Files
aman-es/external/include/GeographicLib/MagneticModel.hpp
2021-11-22 16:16:36 +01:00

407 lines
18 KiB
C++

/**
* \file MagneticModel.hpp
* \brief Header for GeographicLib::MagneticModel class
*
* Copyright (c) Charles Karney (2011-2021) <charles@karney.com> and licensed
* under the MIT/X11 License. For more information, see
* https://geographiclib.sourceforge.io/
**********************************************************************/
#if !defined(GEOGRAPHICLIB_MAGNETICMODEL_HPP)
#define GEOGRAPHICLIB_MAGNETICMODEL_HPP 1
#include <GeographicLib/Constants.hpp>
#include <GeographicLib/Geocentric.hpp>
#include <GeographicLib/SphericalHarmonic.hpp>
#if defined(_MSC_VER)
// Squelch warnings about dll vs vector
# pragma warning (push)
# pragma warning (disable: 4251)
#endif
namespace GeographicLib {
class MagneticCircle;
/**
* \brief Model of the earth's magnetic field
*
* Evaluate the earth's magnetic field according to a model. At present only
* internal magnetic fields are handled. These are due to the earth's code
* and crust; these vary slowly (over many years). Excluded are the effects
* of currents in the ionosphere and magnetosphere which have daily and
* annual variations.
*
* See \ref magnetic for details of how to install the magnetic models and
* the data format.
*
* See
* - General information:
* - http://geomag.org/models/index.html
* - WMM2010:
* - https://ngdc.noaa.gov/geomag/WMM/DoDWMM.shtml
* - https://ngdc.noaa.gov/geomag/WMM/data/WMM2010/WMM2010COF.zip
* - WMM2015 (deprecated):
* - https://ngdc.noaa.gov/geomag/WMM/DoDWMM.shtml
* - https://ngdc.noaa.gov/geomag/WMM/data/WMM2015/WMM2015COF.zip
* - WMM2015V2:
* - https://ngdc.noaa.gov/geomag/WMM/DoDWMM.shtml
* - https://ngdc.noaa.gov/geomag/WMM/data/WMM2015/WMM2015v2COF.zip
* - WMM2020:
* - https://ngdc.noaa.gov/geomag/WMM/DoDWMM.shtml
* - https://ngdc.noaa.gov/geomag/WMM/data/WMM2020/WMM2020COF.zip
* - IGRF11:
* - https://ngdc.noaa.gov/IAGA/vmod/igrf.html
* - https://ngdc.noaa.gov/IAGA/vmod/igrf11coeffs.txt
* - https://ngdc.noaa.gov/IAGA/vmod/geomag70_linux.tar.gz
* - EMM2010:
* - https://ngdc.noaa.gov/geomag/EMM/index.html
* - https://ngdc.noaa.gov/geomag/EMM/data/geomag/EMM2010_Sph_Windows_Linux.zip
* - EMM2015:
* - https://ngdc.noaa.gov/geomag/EMM/index.html
* - https://www.ngdc.noaa.gov/geomag/EMM/data/geomag/EMM2015_Sph_Linux.zip
* - EMM2017:
* - https://ngdc.noaa.gov/geomag/EMM/index.html
* - https://www.ngdc.noaa.gov/geomag/EMM/data/geomag/EMM2017_Sph_Linux.zip
*
* Example of use:
* \include example-MagneticModel.cpp
*
* <a href="MagneticField.1.html">MagneticField</a> is a command-line utility
* providing access to the functionality of MagneticModel and MagneticCircle.
