value of
+       * <i>P</i><sub><i>nm</i></sub><sup>schmidt</sup>(cos&theta;)
+       * cos(<i>m</i>&lambda;) and
+       * <i>P</i><sub><i>nm</i></sub><sup>schmidt</sup>(cos&theta;)
+       * sin(<i>m</i>&lambda;) over the sphere is 1/(2\e n + 1).
+       *
+       * @hideinitializer
+       **********************************************************************/
+      SCHMIDT = SphericalEngine::SCHMIDT,
+    };
+
+  private:
+    typedef Math::real real;
+    SphericalEngine::coeff _c[1];
+    real _a;
+    unsigned _norm;
+
+  public:
+    /**
+     * Constructor with a full set of coefficients specified.
+     *
+     * @param[in] C the coefficients <i>C</i><sub><i>nm</i></sub>.
+     * @param[in] S the coefficients <i>S</i><sub><i>nm</i></sub>.
+     * @param[in] N the maximum degree and order of the sum
+     * @param[in] a the reference radius appearing in the definition of the
+     *   sum.
+     * @param[in] norm the normalization for the associated Legendre
+     *   polynomials, either SphericalHarmonic::FULL (the default) or
+     *   SphericalHarmonic::SCHMIDT.
+     * @exception GeographicErr if \e N does not satisfy \e N &ge; &minus;1.
+     * @exception GeographicErr if \e C or \e S is not big enough to hold the
+     *   coefficients.
+     *
+     * The coefficients <i>C</i><sub><i>nm</i></sub> and
+     * <i>S</i><sub><i>nm</i></sub> are stored in the one-dimensional vectors
+     * \e C and \e S which must contain (\e N + 1)(\e N + 2)/2 and \e N (\e N +
+     * 1)/2 elements, respectively, stored in "column-major" order.  Thus for
+     * \e N = 3, the order would be:
+     * <i>C</i><sub>00</sub>,
+     * <i>C</i><sub>10</sub>,
+     * <i>C</i><sub>20</sub>,
+     * <i>C</i><sub>30</sub>,
+     * <i>C</i><sub>11</sub>,
+     * <i>C</i><sub>21</sub>,
+     * <i>C</i><sub>31</sub>,
+     * <i>C</i><sub>22</sub>,
+     * <i>C</i><sub>32</sub>,
+     * <i>C</i><sub>33</sub>.
+     * In general the (\e n,\e m) element is at index \e m \e N &minus; \e m
+     * (\e m &minus; 1)/2 + \e n.  The layout of \e S is the same except that
+     * the first column is omitted (since the \e m = 0 terms never contribute
+     * to the sum) and the 0th element is <i>S</i><sub>11</sub>
+     *
+     * The class stores <i>pointers</i> to the first elements of \e C and \e S.
+     * These arrays should not be altered or destroyed during the lifetime of a
+     * SphericalHarmonic object.
+     **********************************************************************/
+    SphericalHarmonic(const std::vector<real>& C,
+                      const std::vector<real>& S,
+                      int N, real a, unsigned norm = FULL)
+      : _a(a)
+      , _norm(norm)
+    { _c[0] = SphericalEngine::coeff(C, S, N); }
+
+    /**
+     * Constructor with a subset of coefficients specified.
+     *
+     * @param[in] C the coefficients <i>C</i><sub><i>nm</i></sub>.
+     * @param[in] S the coefficients <i>S</i><sub><i>nm</i></sub>.
+     * @param[in] N the degree used to determine the layout of \e C and \e S.
+     * @param[in] nmx the maximum degree used in the sum.  The sum over \e n is
+     *   from 0 thru \e nmx.
+     * @param[in] mmx the maximum order used in the sum.  The sum over \e m is
+     *   from 0 thru min(\e n, \e mmx).
+     * @param[in] a the reference radius appearing in the definition of the
+     *   sum.
+     * @param[in] norm the normalization for the associated Legendre
+     *   polynomials, either SphericalHarmonic::FULL (the default) or
+     *   SphericalHarmonic::SCHMIDT.
+     * @exception GeographicErr if \e N, \e nmx, and \e mmx do not satisfy
+     *   \e N &ge; \e nmx &ge; \e mmx &ge; &minus;1.
+     * @exception GeographicErr if \e C or \e S is not big enough to hold the
+     *   coefficients.
+     *
+     * The class stores <i>pointers</i> to the first elements of \e C and \e S.
+     * These arrays should not be altered or destroyed during the lifetime of a
+     * SphericalHarmonic object.
+     **********************************************************************/
+    SphericalHarmonic(const std::vector<real>& C,
+                      const std::vector<real>& S,
+                      int N, int nmx, int mmx,
+                      real a, unsigned norm = FULL)
+      : _a(a)
+      , _norm(norm)
+    { _c[0] = SphericalEngine::coeff(C, S, N, nmx, mmx); }
+
+    /**
+     * A default constructor so that the object can be created when the
+     * constructor for another object is initialized.  This default object can
+     * then be reset with the default copy assignment operator.
+     **********************************************************************/
+    SphericalHarmonic() {}
+
+    /**
+     * Compute the spherical harmonic sum.
+     *
+     * @param[in] x cartesian coordinate.
+     * @param[in] y cartesian coordinate.
+     * @param[in] z cartesian coordinate.
+     * @return \e V the spherical harmonic sum.
+     *
+     * This routine requires constant memory and thus never throws an
+     * exception.
+     **********************************************************************/
+    Math::real operator()(real x, real y, real z) const {
+      real f[] = {1};
+      real v = 0;
+      real dummy;
+      switch (_norm) {
+      case FULL:
+        v = SphericalEngine::Value<false, SphericalEngine::FULL, 1>
+          (_c, f, x, y, z, _a, dummy, dummy, dummy);
+        break;
+      case SCHMIDT:
+      default:                  // To avoid compiler warnings
+        v = SphericalEngine::Value<false, SphericalEngine::SCHMIDT, 1>
+          (_c, f, x, y, z, _a, dummy, dummy, dummy);
+        break;
+      }
+      return v;
+    }
+
+    /**
+     * Compute a spherical harmonic sum and its gradient.
+     *
+     * @param[in] x cartesian coordinate.
+     * @param[in] y cartesian coordinate.
+     * @param[in] z cartesian coordinate.
+     * @param[out] gradx \e x component of the gradient
+     * @param[out] grady \e y component of the gradient
+     * @param[out] gradz \e z component of the gradient
+     * @return \e V the spherical harmonic sum.
+     *
+     * This is the same as the previous function, except that the components of
+     * the gradients of the sum in the \e x, \e y, and \e z directions are
+     * computed.  This routine requires constant memory and thus never throws
+     * an exception.
+     **********************************************************************/
+    Math::real operator()(real x, real y, real z,
+                          real& gradx, real& grady, real& gradz) const {
+      real f[] = {1};
+      real v = 0;
+      switch (_norm) {
+      case FULL:
+        v = SphericalEngine::Value<true, SphericalEngine::FULL, 1>
+          (_c, f, x, y, z, _a, gradx, grady, gradz);
+        break;
+      case SCHMIDT:
+      default:                  // To avoid compiler warnings
+        v = SphericalEngine::Value<true, SphericalEngine::SCHMIDT, 1>
+          (_c, f, x, y, z, _a, gradx, grady, gradz);
+        break;
+      }
+      return v;
+    }
+
+    /**
+     * Create a CircularEngine to allow the efficient evaluation of several
+     * points on a circle of latitude.
+     *
+     * @param[in] p the radius of the circle.
+     * @param[in] z the height of the circle above the equatorial plane.
+     * @param[in] gradp if true the returned object will be able to compute the
+     *   gradient of the sum.
+     * @exception std::bad_alloc if the memory for the CircularEngine can't be
+     *   allocated.
+     * @return the CircularEngine object.
+     *
+     * SphericalHarmonic::operator()() exchanges the order of the sums in the
+     * definition, i.e., &sum;<sub><i>n</i> = 0..<i>N</i></sub>
+     * &sum;<sub><i>m</i> = 0..<i>n</i></sub> becomes &sum;<sub><i>m</i> =
+     * 0..<i>N</i></sub> &sum;<sub><i>n</i> = <i>m</i>..<i>N</i></sub>.
+     * SphericalHarmonic::Circle performs the inner sum over degree \e n (which
+     * entails about <i>N</i><sup>2</sup> operations).  Calling
+     * CircularEngine::operator()() on the returned object performs the outer
+     * sum over the order \e m (about \e N operations).
+     *
+     * Here's an example of computing the spherical sum at a sequence of
+     * longitudes without using a CircularEngine object \code
+     SphericalHarmonic h(...);     // Create the SphericalHarmonic object
+     double r = 2, lat = 33, lon0 = 44, dlon = 0.01;
+     double
+       phi = lat * Math::degree<double>(),
+       z = r * sin(phi), p = r * cos(phi);
+     for (int i = 0; i <= 100; ++i) {
+       real
+         lon = lon0 + i * dlon,
+         lam = lon * Math::degree<double>();
+       std::cout << lon << " " << h(p * cos(lam), p * sin(lam), z) << "\n";
+     }
+     \endcode
+     * Here is the same calculation done using a CircularEngine object.  This
+     * will be about <i>N</i>/2 times faster. \code
+     SphericalHarmonic h(...);     // Create the SphericalHarmonic object
+     double r = 2, lat = 33, lon0 = 44, dlon = 0.01;
+     double
+       phi = lat * Math::degree<double>(),
+       z = r * sin(phi), p = r * cos(phi);
+     CircularEngine c(h(p, z, false)); // Create the CircularEngine object
+     for (int i = 0; i <= 100; ++i) {
+       real
+         lon = lon0 + i * dlon;
+       std::cout << lon << " " << c(lon) << "\n";
+     }
+     \endcode
+     **********************************************************************/
+    CircularEngine Circle(real p, real z, bool gradp) const {
+      real f[] = {1};
+      switch (_norm) {
+      case FULL:
+        return gradp ?
+          SphericalEngine::Circle<true, SphericalEngine::FULL, 1>
+          (_c, f, p, z, _a) :
+          SphericalEngine::Circle<false, SphericalEngine::FULL, 1>
+          (_c, f, p, z, _a);
+        break;
+      case SCHMIDT:
+      default:                  // To avoid compiler warnings
+        return gradp ?
+          SphericalEngine::Circle<true, SphericalEngine::SCHMIDT, 1>
+          (_c, f, p, z, _a) :
+          SphericalEngine::Circle<false, SphericalEngine::SCHMIDT, 1>
+          (_c, f, p, z, _a);
+        break;
+      }
+    }
+
+    /**
+     * @return the zeroth SphericalEngine::coeff object.
+     **********************************************************************/
+    const SphericalEngine::coeff& Coefficients() const
+    { return _c[0]; }
+  };
+
+} // namespace GeographicLib
+
+#endif  // GEOGRAPHICLIB_SPHERICALHARMONIC_HPP

+ 283 - 0
external/include/GeographicLib/SphericalHarmonic1.hpp

@@ -0,0 +1,283 @@
+/**
+ * \file SphericalHarmonic1.hpp
+ * \brief Header for GeographicLib::SphericalHarmonic1 class
+ *
+ * Copyright (c) Charles Karney (2011) <charles@karney.com> and licensed under
+ * the MIT/X11 License.  For more information, see
+ * https://geographiclib.sourceforge.io/
+ **********************************************************************/
+
+#if !defined(GEOGRAPHICLIB_SPHERICALHARMONIC1_HPP)
+#define GEOGRAPHICLIB_SPHERICALHARMONIC1_HPP 1
+
+#include <vector>
+#include <GeographicLib/Constants.hpp>
+#include <GeographicLib/SphericalEngine.hpp>
+#include <GeographicLib/CircularEngine.hpp>
+
+namespace GeographicLib {
+
+  /**
+   * \brief Spherical harmonic series with a correction to the coefficients
+   *
+   * This classes is similar to SphericalHarmonic, except that the coefficients
+   * <i>C</i><sub><i>nm</i></sub> are replaced by
+   * <i>C</i><sub><i>nm</i></sub> + \e tau <i>C'</i><sub><i>nm</i></sub> (and
+   * similarly for <i>S</i><sub><i>nm</i></sub>).
+   *
+   * Example of use:
+   * \include example-SphericalHarmonic1.cpp
+   **********************************************************************/
+
+  class GEOGRAPHICLIB_EXPORT SphericalHarmonic1 {
+  public:
+    /**
+     * Supported normalizations for associate Legendre polynomials.
+     **********************************************************************/
+    enum normalization {
+      /**
+       * Fully normalized associated Legendre polynomials.  See
+       * SphericalHarmonic::FULL for documentation.
+       *
+       * @hideinitializer
+       **********************************************************************/
+      FULL = SphericalEngine::FULL,
+      /**
+       * Schmidt semi-normalized associated Legendre polynomials.  See
+       * SphericalHarmonic::SCHMIDT for documentation.
+       *
+       * @hideinitializer
+       **********************************************************************/
+      SCHMIDT = SphericalEngine::SCHMIDT,
+    };
+
+  private:
+    typedef Math::real real;
+    SphericalEngine::coeff _c[2];
+    real _a;
+    unsigned _norm;
+
+  public:
+    /**
+     * Constructor with a full set of coefficients specified.
+     *
+     * @param[in] C the coefficients <i>C</i><sub><i>nm</i></sub>.
+     * @param[in] S the coefficients <i>S</i><sub><i>nm</i></sub>.
+     * @param[in] N the maximum degree and order of the sum
+     * @param[in] C1 the coefficients <i>C'</i><sub><i>nm</i></sub>.
+     * @param[in] S1 the coefficients <i>S'</i><sub><i>nm</i></sub>.
