/** * \file GeodesicLine.hpp * \brief Header for GeographicLib::GeodesicLine class * * Copyright (c) Charles Karney (2009-2020) and licensed * under the MIT/X11 License. For more information, see * https://geographiclib.sourceforge.io/ **********************************************************************/ #if !defined(GEOGRAPHICLIB_GEODESICLINE_HPP) #define GEOGRAPHICLIB_GEODESICLINE_HPP 1 #include #include namespace GeographicLib { /** * \brief A geodesic line * * GeodesicLine facilitates the determination of a series of points on a * single geodesic. The starting point (\e lat1, \e lon1) and the azimuth \e * azi1 are specified in the constructor; alternatively, the Geodesic::Line * method can be used to create a GeodesicLine. GeodesicLine.Position * returns the location of point 2 a distance \e s12 along the geodesic. In * addition, GeodesicLine.ArcPosition gives the position of point 2 an arc * length \e a12 along the geodesic. * * You can register the position of a reference point 3 a distance (arc * length), \e s13 (\e a13) along the geodesic with the * GeodesicLine.SetDistance (GeodesicLine.SetArc) functions. Points a * fractional distance along the line can be found by providing, for example, * 0.5 * Distance() as an argument to GeodesicLine.Position. The * Geodesic::InverseLine or Geodesic::DirectLine methods return GeodesicLine * objects with point 3 set to the point 2 of the corresponding geodesic * problem. GeodesicLine objects created with the public constructor or with * Geodesic::Line have \e s13 and \e a13 set to NaNs. * * The default copy constructor and assignment operators work with this * class. Similarly, a vector can be used to hold GeodesicLine objects. * * The calculations are accurate to better than 15 nm (15 nanometers). See * Sec. 9 of * arXiv:1102.1215v1 for * details. The algorithms used by this class are based on series expansions * using the flattening \e f as a small parameter. These are only accurate * for |f| < 0.02; however reasonably accurate results will be * obtained for |f| < 0.2. For very eccentric ellipsoids, use * GeodesicLineExact instead. * * The algorithms are described in * - C. F. F. Karney, * * Algorithms for geodesics, * J. Geodesy 87, 43--55 (2013); * DOI: * 10.1007/s00190-012-0578-z; * addenda: * * geod-addenda.html. * . * For more information on geodesics see \ref geodesic. * * Example of use: * \include example-GeodesicLine.cpp * * GeodSolve is a command-line utility * providing access to the functionality of Geodesic and GeodesicLine. **********************************************************************/ class GEOGRAPHICLIB_EXPORT GeodesicLine { private: typedef Math::real real; friend class Geodesic; static const int nC1_ = Geodesic::nC1_; static const int nC1p_ = Geodesic::nC1p_; static const int nC2_ = Geodesic::nC2_; static const int nC3_ = Geodesic::nC3_; static const int nC4_ = Geodesic::nC4_; real tiny_; real _lat1, _lon1, _azi1; real _a, _f, _b, _c2, _f1, _salp0, _calp0, _k2, _salp1, _calp1, _ssig1, _csig1, _dn1, _stau1, _ctau1, _somg1, _comg1, _A1m1, _A2m1, _A3c, _B11, _B21, _B31, _A4, _B41; real _a13, _s13; // index zero elements of _C1a, _C1pa, _C2a, _C3a are unused real _C1a[nC1_ + 1], _C1pa[nC1p_ + 1], _C2a[nC2_ + 1], _C3a[nC3_], _C4a[nC4_]; // all the elements of _C4a are used unsigned _caps; void LineInit(const Geodesic& g, real lat1, real lon1, real azi1, real salp1, real calp1, unsigned caps); GeodesicLine(const Geodesic& g, real lat1, real lon1, real azi1, real salp1, real calp1, unsigned caps, bool arcmode, real s13_a13); enum captype { CAP_NONE = Geodesic::CAP_NONE, CAP_C1 = Geodesic::CAP_C1, CAP_C1p = Geodesic::CAP_C1p, CAP_C2 = Geodesic::CAP_C2, CAP_C3 = Geodesic::CAP_C3, CAP_C4 = Geodesic::CAP_C4, CAP_ALL = Geodesic::CAP_ALL, CAP_MASK = Geodesic::CAP_MASK, OUT_ALL = Geodesic::OUT_ALL, OUT_MASK = Geodesic::OUT_MASK, }; public: /** * Bit masks for what calculations to do. They signify to the * GeodesicLine::GeodesicLine constructor and to Geodesic::Line what * capabilities should be included in the GeodesicLine object. This is * merely a duplication of Geodesic::mask. **********************************************************************/ enum mask { /** * No capabilities, no output. * @hideinitializer **********************************************************************/ NONE = Geodesic::NONE, /** * Calculate latitude \e lat2. (It's not necessary to include this as a * capability to GeodesicLine because this is included by default.) * @hideinitializer **********************************************************************/ LATITUDE = Geodesic::LATITUDE, /** * Calculate longitude \e lon2. * @hideinitializer **********************************************************************/ LONGITUDE = Geodesic::LONGITUDE, /** * Calculate azimuths \e azi1 and \e azi2. (It's not necessary to * include this as a capability to GeodesicLine because this is included * by default.) * @hideinitializer **********************************************************************/ AZIMUTH = Geodesic::AZIMUTH, /** * Calculate distance \e s12. * @hideinitializer **********************************************************************/ DISTANCE = Geodesic::DISTANCE, /** * Allow distance \e s12 to be used as input in the direct geodesic * problem. * @hideinitializer **********************************************************************/ DISTANCE_IN = Geodesic::DISTANCE_IN, /** * Calculate reduced length \e m12. * @hideinitializer **********************************************************************/ REDUCEDLENGTH = Geodesic::REDUCEDLENGTH, /** * Calculate geodesic scales \e M12 and \e M21. * @hideinitializer **********************************************************************/ GEODESICSCALE = Geodesic::GEODESICSCALE, /** * Calculate area \e S12. * @hideinitializer **********************************************************************/ AREA = Geodesic::AREA, /** * Unroll \e lon2 in the direct calculation. * @hideinitializer **********************************************************************/ LONG_UNROLL = Geodesic::LONG_UNROLL, /** * All capabilities, calculate everything. (LONG_UNROLL is not * included in this mask.) * @hideinitializer **********************************************************************/ ALL = Geodesic::ALL, }; /** \name Constructors **********************************************************************/ ///@{ /** * Constructor for a geodesic line staring at latitude \e lat1, longitude * \e lon1, and azimuth \e azi1 (all in degrees). * * @param[in] g A Geodesic object used to compute the necessary information * about the GeodesicLine. * @param[in] lat1 latitude of point 1 (degrees). * @param[in] lon1 longitude of point 1 (degrees). * @param[in] azi1 azimuth at point 1 (degrees). * @param[in] caps bitor'ed combination of GeodesicLine::mask values * specifying the capabilities the GeodesicLine object should possess, * i.e., which quantities can be returned in calls to * GeodesicLine::Position. * * \e lat1 should be in the range [−90°, 90°]. * * The GeodesicLine::mask values are * - \e caps |= GeodesicLine::LATITUDE for the latitude \e lat2; this is * added automatically; * - \e caps |= GeodesicLine::LONGITUDE for the latitude \e lon2; * - \e caps |= GeodesicLine::AZIMUTH for the latitude \e azi2; this is * added automatically; * - \e caps |= GeodesicLine::DISTANCE for the distance \e s12; * - \e caps |= GeodesicLine::REDUCEDLENGTH for the reduced length \e m12; * - \e caps |= GeodesicLine::GEODESICSCALE for the geodesic scales \e M12 * and \e M21; * - \e caps |= GeodesicLine::AREA for the area \e S12; * - \e caps |= GeodesicLine::DISTANCE_IN permits the length of the * geodesic to be given in terms of \e s12; without this capability the * length can only be specified in terms of arc length; * - \e caps |= GeodesicLine::ALL for all of the above. * . * The default value of \e caps is GeodesicLine::ALL. * * If the point is at a pole, the azimuth is defined by keeping \e lon1 * fixed, writing \e lat1 = ±(90° − ε), and taking * the limit ε → 0+. **********************************************************************/ GeodesicLine(const Geodesic& g, real lat1, real lon1, real azi1, unsigned caps = ALL); /** * A default constructor. If GeodesicLine::Position is called on the * resulting object, it returns immediately (without doing any * calculations). The object can be set with a call to Geodesic::Line. * Use Init() to test whether object is still in this uninitialized state. **********************************************************************/ GeodesicLine() : _caps(0U) {} ///@} /** \name