**********************************************************************/
class GEOGRAPHICLIB_EXPORT MagneticModel {
private:
typedef Math::real real;
static const int idlength_ = 8;
std::string _name, _dir, _description, _date, _filename, _id;
real _t0, _dt0, _tmin, _tmax, _a, _hmin, _hmax;
int _Nmodels, _Nconstants, _nmx, _mmx;
SphericalHarmonic::normalization _norm;
Geocentric _earth;
std::vector< std::vector<real> > _G;
std::vector< std::vector<real> > _H;
std::vector<SphericalHarmonic> _harm;
void Field(real t, real lat, real lon, real h, bool diffp,
real& Bx, real& By, real& Bz,
real& Bxt, real& Byt, real& Bzt) const;
void ReadMetadata(const std::string& name);
// copy constructor not allowed
MagneticModel(const MagneticModel&) = delete;
// nor copy assignment
MagneticModel& operator=(const MagneticModel&) = delete;
public:
/** \name Setting up the magnetic model
**********************************************************************/
///@{
/**
* Construct a magnetic model.
*
* @param[in] name the name of the model.
* @param[in] path (optional) directory for data file.
* @param[in] earth (optional) Geocentric object for converting
* coordinates; default Geocentric::WGS84().
* @param[in] Nmax (optional) if non-negative, truncate the degree of the
* model this value.
* @param[in] Mmax (optional) if non-negative, truncate the order of the
* model this value.
* @exception GeographicErr if the data file cannot be found, is
* unreadable, or is corrupt, or if \e Mmax > \e Nmax.
* @exception std::bad_alloc if the memory necessary for storing the model
* can't be allocated.
*
* A filename is formed by appending ".wmm" (World Magnetic Model) to the
* name. If \e path is specified (and is non-empty), then the file is
* loaded from directory, \e path. Otherwise the path is given by the
* DefaultMagneticPath().
*
* This file contains the metadata which specifies the properties of the
* model. The coefficients for the spherical harmonic sums are obtained
* from a file obtained by appending ".cof" to metadata file (so the
* filename ends in ".wwm.cof").
*
* The model is not tied to a particular ellipsoidal model of the earth.
* The final earth argument to the constructor specifies an ellipsoid to
* allow geodetic coordinates to the transformed into the spherical
* coordinates used in the spherical harmonic sum.
*
* If \e Nmax &ge; 0 and \e Mmax < 0, then \e Mmax is set to \e Nmax.
* After the model is loaded, the maximum degree and order of the model can
* be found by the Degree() and Order() methods.
**********************************************************************/
explicit MagneticModel(const std::string& name,
const std::string& path = "",
const Geocentric& earth = Geocentric::WGS84(),
int Nmax = -1, int Mmax = -1);
///@}
/** \name Compute the magnetic field
**********************************************************************/
///@{
/**
* Evaluate the components of the geomagnetic field.
*
* @param[in] t the time (years).
* @param[in] lat latitude of the point (degrees).
* @param[in] lon longitude of the point (degrees).
* @param[in] h the height of the point above the ellipsoid (meters).
* @param[out] Bx the easterly component of the magnetic field (nanotesla).
* @param[out] By the northerly component of the magnetic field
* (nanotesla).
* @param[out] Bz the vertical (up) component of the magnetic field
* (nanotesla).
**********************************************************************/
void operator()(real t, real lat, real lon, real h,
real& Bx, real& By, real& Bz) const {
real dummy;
Field(t, lat, lon, h, false, Bx, By, Bz, dummy, dummy, dummy);
}
/**
* Evaluate the components of the geomagnetic field and their time
* derivatives
*
* @param[in] t the time (years).
* @param[in] lat latitude of the point (degrees).
* @param[in] lon longitude of the point (degrees).
* @param[in] h the height of the point above the ellipsoid (meters).
* @param[out] Bx the easterly component of the magnetic field (nanotesla).
* @param[out] By the northerly component of the magnetic field
* (nanotesla).
* @param[out] Bz the vertical (up) component of the magnetic field
* (nanotesla).
* @param[out] Bxt the rate of change of \e Bx (nT/yr).
* @param[out] Byt the rate of change of \e By (nT/yr).
* @param[out] Bzt the rate of change of \e Bz (nT/yr).
**********************************************************************/
void operator()(real t, real lat, real lon, real h,
real& Bx, real& By, real& Bz,
real& Bxt, real& Byt, real& Bzt) const {
Field(t, lat, lon, h, true, Bx, By, Bz, Bxt, Byt, Bzt);
}
/**
* Create a MagneticCircle object to allow the geomagnetic field at many
* points with constant \e lat, \e h, and \e t and varying \e lon to be
* computed efficiently.