+     * @param[in] N1 the maximum degree and order of the correction
+     *   coefficients <i>C'</i><sub><i>nm</i></sub> and
+     *   <i>S'</i><sub><i>nm</i></sub>.
+     * @param[in] a the reference radius appearing in the definition of the
+     *   sum.
+     * @param[in] norm the normalization for the associated Legendre
+     *   polynomials, either SphericalHarmonic1::FULL (the default) or
+     *   SphericalHarmonic1::SCHMIDT.
+     * @exception GeographicErr if \e N and \e N1 do not satisfy \e N &ge;
+     *   \e N1 &ge; &minus;1.
+     * @exception GeographicErr if any of the vectors of coefficients is not
+     *   large enough.
+     *
+     * See SphericalHarmonic for the way the coefficients should be stored.
+     *
+     * The class stores <i>pointers</i> to the first elements of \e C, \e S, \e
+     * C', and \e S'.  These arrays should not be altered or destroyed during
+     * the lifetime of a SphericalHarmonic object.
+     **********************************************************************/
+    SphericalHarmonic1(const std::vector<real>& C,
+                       const std::vector<real>& S,
+                       int N,
+                       const std::vector<real>& C1,
+                       const std::vector<real>& S1,
+                       int N1,
+                       real a, unsigned norm = FULL)
+      : _a(a)
+      , _norm(norm) {
+      if (!(N1 <= N))
+        throw GeographicErr("N1 cannot be larger that N");
+      _c[0] = SphericalEngine::coeff(C, S, N);
+      _c[1] = SphericalEngine::coeff(C1, S1, N1);
+    }
+
+    /**
+     * Constructor with a subset of coefficients specified.
+     *
+     * @param[in] C the coefficients <i>C</i><sub><i>nm</i></sub>.
+     * @param[in] S the coefficients <i>S</i><sub><i>nm</i></sub>.
+     * @param[in] N the degree used to determine the layout of \e C and \e S.
+     * @param[in] nmx the maximum degree used in the sum.  The sum over \e n is
+     *   from 0 thru \e nmx.
+     * @param[in] mmx the maximum order used in the sum.  The sum over \e m is
+     *   from 0 thru min(\e n, \e mmx).
+     * @param[in] C1 the coefficients <i>C'</i><sub><i>nm</i></sub>.
+     * @param[in] S1 the coefficients <i>S'</i><sub><i>nm</i></sub>.
+     * @param[in] N1 the degree used to determine the layout of \e C' and \e
+     *   S'.
+     * @param[in] nmx1 the maximum degree used for \e C' and \e S'.
+     * @param[in] mmx1 the maximum order used for \e C' and \e S'.
+     * @param[in] a the reference radius appearing in the definition of the
+     *   sum.
+     * @param[in] norm the normalization for the associated Legendre
+     *   polynomials, either SphericalHarmonic1::FULL (the default) or
+     *   SphericalHarmonic1::SCHMIDT.
+     * @exception GeographicErr if the parameters do not satisfy \e N &ge; \e
+     *   nmx &ge; \e mmx &ge; &minus;1; \e N1 &ge; \e nmx1 &ge; \e mmx1 &ge;
+     *   &minus;1; \e N &ge; \e N1; \e nmx &ge; \e nmx1; \e mmx &ge; \e mmx1.
+     * @exception GeographicErr if any of the vectors of coefficients is not
+     *   large enough.
+     *
+     * The class stores <i>pointers</i> to the first elements of \e C, \e S, \e
+     * C', and \e S'.  These arrays should not be altered or destroyed during
+     * the lifetime of a SphericalHarmonic object.
+     **********************************************************************/
+    SphericalHarmonic1(const std::vector<real>& C,
+                       const std::vector<real>& S,
+                       int N, int nmx, int mmx,
+                       const std::vector<real>& C1,
+                       const std::vector<real>& S1,
+                       int N1, int nmx1, int mmx1,
+                       real a, unsigned norm = FULL)
+      : _a(a)
+      , _norm(norm) {
+      if (!(nmx1 <= nmx))
+        throw GeographicErr("nmx1 cannot be larger that nmx");
+      if (!(mmx1 <= mmx))
+        throw GeographicErr("mmx1 cannot be larger that mmx");
+      _c[0] = SphericalEngine::coeff(C, S, N, nmx, mmx);
+      _c[1] = SphericalEngine::coeff(C1, S1, N1, nmx1, mmx1);
+    }
+
+    /**
+     * A default constructor so that the object can be created when the
+     * constructor for another object is initialized.  This default object can
+     * then be reset with the default copy assignment operator.
+     **********************************************************************/
+    SphericalHarmonic1() {}
+
+    /**
+     * Compute a spherical harmonic sum with a correction term.
+     *
+     * @param[in] tau multiplier for correction coefficients \e C' and \e S'.
+     * @param[in] x cartesian coordinate.
+     * @param[in] y cartesian coordinate.
+     * @param[in] z cartesian coordinate.
+     * @return \e V the spherical harmonic sum.
+     *
+     * This routine requires constant memory and thus never throws
+     * an exception.
+     **********************************************************************/
+    Math::real operator()(real tau, real x, real y, real z) const {
+      real f[] = {1, tau};
+      real v = 0;
+      real dummy;
+      switch (_norm) {
+      case FULL:
+        v = SphericalEngine::Value<false, SphericalEngine::FULL, 2>
+          (_c, f, x, y, z, _a, dummy, dummy, dummy);
+        break;
+      case SCHMIDT:
+      default:                  // To avoid compiler warnings
+        v = SphericalEngine::Value<false, SphericalEngine::SCHMIDT, 2>
+          (_c, f, x, y, z, _a, dummy, dummy, dummy);
+        break;
+      }
+      return v;
+    }
+
+    /**
+     * Compute a spherical harmonic sum with a correction term and its
+     * gradient.
+     *
+     * @param[in] tau multiplier for correction coefficients \e C' and \e S'.
+     * @param[in] x cartesian coordinate.
+     * @param[in] y cartesian coordinate.
+     * @param[in] z cartesian coordinate.
+     * @param[out] gradx \e x component of the gradient
+     * @param[out] grady \e y component of the gradient
+     * @param[out] gradz \e z component of the gradient
+     * @return \e V the spherical harmonic sum.
+     *
+     * This is the same as the previous function, except that the components of
+     * the gradients of the sum in the \e x, \e y, and \e z directions are
+     * computed.  This routine requires constant memory and thus never throws
+     * an exception.
+     **********************************************************************/
+    Math::real operator()(real tau, real x, real y, real z,
+                          real& gradx, real& grady, real& gradz) const {
+      real f[] = {1, tau};
+      real v = 0;
+      switch (_norm) {
+      case FULL:
+        v = SphericalEngine::Value<true, SphericalEngine::FULL, 2>
+          (_c, f, x, y, z, _a, gradx, grady, gradz);
+        break;
+      case SCHMIDT:
+      default:                  // To avoid compiler warnings
+        v = SphericalEngine::Value<true, SphericalEngine::SCHMIDT, 2>
+          (_c, f, x, y, z, _a, gradx, grady, gradz);
+        break;
+      }
+      return v;
+    }
+
+    /**
+     * Create a CircularEngine to allow the efficient evaluation of several
+     * points on a circle of latitude at a fixed value of \e tau.
+     *
+     * @param[in] tau the multiplier for the correction coefficients.
+     * @param[in] p the radius of the circle.
+     * @param[in] z the height of the circle above the equatorial plane.
+     * @param[in] gradp if true the returned object will be able to compute the
+     *   gradient of the sum.
+     * @exception std::bad_alloc if the memory for the CircularEngine can't be
+     *   allocated.
+     * @return the CircularEngine object.
+     *
+     * SphericalHarmonic1::operator()() exchanges the order of the sums in the
+     * definition, i.e., &sum;<sub><i>n</i> = 0..<i>N</i></sub>
+     * &sum;<sub><i>m</i> = 0..<i>n</i></sub> becomes &sum;<sub><i>m</i> =
+     * 0..<i>N</i></sub> &sum;<sub><i>n</i> = <i>m</i>..<i>N</i></sub>.
+     * SphericalHarmonic1::Circle performs the inner sum over degree \e n
+     * (which entails about <i>N</i><sup>2</sup> operations).  Calling
+     * CircularEngine::operator()() on the returned object performs the outer
+     * sum over the order \e m (about \e N operations).
+     *
+     * See SphericalHarmonic::Circle for an example of its use.
+     **********************************************************************/
+    CircularEngine Circle(real tau, real p, real z, bool gradp) const {
+      real f[] = {1, tau};
+      switch (_norm) {
+      case FULL:
+        return gradp ?
+          SphericalEngine::Circle<true, SphericalEngine::FULL, 2>
+          (_c, f, p, z, _a) :
+          SphericalEngine::Circle<false, SphericalEngine::FULL, 2>
+          (_c, f, p, z, _a);
+        break;
+      case SCHMIDT:
+      default:                  // To avoid compiler warnings
+        return gradp ?
+          SphericalEngine::Circle<true, SphericalEngine::SCHMIDT, 2>
+          (_c, f, p, z, _a) :
+          SphericalEngine::Circle<false, SphericalEngine::SCHMIDT, 2>
+          (_c, f, p, z, _a);
+        break;
+      }
+    }
+
+    /**
+     * @return the zeroth SphericalEngine::coeff object.
+     **********************************************************************/
+    const SphericalEngine::coeff& Coefficients() const
+    { return _c[0]; }
+    /**
+     * @return the first SphericalEngine::coeff object.
+     **********************************************************************/
+    const SphericalEngine::coeff& Coefficients1() const
+    { return _c[1]; }
+  };
+
+} // namespace GeographicLib
+
+#endif  // GEOGRAPHICLIB_SPHERICALHARMONIC1_HPP

+ 320 - 0
external/include/GeographicLib/SphericalHarmonic2.hpp

@@ -0,0 +1,320 @@
+/**
+ * \file SphericalHarmonic2.hpp
+ * \brief Header for GeographicLib::SphericalHarmonic2 class
+ *
+ * Copyright (c) Charles Karney (2011-2012) <charles@karney.com> and licensed
+ * under the MIT/X11 License.  For more information, see
+ * https://geographiclib.sourceforge.io/
+ **********************************************************************/
+
+#if !defined(GEOGRAPHICLIB_SPHERICALHARMONIC2_HPP)
+#define GEOGRAPHICLIB_SPHERICALHARMONIC2_HPP 1
+
+#include <vector>
+#include <GeographicLib/Constants.hpp>
+#include <GeographicLib/SphericalEngine.hpp>
+#include <GeographicLib/CircularEngine.hpp>
+
+namespace GeographicLib {
+
+  /**
+   * \brief Spherical harmonic series with two corrections to the coefficients
+   *
+   * This classes is similar to SphericalHarmonic, except that the coefficients
+   * <i>C</i><sub><i>nm</i></sub> are replaced by
+   * <i>C</i><sub><i>nm</i></sub> + \e tau' <i>C'</i><sub><i>nm</i></sub> + \e
+   * tau'' <i>C''</i><sub><i>nm</i></sub> (and similarly for
+   * <i>S</i><sub><i>nm</i></sub>).
+   *
+   * Example of use:
+   * \include example-SphericalHarmonic2.cpp
+   **********************************************************************/
+
+  // Don't include the GEOGRPAHIC_EXPORT because this header-only class isn't
+  // used by any other classes in the library.
+  class /*GEOGRAPHICLIB_EXPORT*/ SphericalHarmonic2 {
+  public:
+    /**
+     * Supported normalizations for associate Legendre polynomials.
+     **********************************************************************/
+    enum normalization {
+      /**
+       * Fully normalized associated Legendre polynomials.  See
+       * SphericalHarmonic::FULL for documentation.
+       *
+       * @hideinitializer
+       **********************************************************************/
+      FULL = SphericalEngine::FULL,
+      /**
+       * Schmidt semi-normalized associated Legendre polynomials.  See
+       * SphericalHarmonic::SCHMIDT for documentation.
+       *
+       * @hideinitializer
+       **********************************************************************/
+      SCHMIDT = SphericalEngine::SCHMIDT,
+    };
+
+  private:
+    typedef Math::real real;
+    SphericalEngine::coeff _c[3];
+    real _a;
+    unsigned _norm;
+
+  public:
+    /**
+     * Constructor with a full set of coefficients specified.
+     *
+     * @param[in] C the coefficients <i>C</i><sub><i>nm</i></sub>.
+     * @param[in] S the coefficients <i>S</i><sub><i>nm</i></sub>.
+     * @param[in] N the maximum degree and order of the sum
+     * @param[in] C1 the coefficients <i>C'</i><sub><i>nm</i></sub>.
+     * @param[in] S1 the coefficients <i>S'</i><sub><i>nm</i></sub>.
+     * @param[in] N1 the maximum degree and order of the first correction
+     *   coefficients <i>C'</i><sub><i>nm</i></sub> and
+     *   <i>S'</i><sub><i>nm</i></sub>.
+     * @param[in] C2 the coefficients <i>C''</i><sub><i>nm</i></sub>.
+     * @param[in] S2 the coefficients <i>S''</i><sub><i>nm</i></sub>.
+     * @param[in] N2 the maximum degree and order of the second correction
+     *   coefficients <i>C'</i><sub><i>nm</i></sub> and
+     *   <i>S'</i><sub><i>nm</i></sub>.
+     * @param[in] a the reference radius appearing in the definition of the
+     *   sum.
+     * @param[in] norm the normalization for the associated Legendre
+     *   polynomials, either SphericalHarmonic2::FULL (the default) or
+     *   SphericalHarmonic2::SCHMIDT.
+     * @exception GeographicErr if \e N and \e N1 do not satisfy \e N &ge;
+     *   \e N1 &ge; &minus;1, and similarly for \e N2.