Position in terms of distance **********************************************************************/ ///@{ /** * Compute the position of point 2 which is a distance \e s12 (meters) from * point 1. * * @param[in] s12 distance from point 1 to point 2 (meters); it can be * negative. * @param[out] lat2 latitude of point 2 (degrees). * @param[out] lon2 longitude of point 2 (degrees); requires that the * GeodesicLine object was constructed with \e caps |= * GeodesicLine::LONGITUDE. * @param[out] azi2 (forward) azimuth at point 2 (degrees). * @param[out] m12 reduced length of geodesic (meters); requires that the * GeodesicLine object was constructed with \e caps |= * GeodesicLine::REDUCEDLENGTH. * @param[out] M12 geodesic scale of point 2 relative to point 1 * (dimensionless); requires that the GeodesicLine object was constructed * with \e caps |= GeodesicLine::GEODESICSCALE. * @param[out] M21 geodesic scale of point 1 relative to point 2 * (dimensionless); requires that the GeodesicLine object was constructed * with \e caps |= GeodesicLine::GEODESICSCALE. * @param[out] S12 area under the geodesic (meters2); requires * that the GeodesicLine object was constructed with \e caps |= * GeodesicLine::AREA. * @return \e a12 arc length from point 1 to point 2 (degrees). * * The values of \e lon2 and \e azi2 returned are in the range * [−180°, 180°]. * * The GeodesicLine object \e must have been constructed with \e caps |= * GeodesicLine::DISTANCE_IN; otherwise Math::NaN() is returned and no * parameters are set. Requesting a value which the GeodesicLine object is * not capable of computing is not an error; the corresponding argument * will not be altered. * * The following functions are overloaded versions of * GeodesicLine::Position which omit some of the output parameters. Note, * however, that the arc length is always computed and returned as the * function value. **********************************************************************/ Math::real Position(real s12, real& lat2, real& lon2, real& azi2, real& m12, real& M12, real& M21, real& S12) const { real t; return GenPosition(false, s12, LATITUDE | LONGITUDE | AZIMUTH | REDUCEDLENGTH | GEODESICSCALE | AREA, lat2, lon2, azi2, t, m12, M12, M21, S12); } /** * See the documentation for GeodesicLine::Position. **********************************************************************/ Math::real Position(real s12, real& lat2, real& lon2) const { real t; return GenPosition(false, s12, LATITUDE | LONGITUDE, lat2, lon2, t, t, t, t, t, t); } /** * See the documentation for GeodesicLine::Position. **********************************************************************/ Math::real Position(real s12, real& lat2, real& lon2, real& azi2) const { real t; return GenPosition(false, s12, LATITUDE | LONGITUDE | AZIMUTH, lat2, lon2, azi2, t, t, t, t, t); } /** * See the documentation for GeodesicLine::Position. **********************************************************************/ Math::real Position(real s12, real& lat2, real& lon2, real& azi2, real& m12) const { real t; return GenPosition(false, s12, LATITUDE | LONGITUDE | AZIMUTH | REDUCEDLENGTH, lat2, lon2, azi2, t, m12, t, t, t); } /** * See the documentation for GeodesicLine::Position. **********************************************************************/ Math::real Position(real s12, real& lat2, real& lon2, real& azi2, real& M12, real& M21) const { real t; return GenPosition(false, s12, LATITUDE | LONGITUDE | AZIMUTH | GEODESICSCALE, lat2, lon2, azi2, t, t, M12, M21, t); } /** * See the documentation for GeodesicLine::Position. **********************************************************************/ Math::real Position(real s12, real& lat2, real& lon2, real& azi2, real& m12, real& M12, real& M21) const { real t; return GenPosition(false, s12, LATITUDE | LONGITUDE | AZIMUTH | REDUCEDLENGTH | GEODESICSCALE, lat2, lon2, azi2, t, m12, M12, M21, t); } ///@} /** \name Position in terms of arc length **********************************************************************/ ///@{ /** * Compute the position of point 2 which is an arc length \e a12 (degrees) * from point 1. * * @param[in] a12 arc length from point 1 to point 2 (degrees); it can * be negative. * @param[out] lat2 latitude of point 2 (degrees). * @param[out] lon2 longitude