*
* @param[in] t the time (years).
* @param[in] lat latitude of the point (degrees).
* @param[in] h the height of the point above the ellipsoid (meters).
* @exception std::bad_alloc if the memory necessary for creating a
* MagneticCircle can't be allocated.
* @return a MagneticCircle object whose MagneticCircle::operator()(real
* lon) member function computes the field at particular values of \e
* lon.
*
* If the field at several points on a circle of latitude need to be
* calculated then creating a MagneticCircle and using its member functions
* will be substantially faster, especially for high-degree models.
**********************************************************************/
MagneticCircle Circle(real t, real lat, real h) const;
/**
* Compute the magnetic field in geocentric coordinate.
*
* @param[in] t the time (years).
* @param[in] X geocentric coordinate (meters).
* @param[in] Y geocentric coordinate (meters).
* @param[in] Z geocentric coordinate (meters).
* @param[out] BX the \e X component of the magnetic field (nT).
* @param[out] BY the \e Y component of the magnetic field (nT).
* @param[out] BZ the \e Z component of the magnetic field (nT).
* @param[out] BXt the rate of change of \e BX (nT/yr).
* @param[out] BYt the rate of change of \e BY (nT/yr).
* @param[out] BZt the rate of change of \e BZ (nT/yr).
**********************************************************************/
void FieldGeocentric(real t, real X, real Y, real Z,
real& BX, real& BY, real& BZ,
real& BXt, real& BYt, real& BZt) const;
/**
* Compute various quantities dependent on the magnetic field.
*
* @param[in] Bx the \e x (easterly) component of the magnetic field (nT).
* @param[in] By the \e y (northerly) component of the magnetic field (nT).
* @param[in] Bz the \e z (vertical, up positive) component of the magnetic
* field (nT).
* @param[out] H the horizontal magnetic field (nT).
* @param[out] F the total magnetic field (nT).
* @param[out] D the declination of the field (degrees east of north).
* @param[out] I the inclination of the field (degrees down from
* horizontal).
**********************************************************************/
static void FieldComponents(real Bx, real By, real Bz,
real& H, real& F, real& D, real& I) {
real Ht, Ft, Dt, It;
FieldComponents(Bx, By, Bz, real(0), real(1), real(0),
H, F, D, I, Ht, Ft, Dt, It);
}
/**
* Compute various quantities dependent on the magnetic field and its rate
* of change.
*
* @param[in] Bx the \e x (easterly) component of the magnetic field (nT).
* @param[in] By the \e y (northerly) component of the magnetic field (nT).
* @param[in] Bz the \e z (vertical, up positive) component of the magnetic
* field (nT).
* @param[in] Bxt the rate of change of \e Bx (nT/yr).
* @param[in] Byt the rate of change of \e By (nT/yr).
* @param[in] Bzt the rate of change of \e Bz (nT/yr).
* @param[out] H the horizontal magnetic field (nT).
* @param[out] F the total magnetic field (nT).
* @param[out] D the declination of the field (degrees east of north).
* @param[out] I the inclination of the field (degrees down from
* horizontal).
* @param[out] Ht the rate of change of \e H (nT/yr).
* @param[out] Ft the rate of change of \e F (nT/yr).
* @param[out] Dt the rate of change of \e D (degrees/yr).
* @param[out] It the rate of change of \e I (degrees/yr).
**********************************************************************/
static void FieldComponents(real Bx, real By, real Bz,
real Bxt, real Byt, real Bzt,
real& H, real& F, real& D, real& I,
real& Ht, real& Ft, real& Dt, real& It);
///@}
/** \name Inspector functions
**********************************************************************/
///@{
/**
* @return the description of the magnetic model, if available, from the
* Description file in the data file; if absent, return "NONE".