+     * @exception GeographicErr if any of the vectors of coefficients is not
+     *   large enough.
+     *
+     * See SphericalHarmonic for the way the coefficients should be stored.  \e
+     * N1 and \e N2 should satisfy \e N1 &le; \e N and \e N2 &le; \e N.
+     *
+     * The class stores <i>pointers</i> to the first elements of \e C, \e S, \e
+     * C', \e S', \e C'', and \e S''.  These arrays should not be altered or
+     * destroyed during the lifetime of a SphericalHarmonic object.
+     **********************************************************************/
+    SphericalHarmonic2(const std::vector<real>& C,
+                       const std::vector<real>& S,
+                       int N,
+                       const std::vector<real>& C1,
+                       const std::vector<real>& S1,
+                       int N1,
+                       const std::vector<real>& C2,
+                       const std::vector<real>& S2,
+                       int N2,
+                       real a, unsigned norm = FULL)
+      : _a(a)
+      , _norm(norm) {
+      if (!(N1 <= N && N2 <= N))
+        throw GeographicErr("N1 and N2 cannot be larger that N");
+      _c[0] = SphericalEngine::coeff(C, S, N);
+      _c[1] = SphericalEngine::coeff(C1, S1, N1);
+      _c[2] = SphericalEngine::coeff(C2, S2, N2);
+    }
+
+    /**
+     * Constructor with a subset of coefficients specified.
+     *
+     * @param[in] C the coefficients <i>C</i><sub><i>nm</i></sub>.
+     * @param[in] S the coefficients <i>S</i><sub><i>nm</i></sub>.
+     * @param[in] N the degree used to determine the layout of \e C and \e S.
+     * @param[in] nmx the maximum degree used in the sum.  The sum over \e n is
+     *   from 0 thru \e nmx.
+     * @param[in] mmx the maximum order used in the sum.  The sum over \e m is
+     *   from 0 thru min(\e n, \e mmx).
+     * @param[in] C1 the coefficients <i>C'</i><sub><i>nm</i></sub>.
+     * @param[in] S1 the coefficients <i>S'</i><sub><i>nm</i></sub>.
+     * @param[in] N1 the degree used to determine the layout of \e C' and \e
+     *   S'.
+     * @param[in] nmx1 the maximum degree used for \e C' and \e S'.
+     * @param[in] mmx1 the maximum order used for \e C' and \e S'.
+     * @param[in] C2 the coefficients <i>C''</i><sub><i>nm</i></sub>.
+     * @param[in] S2 the coefficients <i>S''</i><sub><i>nm</i></sub>.
+     * @param[in] N2 the degree used to determine the layout of \e C'' and \e
+     *   S''.
+     * @param[in] nmx2 the maximum degree used for \e C'' and \e S''.
+     * @param[in] mmx2 the maximum order used for \e C'' and \e S''.
+     * @param[in] a the reference radius appearing in the definition of the
+     *   sum.
+     * @param[in] norm the normalization for the associated Legendre
+     *   polynomials, either SphericalHarmonic2::FULL (the default) or
+     *   SphericalHarmonic2::SCHMIDT.
+     * @exception GeographicErr if the parameters do not satisfy \e N &ge; \e
+     *   nmx &ge; \e mmx &ge; &minus;1; \e N1 &ge; \e nmx1 &ge; \e mmx1 &ge;
+     *   &minus;1; \e N &ge; \e N1; \e nmx &ge; \e nmx1; \e mmx &ge; \e mmx1;
+     *   and similarly for \e N2, \e nmx2, and \e mmx2.
+     * @exception GeographicErr if any of the vectors of coefficients is not
+     *   large enough.
+     *
+     * The class stores <i>pointers</i> to the first elements of \e C, \e S, \e
+     * C', \e S', \e C'', and \e S''.  These arrays should not be altered or
+     * destroyed during the lifetime of a SphericalHarmonic object.
+     **********************************************************************/
+    SphericalHarmonic2(const std::vector<real>& C,
+                       const std::vector<real>& S,
+                       int N, int nmx, int mmx,
+                       const std::vector<real>& C1,
+                       const std::vector<real>& S1,
+                       int N1, int nmx1, int mmx1,
+                       const std::vector<real>& C2,
+                       const std::vector<real>& S2,
+                       int N2, int nmx2, int mmx2,
+                       real a, unsigned norm = FULL)
+      : _a(a)
+      , _norm(norm) {
+      if (!(nmx1 <= nmx && nmx2 <= nmx))
+        throw GeographicErr("nmx1 and nmx2 cannot be larger that nmx");
+      if (!(mmx1 <= mmx && mmx2 <= mmx))
+        throw GeographicErr("mmx1 and mmx2 cannot be larger that mmx");
+      _c[0] = SphericalEngine::coeff(C, S, N, nmx, mmx);
+      _c[1] = SphericalEngine::coeff(C1, S1, N1, nmx1, mmx1);
+      _c[2] = SphericalEngine::coeff(C2, S2, N2, nmx2, mmx2);
+    }
+
+    /**
+     * A default constructor so that the object can be created when the
+     * constructor for another object is initialized.  This default object can
+     * then be reset with the default copy assignment operator.
+     **********************************************************************/
+    SphericalHarmonic2() {}
+
+    /**
+     * Compute a spherical harmonic sum with two correction terms.
+     *
+     * @param[in] tau1 multiplier for correction coefficients \e C' and \e S'.
+     * @param[in] tau2 multiplier for correction coefficients \e C'' and \e
+     *   S''.
+     * @param[in] x cartesian coordinate.
+     * @param[in] y cartesian coordinate.
+     * @param[in] z cartesian coordinate.
+     * @return \e V the spherical harmonic sum.
+     *
+     * This routine requires constant memory and thus never throws an
+     * exception.
+     **********************************************************************/
+    Math::real operator()(real tau1, real tau2, real x, real y, real z)
+      const {
+      real f[] = {1, tau1, tau2};
+      real v = 0;
+      real dummy;
+      switch (_norm) {
+      case FULL:
+        v = SphericalEngine::Value<false, SphericalEngine::FULL, 3>
+          (_c, f, x, y, z, _a, dummy, dummy, dummy);
+        break;
+      case SCHMIDT:
+      default:                  // To avoid compiler warnings
+        v = SphericalEngine::Value<false, SphericalEngine::SCHMIDT, 3>
+          (_c, f, x, y, z, _a, dummy, dummy, dummy);
+        break;
+      }
+      return v;
+    }
+
+    /**
+     * Compute a spherical harmonic sum with two correction terms and its
+     * gradient.
+     *
+     * @param[in] tau1 multiplier for correction coefficients \e C' and \e S'.
+     * @param[in] tau2 multiplier for correction coefficients \e C'' and \e
+     *   S''.
+     * @param[in] x cartesian coordinate.
+     * @param[in] y cartesian coordinate.
+     * @param[in] z cartesian coordinate.
+     * @param[out] gradx \e x component of the gradient
+     * @param[out] grady \e y component of the gradient
+     * @param[out] gradz \e z component of the gradient
+     * @return \e V the spherical harmonic sum.
+     *
+     * This is the same as the previous function, except that the components of
+     * the gradients of the sum in the \e x, \e y, and \e z directions are
+     * computed.  This routine requires constant memory and thus never throws
+     * an exception.
+     **********************************************************************/
+    Math::real operator()(real tau1, real tau2, real x, real y, real z,
+                          real& gradx, real& grady, real& gradz) const {
+      real f[] = {1, tau1, tau2};
+      real v = 0;
+      switch (_norm) {
+      case FULL:
+        v = SphericalEngine::Value<true, SphericalEngine::FULL, 3>
+          (_c, f, x, y, z, _a, gradx, grady, gradz);
+        break;
+      case SCHMIDT:
+      default:                  // To avoid compiler warnings
+        v = SphericalEngine::Value<true, SphericalEngine::SCHMIDT, 3>
+          (_c, f, x, y, z, _a, gradx, grady, gradz);
+        break;
+      }
+      return v;
+    }
+
+    /**
+     * Create a CircularEngine to allow the efficient evaluation of several
+     * points on a circle of latitude at fixed values of \e tau1 and \e tau2.
+     *
+     * @param[in] tau1 multiplier for correction coefficients \e C' and \e S'.
+     * @param[in] tau2 multiplier for correction coefficients \e C'' and \e
+     *   S''.
+     * @param[in] p the radius of the circle.
+     * @param[in] z the height of the circle above the equatorial plane.
+     * @param[in] gradp if true the returned object will be able to compute the
+     *   gradient of the sum.
+     * @exception std::bad_alloc if the memory for the CircularEngine can't be
+     *   allocated.
+     * @return the CircularEngine object.
+     *
+     * SphericalHarmonic2::operator()() exchanges the order of the sums in the
+     * definition, i.e., &sum;<sub><i>n</i> = 0..<i>N</i></sub>
+     * &sum;<sub><i>m</i> = 0..<i>n</i></sub> becomes &sum;<sub><i>m</i> =
+     * 0..<i>N</i></sub> &sum;<sub><i>n</i> = <i>m</i>..<i>N</i></sub>..
+     * SphericalHarmonic2::Circle performs the inner sum over degree \e n
+     * (which entails about <i>N</i><sup>2</sup> operations).  Calling
+     * CircularEngine::operator()() on the returned object performs the outer
+     * sum over the order \e m (about \e N operations).
+     *
+     * See SphericalHarmonic::Circle for an example of its use.
+     **********************************************************************/
+    CircularEngine Circle(real tau1, real tau2, real p, real z, bool gradp)
+      const {
+      real f[] = {1, tau1, tau2};
+      switch (_norm) {
+      case FULL:
+        return gradp ?
+          SphericalEngine::Circle<true, SphericalEngine::FULL, 3>
+          (_c, f, p, z, _a) :
+          SphericalEngine::Circle<false, SphericalEngine::FULL, 3>
+          (_c, f, p, z, _a);
+        break;
+      case SCHMIDT:
+      default:                  // To avoid compiler warnings
+        return gradp ?
+          SphericalEngine::Circle<true, SphericalEngine::SCHMIDT, 3>
+          (_c, f, p, z, _a) :
+          SphericalEngine::Circle<false, SphericalEngine::SCHMIDT, 3>
+          (_c, f, p, z, _a);
+        break;
+      }
+    }
+
+    /**
+     * @return the zeroth SphericalEngine::coeff object.
+     **********************************************************************/
+    const SphericalEngine::coeff& Coefficients() const
+    { return _c[0]; }
+    /**
+     * @return the first SphericalEngine::coeff object.
+     **********************************************************************/
+    const SphericalEngine::coeff& Coefficients1() const
+    { return _c[1]; }
+    /**
+     * @return the second SphericalEngine::coeff object.
+     **********************************************************************/
+    const SphericalEngine::coeff& Coefficients2() const
+    { return _c[2]; }
+  };
+
+} // namespace GeographicLib
+
+#endif  // GEOGRAPHICLIB_SPHERICALHARMONIC2_HPP

+ 206 - 0
external/include/GeographicLib/TransverseMercator.hpp

@@ -0,0 +1,206 @@
+/**
+ * \file TransverseMercator.hpp
+ * \brief Header for GeographicLib::TransverseMercator class
+ *
+ * Copyright (c) Charles Karney (2008-2020) <charles@karney.com> and licensed
+ * under the MIT/X11 License.  For more information, see
+ * https://geographiclib.sourceforge.io/
+ **********************************************************************/
+
+#if !defined(GEOGRAPHICLIB_TRANSVERSEMERCATOR_HPP)
+#define GEOGRAPHICLIB_TRANSVERSEMERCATOR_HPP 1
+
+#include <GeographicLib/Constants.hpp>
+
+#if !defined(GEOGRAPHICLIB_TRANSVERSEMERCATOR_ORDER)
+/**
+ * The order of the series approximation used in TransverseMercator.
+ * GEOGRAPHICLIB_TRANSVERSEMERCATOR_ORDER can be set to any integer in [4, 8].
+ **********************************************************************/
+#  define GEOGRAPHICLIB_TRANSVERSEMERCATOR_ORDER \
+  (GEOGRAPHICLIB_PRECISION == 2 ? 6 : \
+   (GEOGRAPHICLIB_PRECISION == 1 ? 4 : 8))
+#endif
+
+namespace GeographicLib {
+
+  /**
+   * \brief Transverse Mercator projection
+   *
+   * This uses Kr&uuml;ger's method which evaluates the projection and its
+   * inverse in terms of a series.  See
+   *  - L. Kr&uuml;ger,
+   *    <a href="https://doi.org/10.2312/GFZ.b103-krueger28"> Konforme
+   *    Abbildung des Erdellipsoids in der Ebene</a> (Conformal mapping of the
+   *    ellipsoidal earth to the plane), Royal Prussian Geodetic Institute, New
+   *    Series 52, 172 pp. (1912).
+   *  - C. F. F. Karney,
+   *    <a href="https://doi.org/10.1007/s00190-011-0445-3">
+   *    Transverse Mercator with an accuracy of a few nanometers,</a>
+   *    J. Geodesy 85(8), 475--485 (Aug. 2011);
+   *    preprint
+   *    <a href="https://arxiv.org/abs/1002.1417">arXiv:1002.1417</a>.
+   *
+   * Kr&uuml;ger's method has been extended from 4th to 6th order.  The maximum
+   * error is 5 nm (5 nanometers), ground distance, for all positions within 35
+   * degrees of the central meridian.  The error in the convergence is 2
+   * &times; 10<sup>&minus;15</sup>&quot; and the relative error in the scale
+   * is 6 &times; 10<sup>&minus;12</sup>%%.  See Sec. 4 of
+   * <a href="https://arxiv.org/abs/1002.1417">arXiv:1002.1417</a> for details.