of point 2 (degrees); requires that the * GeodesicLine object was constructed with \e caps |= * GeodesicLine::LONGITUDE. * @param[out] azi2 (forward) azimuth at point 2 (degrees). * @param[out] s12 distance from point 1 to point 2 (meters); requires * that the GeodesicLine object was constructed with \e caps |= * GeodesicLine::DISTANCE. * @param[out] m12 reduced length of geodesic (meters); requires that the * GeodesicLine object was constructed with \e caps |= * GeodesicLine::REDUCEDLENGTH. * @param[out] M12 geodesic scale of point 2 relative to point 1 * (dimensionless); requires that the GeodesicLine object was constructed * with \e caps |= GeodesicLine::GEODESICSCALE. * @param[out] M21 geodesic scale of point 1 relative to point 2 * (dimensionless); requires that the GeodesicLine object was constructed * with \e caps |= GeodesicLine::GEODESICSCALE. * @param[out] S12 area under the geodesic (meters2); requires * that the GeodesicLine object was constructed with \e caps |= * GeodesicLine::AREA. * * The values of \e lon2 and \e azi2 returned are in the range * [−180°, 180°]. * * Requesting a value which the GeodesicLine object is not capable of * computing is not an error; the corresponding argument will not be * altered. * * The following functions are overloaded versions of * GeodesicLine::ArcPosition which omit some of the output parameters. **********************************************************************/ void ArcPosition(real a12, real& lat2, real& lon2, real& azi2, real& s12, real& m12, real& M12, real& M21, real& S12) const { GenPosition(true, a12, LATITUDE | LONGITUDE | AZIMUTH | DISTANCE | REDUCEDLENGTH | GEODESICSCALE | AREA, lat2, lon2, azi2, s12, m12, M12, M21, S12); } /** * See the documentation for GeodesicLine::ArcPosition. **********************************************************************/ void ArcPosition(real a12, real& lat2, real& lon2) const { real t; GenPosition(true, a12, LATITUDE | LONGITUDE, lat2, lon2, t, t, t, t, t, t); } /** * See the documentation for GeodesicLine::ArcPosition. **********************************************************************/ void ArcPosition(real a12, real& lat2, real& lon2, real& azi2) const { real t; GenPosition(true, a12, LATITUDE | LONGITUDE | AZIMUTH, lat2, lon2, azi2, t, t, t, t, t); } /** * See the documentation for GeodesicLine::ArcPosition. **********************************************************************/ void ArcPosition(real a12, real& lat2, real& lon2, real& azi2, real& s12) const { real t; GenPosition(true, a12, LATITUDE | LONGITUDE | AZIMUTH | DISTANCE, lat2, lon2, azi2, s12, t, t, t, t); } /** * See the documentation for GeodesicLine::ArcPosition. **********************************************************************/ void ArcPosition(real a12, real& lat2, real& lon2, real& azi2, real& s12, real& m12) const { real t; GenPosition(true, a12, LATITUDE | LONGITUDE | AZIMUTH | DISTANCE | REDUCEDLENGTH, lat2, lon2, azi2, s12, m12, t, t, t); } /** * See the documentation for GeodesicLine::ArcPosition. **********************************************************************/ void ArcPosition(real a12, real& lat2, real& lon2, real& azi2, real& s12, real& M12, real& M21) const { real t; GenPosition(true, a12, LATITUDE | LONGITUDE | AZIMUTH | DISTANCE | GEODESICSCALE, lat2, lon2, azi2, s12, t, M12, M21, t); } /** * See the documentation for GeodesicLine::ArcPosition. **********************************************************************/ void ArcPosition(real a12, real& lat2, real& lon2, real& azi2, real& s12, real& m12, real& M12, real& M21) const { real t; GenPosition(true, a12, LATITUDE | LONGITUDE | AZIMUTH | DISTANCE | REDUCEDLENGTH | GEODESICSCALE, lat2, lon2, azi2, s12, m12, M12, M21, t); } ///@} /** \name The general position function. **********************************************************************/ ///@{ /** * The general position function. GeodesicLine::Position and * GeodesicLine::ArcPosition are defined in terms of this function. * * @param[in] arcmode boolean flag determining the meaning of the second * parameter; if \e arcmode is false, then the GeodesicLine object must * have been constructed with \e caps |= GeodesicLine::DISTANCE_IN. * @param[in] s12_a12 if \e arcmode is false, this is the distance between * point 1 and