**********************************************************************/
const std::string& Description() const { return _description; }
/**
* @return date of the model, if available, from the ReleaseDate field in
* the data file; if absent, return "UNKNOWN".
**********************************************************************/
const std::string& DateTime() const { return _date; }
/**
* @return full file name used to load the magnetic model.
**********************************************************************/
const std::string& MagneticFile() const { return _filename; }
/**
* @return "name" used to load the magnetic model (from the first argument
* of the constructor, but this may be overridden by the model file).
**********************************************************************/
const std::string& MagneticModelName() const { return _name; }
/**
* @return directory used to load the magnetic model.
**********************************************************************/
const std::string& MagneticModelDirectory() const { return _dir; }
/**
* @return the minimum height above the ellipsoid (in meters) for which
* this MagneticModel should be used.
*
* Because the model will typically provide useful results
* slightly outside the range of allowed heights, no check of \e t
* argument is made by MagneticModel::operator()() or
* MagneticModel::Circle.
**********************************************************************/
Math::real MinHeight() const { return _hmin; }
/**
* @return the maximum height above the ellipsoid (in meters) for which
* this MagneticModel should be used.
*
* Because the model will typically provide useful results
* slightly outside the range of allowed heights, no check of \e t
* argument is made by MagneticModel::operator()() or
* MagneticModel::Circle.
**********************************************************************/
Math::real MaxHeight() const { return _hmax; }
/**
* @return the minimum time (in years) for which this MagneticModel should
* be used.
*
* Because the model will typically provide useful results
* slightly outside the range of allowed times, no check of \e t
* argument is made by MagneticModel::operator()() or
* MagneticModel::Circle.
**********************************************************************/
Math::real MinTime() const { return _tmin; }
/**
* @return the maximum time (in years) for which this MagneticModel should
* be used.
*
* Because the model will typically provide useful results
* slightly outside the range of allowed times, no check of \e t
* argument is made by MagneticModel::operator()() or
* MagneticModel::Circle.
**********************************************************************/
Math::real MaxTime() const { return _tmax; }
/**
* @return \e a the equatorial radius of the ellipsoid (meters). This is
* the value of \e a inherited from the Geocentric object used in the
* constructor.
**********************************************************************/
Math::real EquatorialRadius() const { return _earth.EquatorialRadius(); }
/**
* @return \e f the flattening of the ellipsoid. This is the value
* inherited from the Geocentric object used in the constructor.
**********************************************************************/
Math::real Flattening() const { return _earth.Flattening(); }
/**
* @return \e Nmax the maximum degree of the components of the model.
**********************************************************************/
int Degree() const { return _nmx; }
/**
* @return \e Mmax the maximum order of the components of the model.
**********************************************************************/
int Order() const { return _mmx; }
/**
* \deprecated An old name for EquatorialRadius().
**********************************************************************/
GEOGRAPHICLIB_DEPRECATED("Use EquatorialRadius()")
Math::real MajorRadius() const { return EquatorialRadius(); }
///@}
/**
* @return the default path for magnetic model data files.
*
* This is the value of the environment variable
* GEOGRAPHICLIB_MAGNETIC_PATH, if set; otherwise, it is
* $GEOGRAPHICLIB_DATA/magnetic if the environment variable
* GEOGRAPHICLIB_DATA is set; otherwise, it is a compile-time default
* (/usr/local/share/GeographicLib/magnetic on non-Windows systems and
* C:/ProgramData/GeographicLib/magnetic on Windows systems).
**********************************************************************/
static std::string DefaultMagneticPath();
/**
* @return the default name for the magnetic model.
*
* This is the value of the environment variable
* GEOGRAPHICLIB_MAGNETIC_NAME, if set; otherwise, it is "wmm2020". The
* MagneticModel class does not use this function; it is just provided as a
* convenience for a calling program when constructing a MagneticModel
* object.
**********************************************************************/
static std::string DefaultMagneticName();
};
} // namespace GeographicLib
#if defined(_MSC_VER)
# pragma warning (pop)
#endif
#endif // GEOGRAPHICLIB_MAGNETICMODEL_HPP