+   * The speed penalty in going to 6th order is only about 1%.
+   *
+   * There's a singularity in the projection at &phi; = 0&deg;, &lambda;
+   * &minus; &lambda;<sub>0</sub> = &plusmn;(1 &minus; \e e)90&deg; (&asymp;
+   * &plusmn;82.6&deg; for the WGS84 ellipsoid), where \e e is the
+   * eccentricity.  Beyond this point, the series ceases to converge and the
+   * results from this method will be garbage.  To be on the safe side, don't
+   * use this method if the angular distance from the central meridian exceeds
+   * (1 &minus; 2e)90&deg; (&asymp; 75&deg; for the WGS84 ellipsoid)
+   *
+   * TransverseMercatorExact is an alternative implementation of the projection
+   * using exact formulas which yield accurate (to 8 nm) results over the
+   * entire ellipsoid.
+   *
+   * The ellipsoid parameters and the central scale are set in the constructor.
+   * The central meridian (which is a trivial shift of the longitude) is
+   * specified as the \e lon0 argument of the TransverseMercator::Forward and
+   * TransverseMercator::Reverse functions.  The latitude of origin is taken to
+   * be the equator.  There is no provision in this class for specifying a
+   * false easting or false northing or a different latitude of origin.
+   * However these are can be simply included by the calling function.  For
+   * example, the UTMUPS class applies the false easting and false northing for
+   * the UTM projections.  A more complicated example is the British National
+   * Grid (<a href="https://www.spatialreference.org/ref/epsg/7405/">
+   * EPSG:7405</a>) which requires the use of a latitude of origin.  This is
+   * implemented by the GeographicLib::OSGB class.
+   *
+   * This class also returns the meridian convergence \e gamma and scale \e k.
+   * The meridian convergence is the bearing of grid north (the \e y axis)
+   * measured clockwise from true north.
+   *
+   * See TransverseMercator.cpp for more information on the implementation.
+   *
+   * See \ref transversemercator for a discussion of this projection.
+   *
+   * Example of use:
+   * \include example-TransverseMercator.cpp
+   *
+   * <a href="TransverseMercatorProj.1.html">TransverseMercatorProj</a> is a
+   * command-line utility providing access to the functionality of
+   * TransverseMercator and TransverseMercatorExact.
+   **********************************************************************/
+
+  class GEOGRAPHICLIB_EXPORT TransverseMercator {
+  private:
+    typedef Math::real real;
+    static const int maxpow_ = GEOGRAPHICLIB_TRANSVERSEMERCATOR_ORDER;
+    static const int numit_ = 5;
+    real _a, _f, _k0, _e2, _es, _e2m,  _c, _n;
+    // _alp[0] and _bet[0] unused
+    real _a1, _b1, _alp[maxpow_ + 1], _bet[maxpow_ + 1];
+    friend class Ellipsoid;           // For access to taupf, tauf.
+  public:
+
+    /**
+     * Constructor for a ellipsoid with
+     *
+     * @param[in] a equatorial radius (meters).
+     * @param[in] f flattening of ellipsoid.  Setting \e f = 0 gives a sphere.
+     *   Negative \e f gives a prolate ellipsoid.
+     * @param[in] k0 central scale factor.
+     * @exception GeographicErr if \e a, (1 &minus; \e f) \e a, or \e k0 is
+     *   not positive.
+     **********************************************************************/
+    TransverseMercator(real a, real f, real k0);
+
+    /**
+     * Forward projection, from geographic to transverse Mercator.
+     *
+     * @param[in] lon0 central meridian of the projection (degrees).
+     * @param[in] lat latitude of point (degrees).
+     * @param[in] lon longitude of point (degrees).
+     * @param[out] x easting of point (meters).
+     * @param[out] y northing of point (meters).
+     * @param[out] gamma meridian convergence at point (degrees).
+     * @param[out] k scale of projection at point.
+     *
+     * No false easting or northing is added. \e lat should be in the range
+     * [&minus;90&deg;, 90&deg;].
+     **********************************************************************/
+    void Forward(real lon0, real lat, real lon,
+                 real& x, real& y, real& gamma, real& k) const;
+
+    /**
+     * Reverse projection, from transverse Mercator to geographic.
+     *
+     * @param[in] lon0 central meridian of the projection (degrees).
+     * @param[in] x easting of point (meters).
+     * @param[in] y northing of point (meters).
+     * @param[out] lat latitude of point (degrees).
+     * @param[out] lon longitude of point (degrees).
+     * @param[out] gamma meridian convergence at point (degrees).
+     * @param[out] k scale of projection at point.
+     *
+     * No false easting or northing is added.  The value of \e lon returned is
+     * in the range [&minus;180&deg;, 180&deg;].
+     **********************************************************************/
+    void Reverse(real lon0, real x, real y,
+                 real& lat, real& lon, real& gamma, real& k) const;
+
+    /**
+     * TransverseMercator::Forward without returning the convergence and scale.
+     **********************************************************************/
+    void Forward(real lon0, real lat, real lon,
+                 real& x, real& y) const {
+      real gamma, k;
+      Forward(lon0, lat, lon, x, y, gamma, k);
+    }
+
+    /**
+     * TransverseMercator::Reverse without returning the convergence and scale.
+     **********************************************************************/
+    void Reverse(real lon0, real x, real y,
+                 real& lat, real& lon) const {
+      real gamma, k;
+      Reverse(lon0, x, y, lat, lon, gamma, k);
+    }
+
+    /** \name Inspector functions
+     **********************************************************************/
+    ///@{
+    /**
+     * @return \e a the equatorial radius of the ellipsoid (meters).  This is
+     *   the value used in the constructor.
+     **********************************************************************/
+    Math::real EquatorialRadius() const { return _a; }
+
+    /**
+     * @return \e f the flattening of the ellipsoid.  This is the value used in
+     *   the constructor.
+     **********************************************************************/
+    Math::real Flattening() const { return _f; }
+
+    /**
+     * @return \e k0 central scale for the projection.  This is the value of \e
+     *   k0 used in the constructor and is the scale on the central meridian.
+     **********************************************************************/
+    Math::real CentralScale() const { return _k0; }
+
+    /**
+     * \deprecated An old name for EquatorialRadius().
+     **********************************************************************/
+    GEOGRAPHICLIB_DEPRECATED("Use EquatorialRadius()")
+    Math::real MajorRadius() const { return EquatorialRadius(); }
+    ///@}
+
+    /**
+     * A global instantiation of TransverseMercator with the WGS84 ellipsoid
+     * and the UTM scale factor.  However, unlike UTM, no false easting or
+     * northing is added.
+     **********************************************************************/
+    static const TransverseMercator& UTM();
+  };
+
+} // namespace GeographicLib
+
+#endif  // GEOGRAPHICLIB_TRANSVERSEMERCATOR_HPP

+ 264 - 0
external/include/GeographicLib/TransverseMercatorExact.hpp

@@ -0,0 +1,264 @@
+/**
+ * \file TransverseMercatorExact.hpp
+ * \brief Header for GeographicLib::TransverseMercatorExact class
+ *
+ * Copyright (c) Charles Karney (2008-2020) <charles@karney.com> and licensed
+ * under the MIT/X11 License.  For more information, see
+ * https://geographiclib.sourceforge.io/
+ **********************************************************************/
+
+#if !defined(GEOGRAPHICLIB_TRANSVERSEMERCATOREXACT_HPP)
+#define GEOGRAPHICLIB_TRANSVERSEMERCATOREXACT_HPP 1
+
+#include <GeographicLib/Constants.hpp>
+#include <GeographicLib/EllipticFunction.hpp>
+
+namespace GeographicLib {
+
+  /**
+   * \brief An exact implementation of the transverse Mercator projection
+   *
+   * Implementation of the Transverse Mercator Projection given in
+   *  - L. P. Lee,
+   *    <a href="https://doi.org/10.3138/X687-1574-4325-WM62"> Conformal
+   *    Projections Based On Jacobian Elliptic Functions</a>, Part V of
+   *    Conformal Projections Based on Elliptic Functions,
+   *    (B. V. Gutsell, Toronto, 1976), 128pp.,
+   *    ISBN: 0919870163
+   *    (also appeared as:
+   *    Monograph 16, Suppl. No. 1 to Canadian Cartographer, Vol 13).
+   *  - C. F. F. Karney,
+   *    <a href="https://doi.org/10.1007/s00190-011-0445-3">
+   *    Transverse Mercator with an accuracy of a few nanometers,</a>
+   *    J. Geodesy 85(8), 475--485 (Aug. 2011);
+   *    preprint
+   *    <a href="https://arxiv.org/abs/1002.1417">arXiv:1002.1417</a>.
+   *
+   * Lee gives the correct results for forward and reverse transformations
+   * subject to the branch cut rules (see the description of the \e extendp
+   * argument to the constructor).  The maximum error is about 8 nm (8
+   * nanometers), ground distance, for the forward and reverse transformations.
+   * The error in the convergence is 2 &times; 10<sup>&minus;15</sup>&quot;,
+   * the relative error in the scale is 7 &times; 10<sup>&minus;12</sup>%%.
+   * See Sec. 3 of
+   * <a href="https://arxiv.org/abs/1002.1417">arXiv:1002.1417</a> for details.
+   * The method is "exact" in the sense that the errors are close to the
+   * round-off limit and that no changes are needed in the algorithms for them
+   * to be used with reals of a higher precision.  Thus the errors using long
+   * double (with a 64-bit fraction) are about 2000 times smaller than using
+   * double (with a 53-bit fraction).
+   *
+   * This algorithm is about 4.5 times slower than the 6th-order Kr&uuml;ger
+   * method, TransverseMercator, taking about 11 us for a combined forward and
+   * reverse projection on a 2.66 GHz Intel machine (g++, version 4.3.0, -O3).
+   *
+   * The ellipsoid parameters and the central scale are set in the constructor.
+   * The central meridian (which is a trivial shift of the longitude) is
+   * specified as the \e lon0 argument of the TransverseMercatorExact::Forward
+   * and TransverseMercatorExact::Reverse functions.  The latitude of origin is
+   * taken to be the equator.  See the documentation on TransverseMercator for
+   * how to include a false easting, false northing, or a latitude of origin.
+   *
+   * See <a href="https://geographiclib.sourceforge.io/tm-grid.kmz"
+   * type="application/vnd.google-earth.kmz"> tm-grid.kmz</a>, for an
+   * illustration of the transverse Mercator grid in Google Earth.
+   *
+   * This class also returns the meridian convergence \e gamma and scale \e k.
+   * The meridian convergence is the bearing of grid north (the \e y axis)
+   * measured clockwise from true north.
+   *
+   * See TransverseMercatorExact.cpp for more information on the
+   * implementation.
+   *
+   * See \ref transversemercator for a discussion of this projection.
+   *
+   * Example of use:
+   * \include example-TransverseMercatorExact.cpp
+   *
+   * <a href="TransverseMercatorProj.1.html">TransverseMercatorProj</a> is a
+   * command-line utility providing access to the functionality of
+   * TransverseMercator and TransverseMercatorExact.
+   **********************************************************************/
+
+  class GEOGRAPHICLIB_EXPORT TransverseMercatorExact {
+  private:
+    typedef Math::real real;
+    static const int numit_ = 10;
+    real tol_, tol2_, taytol_;
+    real _a, _f, _k0, _mu, _mv, _e;
+    bool _extendp;
+    EllipticFunction _Eu, _Ev;
+
+    void zeta(real u, real snu, real cnu, real dnu,
+              real v, real snv, real cnv, real dnv,
+              real& taup, real& lam) const;
+
+    void dwdzeta(real u, real snu, real cnu, real dnu,
+                 real v, real snv, real cnv, real dnv,
+                 real& du, real& dv) const;
+
+    bool zetainv0(real psi, real lam, real& u, real& v) const;
+    void zetainv(real taup, real lam, real& u, real& v) const;
+
+    void sigma(real u, real snu, real cnu, real dnu,
+               real v, real snv, real cnv, real dnv,
+               real& xi, real& eta) const;
+
+    void dwdsigma(real u, real snu, real cnu, real dnu,
+                  real v, real snv, real cnv, real dnv,
+                  real& du, real& dv) const;
+
+    bool sigmainv0(real xi, real eta, real& u, real& v) const;
+    void sigmainv(real xi, real eta, real& u, real& v) const;
+
+    void Scale(real tau, real lam,
+               real snu, real cnu, real dnu,
+               real snv, real cnv, real dnv,
+               real& gamma, real& k) const;
+
+  public:
+
+    /**
+     * Constructor for a ellipsoid with
+     *
+     * @param[in] a equatorial radius (meters).
+     * @param[in] f flattening of ellipsoid.
+     * @param[in] k0 central scale factor.
+     * @param[in] extendp use extended domain.
+     * @exception GeographicErr if \e a, \e f, or \e k0 is not positive.
+     *
+     * The transverse Mercator projection has a branch point singularity at \e
+     * lat = 0 and \e lon &minus; \e lon0 = 90 (1 &minus; \e e) or (for
+     * TransverseMercatorExact::UTM) x = 18381 km, y = 0m.  The \e extendp
+     * argument governs where the branch cut is placed.  With \e extendp =
+     * false, the "standard" convention is followed, namely the cut is placed
+     * along \e x > 18381 km, \e y = 0m.  Forward can be called with any \e lat
+     * and \e lon then produces the transformation shown in Lee, Fig 46.
+     * Reverse analytically continues this in the &plusmn; \e x direction.  As
+     * a consequence, Reverse may map multiple points to the same geographic
+     * location; for example, for TransverseMercatorExact::UTM, \e x =
+     * 22051449.037349 m, \e y = &minus;7131237.022729 m and \e x =
+     * 29735142.378357 m, \e y = 4235043.607933 m both map to \e lat =
+     * &minus;2&deg;, \e lon = 88&deg;.