point 2 (meters); otherwise it is the arc length between * point 1 and point 2 (degrees); it can be negative. * @param[in] outmask a bitor'ed combination of GeodesicLine::mask values * specifying which of the following parameters should be set. * @param[out] lat2 latitude of point 2 (degrees). * @param[out] lon2 longitude of point 2 (degrees); requires that the * GeodesicLine object was constructed with \e caps |= * GeodesicLine::LONGITUDE. * @param[out] azi2 (forward) azimuth at point 2 (degrees). * @param[out] s12 distance from point 1 to point 2 (meters); requires * that the GeodesicLine object was constructed with \e caps |= * GeodesicLine::DISTANCE. * @param[out] m12 reduced length of geodesic (meters); requires that the * GeodesicLine object was constructed with \e caps |= * GeodesicLine::REDUCEDLENGTH. * @param[out] M12 geodesic scale of point 2 relative to point 1 * (dimensionless); requires that the GeodesicLine object was constructed * with \e caps |= GeodesicLine::GEODESICSCALE. * @param[out] M21 geodesic scale of point 1 relative to point 2 * (dimensionless); requires that the GeodesicLine object was constructed * with \e caps |= GeodesicLine::GEODESICSCALE. * @param[out] S12 area under the geodesic (meters2); requires * that the GeodesicLine object was constructed with \e caps |= * GeodesicLine::AREA. * @return \e a12 arc length from point 1 to point 2 (degrees). * * The GeodesicLine::mask values possible for \e outmask are * - \e outmask |= GeodesicLine::LATITUDE for the latitude \e lat2; * - \e outmask |= GeodesicLine::LONGITUDE for the latitude \e lon2; * - \e outmask |= GeodesicLine::AZIMUTH for the latitude \e azi2; * - \e outmask |= GeodesicLine::DISTANCE for the distance \e s12; * - \e outmask |= GeodesicLine::REDUCEDLENGTH for the reduced length \e * m12; * - \e outmask |= GeodesicLine::GEODESICSCALE for the geodesic scales \e * M12 and \e M21; * - \e outmask |= GeodesicLine::AREA for the area \e S12; * - \e outmask |= GeodesicLine::ALL for all of the above; * - \e outmask |= GeodesicLine::LONG_UNROLL to unroll \e lon2 instead of * reducing it into the range [−180°, 180°]. * . * Requesting a value which the GeodesicLine object is not capable of * computing is not an error; the corresponding argument will not be * altered. Note, however, that the arc length is always computed and * returned as the function value. * * With the GeodesicLine::LONG_UNROLL bit set, the quantity \e lon2 − * \e lon1 indicates how many times and in what sense the geodesic * encircles the ellipsoid. **********************************************************************/ Math::real GenPosition(bool arcmode, real s12_a12, unsigned outmask, real& lat2, real& lon2, real& azi2, real& s12, real& m12, real& M12, real& M21, real& S12) const; ///@} /** \name Setting point 3 **********************************************************************/ ///@{ /** * Specify position of point 3 in terms of distance. * * @param[in] s13 the distance from point 1 to point 3 (meters); it * can be negative. * * This is only useful if the GeodesicLine object has been constructed * with \e caps |= GeodesicLine::DISTANCE_IN. **********************************************************************/ void SetDistance(real s13); /** * Specify position of point 3 in terms of arc length. * * @param[in] a13 the arc length from point 1 to point 3 (degrees); it * can be negative. * * The distance \e s13 is only set if the GeodesicLine object has been * constructed with \e caps |= GeodesicLine::DISTANCE. **********************************************************************/ void SetArc(real a13); /** * Specify position of point 3 in terms of either distance or arc length. * * @param[in] arcmode boolean flag determining the meaning of the second * parameter; if \e arcmode is false, then the GeodesicLine object must * have been constructed with \e caps |= GeodesicLine::DISTANCE_IN. * @param[in] s13_a13 if \e arcmode is false, this is the distance from * point 1 to point 3 (meters); otherwise it is the arc length from * point 1 to point 3 (degrees); it can be negative. **********************************************************************/ void GenSetDistance(bool arcmode, real s13_a13); ///@} /** \name Inspector functions **********************************************************************/ ///@{ /** * @return true if the object has been initialized. **********************************************************************/ bool Init() const { return _caps != 0U; } /** * @return \e lat1 the latitude of point 1 (degrees). **********************************************************************/ Math::real Latitude() const { return Init() ? _lat1 : Math::NaN(); } /** * @return \e lon1 the longitude of point 1 (degrees). **********************************************************************/ Math::real Longitude() const { return Init() ? _lon1 : Math::NaN(); } /** * @return \e azi1 the azimuth (degrees) of the geodesic line at point 1. **********************************************************************/ Math::real Azimuth() const { return Init() ? _azi1 : Math::NaN(); } /** * The sine and cosine of \e azi1. * * @param[out] sazi1 the sine of \e azi1. * @param[out] cazi1 the cosine of \e azi1. **********************************************************************/ void Azimuth(real& sazi1, real& cazi1) const { if (Init()) { sazi1 = _salp1; cazi1 = _calp1; } } /** * @return \e azi0 the azimuth (degrees) of the geodesic line as it crosses * the equator in a northward direction. * * The result lies in [−90°, 90°]. **********************************************************************/ Math::real EquatorialAzimuth() const { return Init() ? Math::atan2d(_salp0, _calp0) : Math::NaN(); } /** * The sine and cosine of \e azi0. * * @param[out] sazi0 the sine of \e azi0. * @param[out] cazi0 the cosine of \e azi0. **********************************************************************/ void EquatorialAzimuth(real& sazi0, real& cazi0) const { if (Init()) { sazi0 = _salp0; cazi0 = _calp0; } } /** * @return \e a1 the arc length (degrees) between the northward equatorial * crossing and point 1. * * The result lies in (−180°, 180°]. **********************************************************************/ Math::real EquatorialArc() const { return Init() ? Math::atan2d(_ssig1, _csig1) : Math::NaN(); } /** * @return \e a the equatorial radius of the ellipsoid (meters). This is * the value inherited from the Geodesic object used in the constructor. **********************************************************************/ Math::real EquatorialRadius() const { return Init() ? _a : Math::NaN(); } /** * @return \e f the flattening of the ellipsoid. This is the value * inherited from the Geodesic object used in the constructor. **********************************************************************/ Math::real Flattening() const { return Init() ? _f : Math::NaN(); } /** * @return \e caps the computational capabilities that this object was * constructed with. LATITUDE and AZIMUTH are always included. **********************************************************************/ unsigned Capabilities() const { return _caps; } /** * Test what capabilities are available. * * @param[in] testcaps a set of bitor'ed GeodesicLine::mask values. * @return true if the GeodesicLine object has all these capabilities. **********************************************************************/ bool Capabilities(unsigned testcaps) const { testcaps &= OUT_ALL; return (_caps & testcaps) == testcaps; } /** * The distance or arc length to point 3. * * @param[in] arcmode boolean flag determining the meaning of returned * value. * @return \e s13 if \e arcmode is false; \e a13 if \e arcmode is true. **********************************************************************/ Math::real GenDistance(bool arcmode) const { return Init() ? (arcmode ? _a13 : _s13) : Math::NaN(); } /** * @return \e s13, the distance to point 3 (meters). **********************************************************************/ Math::real Distance() const { return GenDistance(false); } /** * @return \e a13, the arc length to point 3 (degrees). **********************************************************************/ Math::real Arc() const { return GenDistance(true); } /** * \deprecated An old name for EquatorialRadius(). **********************************************************************/ GEOGRAPHICLIB_DEPRECATED("Use EquatorialRadius()") Math::real MajorRadius() const { return EquatorialRadius(); } ///@} }; } // namespace GeographicLib #endif // GEOGRAPHICLIB_GEODESICLINE_HPP