+     *
+     * With \e extendp = true, the branch cut is moved to the lower left
+     * quadrant.  The various symmetries of the transverse Mercator projection
+     * can be used to explore the projection on any sheet.  In this mode the
+     * domains of \e lat, \e lon, \e x, and \e y are restricted to
+     * - the union of
+     *   - \e lat in [0, 90] and \e lon &minus; \e lon0 in [0, 90]
+     *   - \e lat in (-90, 0] and \e lon &minus; \e lon0 in [90 (1 &minus; \e
+           e), 90]
+     * - the union of
+     *   - <i>x</i>/(\e k0 \e a) in [0, &infin;) and
+     *     <i>y</i>/(\e k0 \e a) in [0, E(<i>e</i><sup>2</sup>)]
+     *   - <i>x</i>/(\e k0 \e a) in [K(1 &minus; <i>e</i><sup>2</sup>) &minus;
+     *     E(1 &minus; <i>e</i><sup>2</sup>), &infin;) and <i>y</i>/(\e k0 \e
+     *     a) in (&minus;&infin;, 0]
+     * .
+     * See Sec. 5 of
+     * <a href="https://arxiv.org/abs/1002.1417">arXiv:1002.1417</a> for a full
+     * discussion of the treatment of the branch cut.
+     *
+     * The method will work for all ellipsoids used in terrestrial geodesy.
+     * The method cannot be applied directly to the case of a sphere (\e f = 0)
+     * because some the constants characterizing this method diverge in that
+     * limit, and in practice, \e f should be larger than about
+     * numeric_limits<real>::epsilon().  However, TransverseMercator treats the
+     * sphere exactly.
+     **********************************************************************/
+    TransverseMercatorExact(real a, real f, real k0, bool extendp = false);
+
+    /**
+     * Forward projection, from geographic to transverse Mercator.
+     *
+     * @param[in] lon0 central meridian of the projection (degrees).
+     * @param[in] lat latitude of point (degrees).
+     * @param[in] lon longitude of point (degrees).
+     * @param[out] x easting of point (meters).
+     * @param[out] y northing of point (meters).
+     * @param[out] gamma meridian convergence at point (degrees).
+     * @param[out] k scale of projection at point.
+     *
+     * No false easting or northing is added. \e lat should be in the range
+     * [&minus;90&deg;, 90&deg;].
+     **********************************************************************/
+    void Forward(real lon0, real lat, real lon,
+                 real& x, real& y, real& gamma, real& k) const;
+
+    /**
+     * Reverse projection, from transverse Mercator to geographic.
+     *
+     * @param[in] lon0 central meridian of the projection (degrees).
+     * @param[in] x easting of point (meters).
+     * @param[in] y northing of point (meters).
+     * @param[out] lat latitude of point (degrees).
+     * @param[out] lon longitude of point (degrees).
+     * @param[out] gamma meridian convergence at point (degrees).
+     * @param[out] k scale of projection at point.
+     *
+     * No false easting or northing is added.  The value of \e lon returned is
+     * in the range [&minus;180&deg;, 180&deg;].
+     **********************************************************************/
+    void Reverse(real lon0, real x, real y,
+                 real& lat, real& lon, real& gamma, real& k) const;
+
+    /**
+     * TransverseMercatorExact::Forward without returning the convergence and
+     * scale.
+     **********************************************************************/
+    void Forward(real lon0, real lat, real lon,
+                 real& x, real& y) const {
+      real gamma, k;
+      Forward(lon0, lat, lon, x, y, gamma, k);
+    }
+
+    /**
+     * TransverseMercatorExact::Reverse without returning the convergence and
+     * scale.
+     **********************************************************************/
+    void Reverse(real lon0, real x, real y,
+                 real& lat, real& lon) const {
+      real gamma, k;
+      Reverse(lon0, x, y, lat, lon, gamma, k);
+    }
+
+    /** \name Inspector functions
+     **********************************************************************/
+    ///@{
+    /**
+     * @return \e a the equatorial radius of the ellipsoid (meters).  This is
+     *   the value used in the constructor.
+     **********************************************************************/
+    Math::real EquatorialRadius() const { return _a; }
+
+    /**
+     * @return \e f the flattening of the ellipsoid.  This is the value used in
+     *   the constructor.
+     **********************************************************************/
+    Math::real Flattening() const { return _f; }
+
+    /**
+     * @return \e k0 central scale for the projection.  This is the value of \e
+     *   k0 used in the constructor and is the scale on the central meridian.
+     **********************************************************************/
+    Math::real CentralScale() const { return _k0; }
+
+    /**
+     * \deprecated An old name for EquatorialRadius().
+     **********************************************************************/
+    GEOGRAPHICLIB_DEPRECATED("Use EquatorialRadius()")
+    Math::real MajorRadius() const { return EquatorialRadius(); }
+    ///@}
+
+    /**
+     * A global instantiation of TransverseMercatorExact with the WGS84
+     * ellipsoid and the UTM scale factor.  However, unlike UTM, no false
+     * easting or northing is added.
+     **********************************************************************/
+    static const TransverseMercatorExact& UTM();
+  };
+
+} // namespace GeographicLib
+
+#endif  // GEOGRAPHICLIB_TRANSVERSEMERCATOREXACT_HPP

+ 428 - 0
external/include/GeographicLib/UTMUPS.hpp

@@ -0,0 +1,428 @@
+/**
+ * \file UTMUPS.hpp
+ * \brief Header for GeographicLib::UTMUPS class
+ *
+ * Copyright (c) Charles Karney (2008-2020) <charles@karney.com> and licensed
+ * under the MIT/X11 License.  For more information, see
+ * https://geographiclib.sourceforge.io/
+ **********************************************************************/
+
+#if !defined(GEOGRAPHICLIB_UTMUPS_HPP)
+#define GEOGRAPHICLIB_UTMUPS_HPP 1
+
+#include <GeographicLib/Constants.hpp>
+
+namespace GeographicLib {
+
+  /**
+   * \brief Convert between geographic coordinates and UTM/UPS
+   *
+   * UTM and UPS are defined
+   * - J. W. Hager, J. F. Behensky, and B. W. Drew,
+   *   <a href="https://web.archive.org/web/20161214054445/http://earth-info.nga.mil/GandG/publications/tm8358.2/TM8358_2.pdf">
+   *   The Universal Grids: Universal Transverse Mercator (UTM) and Universal
+   *   Polar Stereographic (UPS)</a>, Defense Mapping Agency, Technical Manual
+   *   TM8358.2 (1989).
+   * .
+   * Section 2-3 defines UTM and section 3-2.4 defines UPS.  This document also
+   * includes approximate algorithms for the computation of the underlying
+   * transverse Mercator and polar stereographic projections.  Here we
+   * substitute much more accurate algorithms given by
+   * GeographicLib:TransverseMercator and GeographicLib:PolarStereographic.
+   * These are the algorithms recommended by the NGA document
+   * - <a href="https://earth-info.nga.mil/php/download.php?file=coord-utmups">
+   *   The Universal Grids and the Transverse Mercator and Polar Stereographic
+   *   Map Projections</a>, NGA.SIG.0012 (2014).
+   *
+   * In this implementation, the conversions are closed, i.e., output from
+   * Forward is legal input for Reverse and vice versa.  The error is about 5nm
+   * in each direction.  However, the conversion from legal UTM/UPS coordinates
+   * to geographic coordinates and back might throw an error if the initial
+   * point is within 5nm of the edge of the allowed range for the UTM/UPS
+   * coordinates.
+   *
+   * The simplest way to guarantee the closed property is to define allowed
+   * ranges for the eastings and northings for UTM and UPS coordinates.  The
+   * UTM boundaries are the same for all zones.  (The only place the
+   * exceptional nature of the zone boundaries is evident is when converting to
+   * UTM/UPS coordinates requesting the standard zone.)  The MGRS lettering
+   * scheme imposes natural limits on UTM/UPS coordinates which may be
+   * converted into MGRS coordinates.  For the conversion to/from geographic
+   * coordinates these ranges have been extended by 100km in order to provide a
+   * generous overlap between UTM and UPS and between UTM zones.
+   *
+   * The <a href="http://www.nga.mil">NGA</a> software package
+   * <a href="https://earth-info.nga.mil/index.php?dir=wgs84&action=wgs84#tab_geotrans">geotrans</a>
+   * also provides conversions to and from UTM and UPS.  Version 2.4.2 (and
+   * earlier) suffers from some drawbacks:
+   * - Inconsistent rules are used to determine the whether a particular UTM or
+   *   UPS coordinate is legal.  A more systematic approach is taken here.
+   * - The underlying projections are not very accurately implemented.
+   *
+   * The GeographicLib::UTMUPS::EncodeZone encodes the UTM zone and hemisphere
+   * to allow UTM/UPS coordinated to be displayed as, for example, "38N 444500
+   * 3688500".  According to NGA.SIG.0012_2.0.0_UTMUPS the use of "N" to denote
+   * "north" in the context is not allowed (since a upper case letter in this
+   * context denotes the MGRS latitude band).  Consequently, as of version
+   * 1.36, EncodeZone uses the lower case letters "n" and "s" to denote the
+   * hemisphere.  In addition EncodeZone accepts an optional final argument \e
+   * abbrev, which, if false, results in the hemisphere being spelled out as in
+   * "38north".
+   *
+   * Example of use:
+   * \include example-UTMUPS.cpp
+   **********************************************************************/
+  class GEOGRAPHICLIB_EXPORT UTMUPS {
+  private:
+    typedef Math::real real;
+    static const int falseeasting_[4];
+    static const int falsenorthing_[4];
+    static const int mineasting_[4];
+    static const int maxeasting_[4];
+    static const int minnorthing_[4];
+    static const int maxnorthing_[4];
+    static const int epsg01N = 32601; // EPSG code for UTM 01N
+    static const int epsg60N = 32660; // EPSG code for UTM 60N
+    static const int epsgN   = 32661; // EPSG code for UPS   N
+    static const int epsg01S = 32701; // EPSG code for UTM 01S
+    static const int epsg60S = 32760; // EPSG code for UTM 60S
+    static const int epsgS   = 32761; // EPSG code for UPS   S
+    static real CentralMeridian(int zone)
+    { return real(6 * zone - 183); }
+    // Throw an error if easting or northing are outside standard ranges.  If
+    // throwp = false, return bool instead.
+    static bool CheckCoords(bool utmp, bool northp, real x, real y,
+                            bool msgrlimits = false, bool throwp = true);
+    UTMUPS();                   // Disable constructor
+
+  public:
+
+    /**
+     * In this class we bring together the UTM and UPS coordinates systems.
+     * The UTM divides the earth between latitudes &minus;80&deg; and 84&deg;
+     * into 60 zones numbered 1 thru 60.  Zone assign zone number 0 to the UPS
+     * regions, covering the two poles.  Within UTMUPS, non-negative zone
+     * numbers refer to one of the "physical" zones, 0 for UPS and [1, 60] for
+     * UTM.  Negative "pseudo-zone" numbers are used to select one of the
+     * physical zones.
+     **********************************************************************/
+    enum zonespec {
+      /**
+       * The smallest pseudo-zone number.
+       **********************************************************************/
+      MINPSEUDOZONE = -4,
+      /**
+       * A marker for an undefined or invalid zone.  Equivalent to NaN.
+       **********************************************************************/
+      INVALID = -4,
+      /**
+       * If a coordinate already include zone information (e.g., it is an MGRS
+       * coordinate), use that, otherwise apply the UTMUPS::STANDARD rules.
+       **********************************************************************/
+      MATCH = -3,
+      /**
+       * Apply the standard rules for UTM zone assigment extending the UTM zone
+       * to each pole to give a zone number in [1, 60].  For example, use UTM
+       * zone 38 for longitude in [42&deg;, 48&deg;).  The rules include the
+       * Norway and Svalbard exceptions.
+       **********************************************************************/
+      UTM = -2,
+      /**
+       * Apply the standard rules for zone assignment to give a zone number in
+       * [0, 60].  If the latitude is not in [&minus;80&deg;, 84&deg;), then
+       * use UTMUPS::UPS = 0, otherwise apply the rules for UTMUPS::UTM.  The
+       * tests on latitudes and longitudes are all closed on the lower end open
+       * on the upper.  Thus for UTM zone 38, latitude is in [&minus;80&deg;,
+       * 84&deg;) and longitude is in [42&deg;, 48&deg;).
+       **********************************************************************/
+      STANDARD = -1,
+      /**
+       * The largest pseudo-zone number.
+       **********************************************************************/
+      MAXPSEUDOZONE = -1,
+      /**
+       * The smallest physical zone number.
+       **********************************************************************/
+      MINZONE = 0,
+      /**
+       * The zone number used for UPS
+       **********************************************************************/
+      UPS = 0,
+      /**
+       * The smallest UTM zone number.
+       **********************************************************************/
+      MINUTMZONE = 1,
+      /**
+       * The largest UTM zone number.
+       **********************************************************************/
+      MAXUTMZONE = 60,
+      /**
+       * The largest physical zone number.
+       **********************************************************************/
+      MAXZONE = 60,
+    };
+
+    /**
+     * The standard zone.
+     *
+     * @param[in] lat latitude (degrees).
+     * @param[in] lon longitude (degrees).
+     * @param[in] setzone zone override (optional).  If omitted, use the
+     *   standard rules for picking the zone.  If \e setzone is given then use
+     *   that zone if it is non-negative, otherwise apply the rules given in
+     *   UTMUPS::zonespec.
+     * @exception GeographicErr if \e setzone is outside the range
+     *   [UTMUPS::MINPSEUDOZONE, UTMUPS::MAXZONE] = [&minus;4, 60].
+     *
+     * This is exact.
+     **********************************************************************/
+    static int StandardZone(real lat, real lon, int setzone = STANDARD);
+
+    /**
+     * Forward projection, from geographic to UTM/UPS.
+     *
+     * @param[in] lat latitude of point (degrees).
+     * @param[in] lon longitude of point (degrees).
+     * @param[out] zone the UTM zone (zero means UPS).
+     * @param[out] northp hemisphere (true means north, false means south).
+     * @param[out] x easting of point (meters).
+     * @param[out] y northing of point (meters).
+     * @param[out] gamma meridian convergence at point (degrees).
+     * @param[out] k scale of projection at point.
+     * @param[in] setzone zone override (optional).
+     * @param[in] mgrslimits if true enforce the stricter MGRS limits on the
+     *   coordinates (default = false).
+     * @exception GeographicErr if \e lat is not in [&minus;90&deg;,
+     *   90&deg;].
+     * @exception GeographicErr if the resulting \e x or \e y is out of allowed
+     *   range (see Reverse); in this case, these arguments are unchanged.
+     *
+     * If \e setzone is omitted, use the standard rules for picking the zone.
+     * If \e setzone is given then use that zone if it is non-negative,
+     * otherwise apply the rules given in UTMUPS::zonespec.  The accuracy of
+     * the conversion is about 5nm.
+     *
+     * The northing \e y jumps by UTMUPS::UTMShift() when crossing the equator
+     * in the southerly direction.  Sometimes it is useful to remove this
+     * discontinuity in \e y by extending the "northern" hemisphere using
+     * UTMUPS::Transfer:
+     * \code
+     double lat = -1, lon = 123;
+     int zone;
+     bool northp;
+     double x, y, gamma, k;
+     GeographicLib::UTMUPS::Forward(lat, lon, zone, northp, x, y, gamma, k);
+     GeographicLib::UTMUPS::Transfer(zone, northp, x, y,
+                                     zone, true,   x, y, zone);
+     northp = true;
+     \endcode
+     **********************************************************************/
+    static void Forward(real lat, real lon,
+                        int& zone, bool& northp, real& x, real& y,
+                        real& gamma, real& k,
+                        int setzone = STANDARD, bool mgrslimits = false);
+
+    /**
+     * Reverse projection, from  UTM/UPS to geographic.
+     *
+     * @param[in] zone the UTM zone (zero means UPS).
+     * @param[in] northp hemisphere (true means north, false means south).
+     * @param[in] x easting of point (meters).
+     * @param[in] y northing of point (meters).
+     * @param[out] lat latitude of point (degrees).
+     * @param[out] lon longitude of point (degrees).
+     * @param[out] gamma meridian convergence at point (degrees).
+     * @param[out] k scale of projection at point.
+     * @param[in] mgrslimits if true enforce the stricter MGRS limits on the
+     *   coordinates (default = false).
+     * @exception GeographicErr if \e zone, \e x, or \e y is out of allowed
+     *   range; this this case the arguments are unchanged.
+     *
+     * The accuracy of the conversion is about 5nm.
+     *
+     * UTM eastings are allowed to be in the range [0km, 1000km], northings are
+     * allowed to be in in [0km, 9600km] for the northern hemisphere and in
+     * [900km, 10000km] for the southern hemisphere.  However UTM northings
+     * can be continued across the equator.  So the actual limits on the
+     * northings are [-9100km, 9600km] for the "northern" hemisphere and
+     * [900km, 19600km] for the "southern" hemisphere.
+     *
+     * UPS eastings and northings are allowed to be in the range [1200km,
+     * 2800km] in the northern hemisphere and in [700km, 3300km] in the
+     * southern hemisphere.
+     *
+     * These ranges are 100km larger than allowed for the conversions to MGRS.
+     * (100km is the maximum extra padding consistent with eastings remaining
+     * non-negative.)  This allows generous overlaps between zones and UTM and
+     * UPS.  If \e mgrslimits = true, then all the ranges are shrunk by 100km
+     * so that they agree with the stricter MGRS ranges.  No checks are
+     * performed besides these (e.g., to limit the distance outside the
+     * standard zone boundaries).
+     **********************************************************************/
+    static void Reverse(int zone, bool northp, real x, real y,
+                        real& lat, real& lon, real& gamma, real& k,
+                        bool mgrslimits = false);
+
+    /**
+     * UTMUPS::Forward without returning convergence and scale.
+     **********************************************************************/
+    static void Forward(real lat, real lon,
+                        int& zone, bool& northp, real& x, real& y,
+                        int setzone = STANDARD, bool mgrslimits = false) {
+      real gamma, k;
+      Forward(lat, lon, zone, northp, x, y, gamma, k, setzone, mgrslimits);
+    }
+
+    /**
+     * UTMUPS::Reverse without returning convergence and scale.
+     **********************************************************************/
+    static void Reverse(int zone, bool northp, real x, real y,
+                        real& lat, real& lon, bool mgrslimits = false) {
+      real gamma, k;
+      Reverse(zone, northp, x, y, lat, lon, gamma, k, mgrslimits);
+    }
+
+    /**
+     * Transfer UTM/UPS coordinated from one zone to another.
+     *
+     * @param[in] zonein the UTM zone for \e xin and \e yin (or zero for UPS).
+     * @param[in] northpin hemisphere for \e xin and \e yin (true means north,
+     *   false means south).
+     * @param[in] xin easting of point (meters) in \e zonein.
+     * @param[in] yin northing of point (meters) in \e zonein.
+     * @param[in] zoneout the requested UTM zone for \e xout and \e yout (or
+     *   zero for UPS).
+     * @param[in] northpout hemisphere for \e xout output and \e yout.
+     * @param[out] xout easting of point (meters) in \e zoneout.
+     * @param[out] yout northing of point (meters) in \e zoneout.
+     * @param[out] zone the actual UTM zone for \e xout and \e yout (or zero
+     *   for UPS); this equals \e zoneout if \e zoneout &ge; 0.
+     * @exception GeographicErr if \e zonein is out of range (see below).
+     * @exception GeographicErr if \e zoneout is out of range (see below).
+     * @exception GeographicErr if \e xin or \e yin fall outside their allowed
+     *   ranges (see UTMUPS::Reverse).
+     * @exception GeographicErr if \e xout or \e yout fall outside their
+     *   allowed ranges (see UTMUPS::Reverse).
+     *
+     * \e zonein must be in the range [UTMUPS::MINZONE, UTMUPS::MAXZONE] = [0,
+     * 60] with \e zonein = UTMUPS::UPS, 0, indicating UPS.  \e zonein may
+     * also be UTMUPS::INVALID.
+     *
+     * \e zoneout must be in the range [UTMUPS::MINPSEUDOZONE, UTMUPS::MAXZONE]
+     * = [-4, 60].  If \e zoneout &lt; UTMUPS::MINZONE then the rules give in
+     * the documentation of UTMUPS::zonespec are applied, and \e zone is set to
+     * the actual zone used for output.
+     *
+     * (\e xout, \e yout) can overlap with (\e xin, \e yin).
+     **********************************************************************/
+    static void Transfer(int zonein, bool northpin, real xin, real yin,
+                         int zoneout, bool northpout, real& xout, real& yout,
+                         int& zone);
+
+    /**
+     * Decode a UTM/UPS zone string.
+     *
+     * @param[in] zonestr string representation of zone and hemisphere.
+     * @param[out] zone the UTM zone (zero means UPS).
+     * @param[out] northp hemisphere (true means north, false means south).
+     * @exception GeographicErr if \e zonestr is malformed.
+     *
+     * For UTM, \e zonestr has the form of a zone number in the range
+     * [UTMUPS::MINUTMZONE, UTMUPS::MAXUTMZONE] = [1, 60] followed by a
+     * hemisphere letter, n or s (or "north" or "south" spelled out).  For UPS,
+     * it consists just of the hemisphere letter (or the spelled out
+     * hemisphere).  The returned value of \e zone is UTMUPS::UPS = 0 for UPS.
+     * Note well that "38s" indicates the southern hemisphere of zone 38 and
+     * not latitude band S, 32&deg; &le; \e lat &lt; 40&deg;.  n, 01s, 2n, 38s,
+     * south, 3north are legal.  0n, 001s, +3n, 61n, 38P are illegal.  INV is a
+     * special value for which the returned value of \e is UTMUPS::INVALID.
+     **********************************************************************/
+    static void DecodeZone(const std::string& zonestr,
+                           int& zone, bool& northp);
+
+    /**
+     * Encode a UTM/UPS zone string.
+     *
+     * @param[in] zone the UTM zone (zero means UPS).
+     * @param[in] northp hemisphere (true means north, false means south).
+     * @param[in] abbrev if true (the default) use abbreviated (n/s) notation
+     *   for hemisphere; otherwise spell out the hemisphere (north/south)
+     * @exception GeographicErr if \e zone is out of range (see below).
+     * @exception std::bad_alloc if memoy for the string can't be allocated.
+     * @return string representation of zone and hemisphere.
+     *
+     * \e zone must be in the range [UTMUPS::MINZONE, UTMUPS::MAXZONE] = [0,
+     * 60] with \e zone = UTMUPS::UPS, 0, indicating UPS (but the resulting
+     * string does not contain "0").  \e zone may also be UTMUPS::INVALID, in
+     * which case the returned string is "inv".  This reverses
+     * UTMUPS::DecodeZone.
+     **********************************************************************/
+    static std::string EncodeZone(int zone, bool northp, bool abbrev = true);
+
+    /**
+     * Decode EPSG.
+     *
+     * @param[in] epsg the EPSG code.
+     * @param[out] zone the UTM zone (zero means UPS).
+     * @param[out] northp hemisphere (true means north, false means south).
+     *
+     * EPSG (European Petroleum Survery Group) codes are a way to refer to many
+     * different projections.  DecodeEPSG decodes those referring to UTM or UPS
+     * projections for the WGS84 ellipsoid.  If the code does not refer to one
+     * of these projections, \e zone is set to UTMUPS::INVALID.  See
+     * https://www.spatialreference.org/ref/epsg/
+     **********************************************************************/
+    static void DecodeEPSG(int epsg, int& zone, bool& northp);
+
+    /**
+     * Encode zone as EPSG.
+     *
+     * @param[in] zone the UTM zone (zero means UPS).
+     * @param[in] northp hemisphere (true means north, false means south).
+     * @return EPSG code (or -1 if \e zone is not in the range
+     *   [UTMUPS::MINZONE, UTMUPS::MAXZONE] = [0, 60])
+     *
+     * Convert \e zone and \e northp to the corresponding EPSG (European
+     * Petroleum Survery Group) codes
+     **********************************************************************/
+    static int EncodeEPSG(int zone, bool northp);
+
+    /**
+     * @return shift (meters) necessary to align north and south halves of a
+     * UTM zone (10<sup>7</sup>).
+     **********************************************************************/
+    static Math::real UTMShift();
+
+    /** \name Inspector functions
+     **********************************************************************/
+    ///@{
+    /**
+     * @return \e a the equatorial radius of the WGS84 ellipsoid (meters).
+     *
+     * (The WGS84 value is returned because the UTM and UPS projections are
+     * based on this ellipsoid.)
+     **********************************************************************/
+    static Math::real EquatorialRadius()
+    { return Constants::WGS84_a(); }
+
+    /**
+     * @return \e f the flattening of the WGS84 ellipsoid.
+     *
+     * (The WGS84 value is returned because the UTM and UPS projections are
+     * based on this ellipsoid.)
+     **********************************************************************/
+    static Math::real Flattening()
+    { return Constants::WGS84_f(); }
+
+    /**
+     * \deprecated An old name for EquatorialRadius().
+     **********************************************************************/
+    GEOGRAPHICLIB_DEPRECATED("Use EquatorialRadius()")
+    static Math::real MajorRadius() { return EquatorialRadius(); }
+    ///@}
+
+  };
+
+} // namespace GeographicLib
+
+#endif  // GEOGRAPHICLIB_UTMUPS_HPP

+ 733 - 0
external/include/GeographicLib/Utility.hpp

@@ -0,0 +1,733 @@
+/**
+ * \file Utility.hpp
+ * \brief Header for GeographicLib::Utility class
+ *
+ * Copyright (c) Charles Karney (2011-2020) <charles@karney.com> and licensed
+ * under the MIT/X11 License.  For more information, see
+ * https://geographiclib.sourceforge.io/
+ **********************************************************************/
+
+#if !defined(GEOGRAPHICLIB_UTILITY_HPP)
+#define GEOGRAPHICLIB_UTILITY_HPP 1
+
+#include <GeographicLib/Constants.hpp>
+#include <iomanip>
+#include <vector>
+#include <sstream>
+#include <cctype>
+#include <ctime>
+#include <cstring>
+
+#if defined(_MSC_VER)
+// Squelch warnings about constant conditional expressions and unsafe gmtime
+#  pragma warning (push)
+#  pragma warning (disable: 4127 4996)
+#endif
+
+namespace GeographicLib {
+
+  /**
+   * \brief Some utility routines for %GeographicLib
+   *
+   * Example of use:
+   * \include example-Utility.cpp
+   **********************************************************************/
+  class GEOGRAPHICLIB_EXPORT Utility {
+  private:
+    static bool gregorian(int y, int m, int d) {
+      // The original cut over to the Gregorian calendar in Pope Gregory XIII's
+      // time had 1582-10-04 followed by 1582-10-15. Here we implement the
+      // switch over used by the English-speaking world where 1752-09-02 was
+      // followed by 1752-09-14. We also assume that the year always begins
+      // with January 1, whereas in reality it often was reckoned to begin in
+      // March.
+      return 100 * (100 * y + m) + d >= 17520914; // or 15821015
+    }
+    static bool gregorian(int s) {
+      return s >= 639799;       // 1752-09-14
+    }
+  public:
+
+    /**
+     * Convert a date to the day numbering sequentially starting with
+     * 0001-01-01 as day 1.
+     *
+     * @param[in] y the year (must be positive).
+     * @param[in] m the month, Jan = 1, etc. (must be positive).  Default = 1.
+     * @param[in] d the day of the month (must be positive).  Default = 1.
+     * @return the sequential day number.
+     **********************************************************************/
+    static int day(int y, int m = 1, int d = 1) {
+      // Convert from date to sequential day and vice versa
+      //
+      // Here is some code to convert a date to sequential day and vice
+      // versa. The sequential day is numbered so that January 1, 1 AD is day 1
+      // (a Saturday). So this is offset from the "Julian" day which starts the
+      // numbering with 4713 BC.
+      //
+      // This is inspired by a talk by John Conway at the John von Neumann
+      // National Supercomputer Center when he described his Doomsday algorithm
+      // for figuring the day of the week. The code avoids explicitly doing ifs
+      // (except for the decision of whether to use the Julian or Gregorian
+      // calendar). Instead the equivalent result is achieved using integer
+      // arithmetic. I got this idea from the routine for the day of the week
+      // in MACLisp (I believe that that routine was written by Guy Steele).
+      //
+      // There are three issues to take care of
+      //
+      // 1. the rules for leap years,
+      // 2. the inconvenient placement of leap days at the end of February,
+      // 3. the irregular pattern of month lengths.
+      //
+      // We deal with these as follows:
+      //
+      // 1. Leap years are given by simple rules which are straightforward to
+      // accommodate.
+      //
+      // 2. We simplify the calculations by moving January and February to the
+      // previous year. Here we internally number the months March–December,
+      // January, February as 0–9, 10, 11.
+      //
+      // 3. The pattern of month lengths from March through January is regular
+      // with a 5-month period—31, 30, 31, 30, 31, 31, 30, 31, 30, 31, 31. The
+      // 5-month period is 153 days long. Since February is now at the end of
+      // the year, we don't need to include its length in this part of the
+      // calculation.
+      bool greg = gregorian(y, m, d);
+      y += (m + 9) / 12 - 1; // Move Jan and Feb to previous year,
+      m = (m + 9) % 12;      // making March month 0.
+      return
+        (1461 * y) / 4 // Julian years converted to days.  Julian year is 365 +
+                       // 1/4 = 1461/4 days.
+        // Gregorian leap year corrections.  The 2 offset with respect to the
+        // Julian calendar synchronizes the vernal equinox with that at the
+        // time of the Council of Nicea (325 AD).
+        + (greg ? (y / 100) / 4 - (y / 100) + 2 : 0)
+        + (153 * m + 2) / 5     // The zero-based start of the m'th month
+        + d - 1                 // The zero-based day
+        - 305; // The number of days between March 1 and December 31.
+               // This makes 0001-01-01 day 1
+    }
+
+    /**
+     * Convert a date to the day numbering sequentially starting with
+     * 0001-01-01 as day 1.
+     *
+     * @param[in] y the year (must be positive).
+     * @param[in] m the month, Jan = 1, etc. (must be positive).  Default = 1.
+     * @param[in] d the day of the month (must be positive).  Default = 1.
+     * @param[in] check whether to check the date.
+     * @exception GeographicErr if the date is invalid and \e check is true.
+     * @return the sequential day number.
+     **********************************************************************/
+    static int day(int y, int m, int d, bool check) {
+      int s = day(y, m, d);
+      if (!check)
+        return s;
+      int y1, m1, d1;
+      date(s, y1, m1, d1);
+      if (!(s > 0 && y == y1 && m == m1 && d == d1))
+        throw GeographicErr("Invalid date " +
+                            str(y) + "-" + str(m) + "-" + str(d)
+                            + (s > 0 ? "; use " +
+                               str(y1) + "-" + str(m1) + "-" + str(d1) :
+                               " before 0001-01-01"));
+      return s;
+    }
+
+    /**
+     * Given a day (counting from 0001-01-01 as day 1), return the date.
+     *
+     * @param[in] s the sequential day number (must be positive)
+     * @param[out] y the year.
+     * @param[out] m the month, Jan = 1, etc.
+     * @param[out] d the day of the month.
+     **********************************************************************/
+    static void date(int s, int& y, int& m, int& d) {
+      int c = 0;
+      bool greg = gregorian(s);
+      s += 305;                 // s = 0 on March 1, 1BC
+      if (greg) {
+        s -= 2;                 // The 2 day Gregorian offset
+        // Determine century with the Gregorian rules for leap years.  The
+        // Gregorian year is 365 + 1/4 - 1/100 + 1/400 = 146097/400 days.
+        c = (4 * s + 3) / 146097;
+        s -= (c * 146097) / 4;  // s = 0 at beginning of century
+      }
+      y = (4 * s + 3) / 1461;   // Determine the year using Julian rules.
+      s -= (1461 * y) / 4;      // s = 0 at start of year, i.e., March 1
+      y += c * 100;             // Assemble full year
+      m = (5 * s + 2) / 153;    // Determine the month
+      s -= (153 * m + 2) / 5;   // s = 0 at beginning of month
+      d = s + 1;                // Determine day of month
+      y += (m + 2) / 12;        // Move Jan and Feb back to original year
+      m = (m + 2) % 12 + 1;     // Renumber the months so January = 1
+    }
+
+    /**
+     * Given a date as a string in the format yyyy, yyyy-mm, or yyyy-mm-dd,
+     * return the numeric values for the year, month, and day.  No checking is
+     * done on these values.  The string "now" is interpreted as the present
+     * date (in UTC).
+     *
+     * @param[in] s the date in string format.
+     * @param[out] y the year.
+     * @param[out] m the month, Jan = 1, etc.
+     * @param[out] d the day of the month.
+     * @exception GeographicErr is \e s is malformed.
+     **********************************************************************/
+    static void date(const std::string& s, int& y, int& m, int& d) {
+      if (s == "now") {
+        std::time_t t = std::time(0);
+        struct tm* now = gmtime(&t);
+        y = now->tm_year + 1900;
+        m = now->tm_mon + 1;
+        d = now->tm_mday;
+        return;
+      }
+      int y1, m1 = 1, d1 = 1;
+      const char* digits = "0123456789";
+      std::string::size_type p1 = s.find_first_not_of(digits);
+      if (p1 == std::string::npos)
+        y1 = val<int>(s);
+      else if (s[p1] != '-')
+        throw GeographicErr("Delimiter not hyphen in date " + s);
+      else if (p1 == 0)
+        throw GeographicErr("Empty year field in date " + s);
+      else {
+        y1 = val<int>(s.substr(0, p1));
+        if (++p1 == s.size())
+          throw GeographicErr("Empty month field in date " + s);
+        std::string::size_type p2 = s.find_first_not_of(digits, p1);
+        if (p2 == std::string::npos)
+          m1 = val<int>(s.substr(p1));
+        else if (s[p2] != '-')
+          throw GeographicErr("Delimiter not hyphen in date " + s);
+        else if (p2 == p1)
+          throw GeographicErr("Empty month field in date " + s);
+        else {
+          m1 = val<int>(s.substr(p1, p2 - p1));
+          if (++p2 == s.size())
+            throw GeographicErr("Empty day field in date " + s);
+          d1 = val<int>(s.substr(p2));
+        }
+      }
+      y = y1; m = m1; d = d1;
+    }
+
+    /**
+     * Given the date, return the day of the week.
+     *
+     * @param[in] y the year (must be positive).
+     * @param[in] m the month, Jan = 1, etc. (must be positive).
+     * @param[in] d the day of the month (must be positive).
+     * @return the day of the week with Sunday, Monday--Saturday = 0,
+     *   1--6.
+     **********************************************************************/
+    static int dow(int y, int m, int d) { return dow(day(y, m, d)); }
+
+    /**
+     * Given the sequential day, return the day of the week.
+     *
+     * @param[in] s the sequential day (must be positive).
+     * @return the day of the week with Sunday, Monday--Saturday = 0,
+     *   1--6.
+     **********************************************************************/
+    static int dow(int s) {
+      return (s + 5) % 7;  // The 5 offset makes day 1 (0001-01-01) a Saturday.
+    }
+
+    /**
+     * Convert a string representing a date to a fractional year.
+     *
+     * @tparam T the type of the argument.
+     * @param[in] s the string to be converted.
+     * @exception GeographicErr if \e s can't be interpreted as a date.
+     * @return the fractional year.
+     *
+     * The string is first read as an ordinary number (e.g., 2010 or 2012.5);
+     * if this is successful, the value is returned.  Otherwise the string
+     * should be of the form yyyy-mm or yyyy-mm-dd and this is converted to a
+     * number with 2010-01-01 giving 2010.0 and 2012-07-03 giving 2012.5.
+     **********************************************************************/
+    template<typename T> static T fractionalyear(const std::string& s) {
+      try {
+        return val<T>(s);
+      }
+      catch (const std::exception&) {}
+      int y, m, d;
+      date(s, y, m, d);
+      int t = day(y, m, d, true);
+      return T(y) + T(t - day(y)) / T(day(y + 1) - day(y));
+    }
+
+    /**
+     * Convert a object of type T to a string.
+     *
+     * @tparam T the type of the argument.
+     * @param[in] x the value to be converted.
+     * @param[in] p the precision used (default &minus;1).
+     * @exception std::bad_alloc if memory for the string can't be allocated.
+     * @return the string representation.
+     *
+     * If \e p &ge; 0, then the number fixed format is used with p bits of
+     * precision.  With p < 0, there is no manipulation of the format.
+     **********************************************************************/
+    template<typename T> static std::string str(T x, int p = -1) {
+      std::ostringstream s;
+      if (p >= 0) s << std::fixed << std::setprecision(p);
+      s << x; return s.str();
+    }
+
+    /**
+     * Convert a Math::real object to a string.
+     *
+     * @param[in] x the value to be converted.
+     * @param[in] p the precision used (default &minus;1).
+     * @exception std::bad_alloc if memory for the string can't be allocated.
+     * @return the string representation.
+     *
+     * If \e p &ge; 0, then the number fixed format is used with p bits of
+     * precision.  With p < 0, there is no manipulation of the format.  This is
+     * an overload of str<T> which deals with inf and nan.
+     **********************************************************************/
+    static std::string str(Math::real x, int p = -1) {
+      using std::isfinite;
+      if (!isfinite(x))
+        return x < 0 ? std::string("-inf") :
+          (x > 0 ? std::string("inf") : std::string("nan"));
+      std::ostringstream s;
+#if GEOGRAPHICLIB_PRECISION == 4
+      // boost-quadmath treats precision == 0 as "use as many digits as
+      // necessary" (see https://svn.boost.org/trac/boost/ticket/10103), so...
+      using std::floor; using std::fmod;
+      if (p == 0) {
+        x += Math::real(0.5);
+        Math::real ix = floor(x);
+        // Implement the "round ties to even" rule
+        x = (ix == x && fmod(ix, Math::real(2)) == 1) ? ix - 1 : ix;
+        s << std::fixed << std::setprecision(1) << x;
+        std::string r(s.str());
+        // strip off trailing ".0"
+        return r.substr(0, (std::max)(int(r.size()) - 2, 0));
+      }
+#endif
+      if (p >= 0) s << std::fixed << std::setprecision(p);
+      s << x; return s.str();
+    }
+
+    /**
+     * Trim the white space from the beginning and end of a string.
+     *
+     * @param[in] s the string to be trimmed
+     * @return the trimmed string
+     **********************************************************************/
+    static std::string trim(const std::string& s) {
+      unsigned
+        beg = 0,
+        end = unsigned(s.size());
+      while (beg < end && isspace(s[beg]))
+        ++beg;
+      while (beg < end && isspace(s[end - 1]))
+        --end;
+      return std::string(s, beg, end-beg);
+    }
+
+    /**
+     * Convert a string to type T.
+     *
+     * @tparam T the type of the return value.
+     * @param[in] s the string to be converted.
+     * @exception GeographicErr is \e s is not readable as a T.
+     * @return object of type T.
+     *
+     * White space at the beginning and end of \e s is ignored.
+     *
+     * Special handling is provided for some types.
+     *
+     * If T is a floating point type, then inf and nan are recognized.
+     *
+     * If T is bool, then \e s should either be string a representing 0 (false)
+     * or 1 (true) or one of the strings
+     * - "false", "f", "nil", "no", "n", "off", or "" meaning false,
+     * - "true", "t", "yes", "y", or "on" meaning true;
+     * .
+     * case is ignored.
+     *
+     * If T is std::string, then \e s is returned (with the white space at the
+     * beginning and end removed).
+     **********************************************************************/
+    template<typename T> static T val(const std::string& s) {
+      // If T is bool, then the specialization val<bool>() defined below is
+      // used.
+      T x;
+      std::string errmsg, t(trim(s));
+      do {                     // Executed once (provides the ability to break)
+        std::istringstream is(t);
+        if (!(is >> x)) {
+          errmsg = "Cannot decode " + t;
+          break;
+        }
+        int pos = int(is.tellg()); // Returns -1 at end of string?
+        if (!(pos < 0 || pos == int(t.size()))) {
+          errmsg = "Extra text " + t.substr(pos) + " at end of " + t;
+          break;
+        }
+        return x;
+      } while (false);
+      x = std::numeric_limits<T>::is_integer ? 0 : nummatch<T>(t);
+      if (x == 0)
+        throw GeographicErr(errmsg);
+      return x;
+    }
+    /**
+     * \deprecated An old name for val<T>(s).
+     **********************************************************************/
+    template<typename T>
+      GEOGRAPHICLIB_DEPRECATED("Use Utility::val<T>(s)")
+      static T num(const std::string& s) {
+      return val<T>(s);
+    }
+
+    /**
+     * Match "nan" and "inf" (and variants thereof) in a string.
+     *
+     * @tparam T the type of the return value (this should be a floating point
+     *   type).
+     * @param[in] s the string to be matched.
+     * @return appropriate special value (&plusmn;&infin;, nan) or 0 if none is
+     *   found.
+     *
+     * White space is not allowed at the beginning or end of \e s.
+     **********************************************************************/
+    template<typename T> static T nummatch(const std::string& s) {
+      if (s.length() < 3)
+        return 0;
+      std::string t(s);
+      for (std::string::iterator p = t.begin(); p != t.end(); ++p)
+        *p = char(std::toupper(*p));
+      for (size_t i = s.length(); i--;)
+        t[i] = char(std::toupper(s[i]));
+      int sign = t[0] == '-' ? -1 : 1;
+      std::string::size_type p0 = t[0] == '-' || t[0] == '+' ? 1 : 0;
+      std::string::size_type p1 = t.find_last_not_of('0');
+      if (p1 == std::string::npos || p1 + 1 < p0 + 3)
+        return 0;
+      // Strip off sign and trailing 0s
+      t = t.substr(p0, p1 + 1 - p0);  // Length at least 3
+      if (t == "NAN" || t == "1.#QNAN" || t == "1.#SNAN" || t == "1.#IND" ||
+          t == "1.#R")
+        return Math::NaN<T>();
+      else if (t == "INF" || t == "1.#INF")
+        return sign * Math::infinity<T>();
+      return 0;
+    }
+
+    /**
+     * Read a simple fraction, e.g., 3/4, from a string to an object of type T.
+     *
+     * @tparam T the type of the return value.
+     * @param[in] s the string to be converted.
+     * @exception GeographicErr is \e s is not readable as a fraction of type
+     *   T.
+     * @return object of type T
+     *
+     * \note The msys shell under Windows converts arguments which look like
+     * pathnames into their Windows equivalents.  As a result the argument
+     * "-1/300" gets mangled into something unrecognizable.  A workaround is to
+     * use a floating point number in the numerator, i.e., "-1.0/300".  (Recent
+     * versions of the msys shell appear \e not to have this problem.)
+     **********************************************************************/
+    template<typename T> static T fract(const std::string& s) {
+      std::string::size_type delim = s.find('/');
+      return
+        !(delim != std::string::npos && delim >= 1 && delim + 2 <= s.size()) ?
+        val<T>(s) :
+        // delim in [1, size() - 2]
+        val<T>(s.substr(0, delim)) / val<T>(s.substr(delim + 1));
+    }
+
+    /**
+     * Lookup up a character in a string.
+     *
+     * @param[in] s the string to be searched.
+     * @param[in] c the character to look for.
+     * @return the index of the first occurrence character in the string or
+     *   &minus;1 is the character is not present.
+     *
+     * \e c is converted to upper case before search \e s.  Therefore, it is
+     * intended that \e s should not contain any lower case letters.
+     **********************************************************************/
+    static int lookup(const std::string& s, char c) {
+      std::string::size_type r = s.find(char(std::toupper(c)));
+      return r == std::string::npos ? -1 : int(r);
+    }
+
+    /**
+     * Lookup up a character in a char*.
+     *
+     * @param[in] s the char* string to be searched.
+     * @param[in] c the character to look for.
+     * @return the index of the first occurrence character in the string or
+     *   &minus;1 is the character is not present.
+     *
+     * \e c is converted to upper case before search \e s.  Therefore, it is
+     * intended that \e s should not contain any lower case letters.
+     **********************************************************************/
+    static int lookup(const char* s, char c) {
+      const char* p = std::strchr(s, std::toupper(c));
+      return p != NULL ? int(p - s) : -1;
+    }
+
+    /**
+     * Read data of type ExtT from a binary stream to an array of type IntT.
+     * The data in the file is in (bigendp ? big : little)-endian format.
+     *
+     * @tparam ExtT the type of the objects in the binary stream (external).
+     * @tparam IntT the type of the objects in the array (internal).
+     * @tparam bigendp true if the external storage format is big-endian.
+     * @param[in] str the input stream containing the data of type ExtT
+     *   (external).
+     * @param[out] array the output array of type IntT (internal).
+     * @param[in] num the size of the array.
+     * @exception GeographicErr if the data cannot be read.
+     **********************************************************************/
+    template<typename ExtT, typename IntT, bool bigendp>
+      static void readarray(std::istream& str, IntT array[], size_t num) {
+#if GEOGRAPHICLIB_PRECISION < 4
+      if (sizeof(IntT) == sizeof(ExtT) &&
+          std::numeric_limits<IntT>::is_integer ==
+          std::numeric_limits<ExtT>::is_integer)
+        {
+          // Data is compatible (aside from the issue of endian-ness).
+          str.read(reinterpret_cast<char*>(array), num * sizeof(ExtT));
+          if (!str.good())
+            throw GeographicErr("Failure reading data");
+          if (bigendp != Math::bigendian) { // endian mismatch -> swap bytes
+            for (size_t i = num; i--;)
+              array[i] = Math::swab<IntT>(array[i]);
+          }
+        }
+      else
+#endif
+        {
+          const int bufsize = 1024; // read this many values at a time
+          ExtT buffer[bufsize];     // temporary buffer
+          int k = int(num);         // data values left to read
+          int i = 0;                // index into output array
+          while (k) {
+            int n = (std::min)(k, bufsize);
+            str.read(reinterpret_cast<char*>(buffer), n * sizeof(ExtT));
+            if (!str.good())
+              throw GeographicErr("Failure reading data");
+            for (int j = 0; j < n; ++j)
+              // fix endian-ness and cast to IntT
+              array[i++] = IntT(bigendp == Math::bigendian ? buffer[j] :
+                                Math::swab<ExtT>(buffer[j]));
+            k -= n;
+          }
+        }
+      return;
+    }
+
+    /**
+     * Read data of type ExtT from a binary stream to a vector array of type
+     * IntT.  The data in the file is in (bigendp ? big : little)-endian
+     * format.
+     *
+     * @tparam ExtT the type of the objects in the binary stream (external).
+     * @tparam IntT the type of the objects in the array (internal).
+     * @tparam bigendp true if the external storage format is big-endian.
+     * @param[in] str the input stream containing the data of type ExtT
+     *   (external).
+     * @param[out] array the output vector of type IntT (internal).
+     * @exception GeographicErr if the data cannot be read.
+     **********************************************************************/
+    template<typename ExtT, typename IntT, bool bigendp>
+      static void readarray(std::istream& str, std::vector<IntT>& array) {
+      if (array.size() > 0)
+        readarray<ExtT, IntT, bigendp>(str, &array[0], array.size());
+    }
+
+    /**
+     * Write data in an array of type IntT as type ExtT to a binary stream.
+     * The data in the file is in (bigendp ? big : little)-endian format.
+     *
+     * @tparam ExtT the type of the objects in the binary stream (external).
+     * @tparam IntT the type of the objects in the array (internal).
+     * @tparam bigendp true if the external storage format is big-endian.
+     * @param[out] str the output stream for the data of type ExtT (external).
+     * @param[in] array the input array of type IntT (internal).
+     * @param[in] num the size of the array.
+     * @exception GeographicErr if the data cannot be written.
+     **********************************************************************/
+    template<typename ExtT, typename IntT, bool bigendp>
+      static void writearray(std::ostream& str, const IntT array[], size_t num)
+    {
+#if GEOGRAPHICLIB_PRECISION < 4
+      if (sizeof(IntT) == sizeof(ExtT) &&
+          std::numeric_limits<IntT>::is_integer ==
+          std::numeric_limits<ExtT>::is_integer &&
+          bigendp == Math::bigendian)
+        {
+          // Data is compatible (including endian-ness).
+          str.write(reinterpret_cast<const char*>(array), num * sizeof(ExtT));
+          if (!str.good())
+            throw GeographicErr("Failure writing data");
+        }
+      else
+#endif
+        {
+          const int bufsize = 1024; // write this many values at a time
+          ExtT buffer[bufsize];     // temporary buffer
+          int k = int(num);         // data values left to write
+          int i = 0;                // index into output array
+          while (k) {
+            int n = (std::min)(k, bufsize);
+            for (int j = 0; j < n; ++j)
+              // cast to ExtT and fix endian-ness
+              buffer[j] = bigendp == Math::bigendian ? ExtT(array[i++]) :
+                Math::swab<ExtT>(ExtT(array[i++]));
+            str.write(reinterpret_cast<const char*>(buffer), n * sizeof(ExtT));
+            if (!str.good())
+              throw GeographicErr("Failure writing data");
+            k -= n;
+          }
+        }
+      return;
+    }
+
+    /**
+     * Write data in an array of type IntT as type ExtT to a binary stream.
+     * The data in the file is in (bigendp ? big : little)-endian format.
+     *
+     * @tparam ExtT the type of the objects in the binary stream (external).
+     * @tparam IntT the type of the objects in the array (internal).
+     * @tparam bigendp true if the external storage format is big-endian.
+     * @param[out] str the output stream for the data of type ExtT (external).
+     * @param[in] array the input vector of type IntT (internal).
+     * @exception GeographicErr if the data cannot be written.
+     **********************************************************************/
+    template<typename ExtT, typename IntT, bool bigendp>
+      static void writearray(std::ostream& str, std::vector<IntT>& array) {
+      if (array.size() > 0)
+        writearray<ExtT, IntT, bigendp>(str, &array[0], array.size());
+    }
+
+    /**
+     * Parse a KEY [=] VALUE line.
+     *
+     * @param[in] line the input line.
+     * @param[out] key the KEY.
+     * @param[out] value the VALUE.
+     * @param[in] delim delimiter to separate KEY and VALUE, if NULL use first
+     *   space character.
+     * @exception std::bad_alloc if memory for the internal strings can't be
+     *   allocated.
+     * @return whether a key was found.
+     *
+     * A "#" character and everything after it are discarded and the result
+     * trimmed of leading and trailing white space.  Use the delimiter
+     * character (or, if it is NULL, the first white space) to separate \e key
+     * and \e value.  \e key and \e value are trimmed of leading and trailing
+     * white space.  If \e key is empty, then \e value is set to "" and false
+     * is returned.
+     **********************************************************************/
+    static bool ParseLine(const std::string& line,
+                          std::string& key, std::string& value,
+                          char delim);
+
+    /**
+     * Parse a KEY VALUE line.
+     *
+     * @param[in] line the input line.
+     * @param[out] key the KEY.
+     * @param[out] value the VALUE.
+     * @exception std::bad_alloc if memory for the internal strings can't be
+     *   allocated.
+     * @return whether a key was found.
+     *
+     * \note This is a transition routine.  At some point \e delim will be made
+     * an optional argument in the previous version of ParseLine and this
+     * version will be removed.
+     **********************************************************************/
+
+    static bool ParseLine(const std::string& line,
+                          std::string& key, std::string& value);
+
+    /**
+     * Set the binary precision of a real number.
+     *
+     * @param[in] ndigits the number of bits of precision.  If ndigits is 0
+     *   (the default), then determine the precision from the environment
+     *   variable GEOGRAPHICLIB_DIGITS.  If this is undefined, use ndigits =
+     *   256 (i.e., about 77 decimal digits).
+     * @return the resulting number of bits of precision.
+     *
+     * This only has an effect when GEOGRAPHICLIB_PRECISION = 5.  The
+     * precision should only be set once and before calls to any other
+     * GeographicLib functions.  (Several functions, for example Math::pi(),
+     * cache the return value in a static local variable.  The precision needs
+     * to be set before a call to any such functions.)  In multi-threaded
+     * applications, it is necessary also to set the precision in each thread
+     * (see the example GeoidToGTX.cpp).
+     **********************************************************************/
+    static int set_digits(int ndigits = 0);
+
+  };
+
+  /**
+   * The specialization of Utility::val<T>() for strings.
+   **********************************************************************/
+  template<> inline std::string Utility::val<std::string>(const std::string& s)
+  { return trim(s); }
+
+  /**
+   * The specialization of Utility::val<T>() for bools.
+   **********************************************************************/
+  template<> inline bool Utility::val<bool>(const std::string& s) {
+    std::string t(trim(s));
+    if (t.empty()) return false;
+    bool x;
+    {
+      std::istringstream is(t);
+      if (is >> x) {
+        int pos = int(is.tellg()); // Returns -1 at end of string?
+        if (!(pos < 0 || pos == int(t.size())))
+          throw GeographicErr("Extra text " + t.substr(pos) +
+                              " at end of " + t);
+        return x;
+      }
+    }
+    for (std::string::iterator p = t.begin(); p != t.end(); ++p)
+      *p = char(std::tolower(*p));
+    switch (t[0]) {             // already checked that t isn't empty
+    case 'f':
+      if (t == "f" || t == "false") return false;
+      break;
+    case 'n':
+      if (t == "n" || t == "nil" || t == "no") return false;
+      break;
+    case 'o':
+      if (t == "off") return false;
+      else if (t == "on") return true;
+      break;
+    case 't':
+      if (t == "t" || t == "true") return true;
+      break;
+    case 'y':
+      if (t == "y" || t == "yes") return true;
+      break;
+    default:
+      break;
+    }
+    throw GeographicErr("Cannot decode " + t + " as a bool");
+  }
+
+} // namespace GeographicLib
+
+#if defined(_MSC_VER)
+#  pragma warning (pop)
+#endif
+
+#endif  // GEOGRAPHICLIB_UTILITY_HPP

BIN
external/lib/Geographic.lib


BIN
external/lib/Geographic_d.lib