265 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			265 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /**
 | |
|  * \file TransverseMercatorExact.hpp
 | |
|  * \brief Header for GeographicLib::TransverseMercatorExact class
 | |
|  *
 | |
|  * Copyright (c) Charles Karney (2008-2020) <charles@karney.com> and licensed
 | |
|  * under the MIT/X11 License.  For more information, see
 | |
|  * https://geographiclib.sourceforge.io/
 | |
|  **********************************************************************/
 | |
| 
 | |
| #if !defined(GEOGRAPHICLIB_TRANSVERSEMERCATOREXACT_HPP)
 | |
| #define GEOGRAPHICLIB_TRANSVERSEMERCATOREXACT_HPP 1
 | |
| 
 | |
| #include <GeographicLib/Constants.hpp>
 | |
| #include <GeographicLib/EllipticFunction.hpp>
 | |
| 
 | |
| namespace GeographicLib {
 | |
| 
 | |
|   /**
 | |
|    * \brief An exact implementation of the transverse Mercator projection
 | |
|    *
 | |
|    * Implementation of the Transverse Mercator Projection given in
 | |
|    *  - L. P. Lee,
 | |
|    *    <a href="https://doi.org/10.3138/X687-1574-4325-WM62"> Conformal
 | |
|    *    Projections Based On Jacobian Elliptic Functions</a>, Part V of
 | |
|    *    Conformal Projections Based on Elliptic Functions,
 | |
|    *    (B. V. Gutsell, Toronto, 1976), 128pp.,
 | |
|    *    ISBN: 0919870163
 | |
|    *    (also appeared as:
 | |
|    *    Monograph 16, Suppl. No. 1 to Canadian Cartographer, Vol 13).
 | |
|    *  - C. F. F. Karney,
 | |
|    *    <a href="https://doi.org/10.1007/s00190-011-0445-3">
 | |
|    *    Transverse Mercator with an accuracy of a few nanometers,</a>
 | |
|    *    J. Geodesy 85(8), 475--485 (Aug. 2011);
 | |
|    *    preprint
 | |
|    *    <a href="https://arxiv.org/abs/1002.1417">arXiv:1002.1417</a>.
 | |
|    *
 | |
|    * Lee gives the correct results for forward and reverse transformations
 | |
|    * subject to the branch cut rules (see the description of the \e extendp
 | |
|    * argument to the constructor).  The maximum error is about 8 nm (8
 | |
|    * nanometers), ground distance, for the forward and reverse transformations.
 | |
|    * The error in the convergence is 2 × 10<sup>−15</sup>",
 | |
|    * the relative error in the scale is 7 × 10<sup>−12</sup>%%.
 | |
|    * See Sec. 3 of
 | |
|    * <a href="https://arxiv.org/abs/1002.1417">arXiv:1002.1417</a> for details.
 | |
|    * The method is "exact" in the sense that the errors are close to the
 | |
|    * round-off limit and that no changes are needed in the algorithms for them
 | |
|    * to be used with reals of a higher precision.  Thus the errors using long
 | |
|    * double (with a 64-bit fraction) are about 2000 times smaller than using
 | |
|    * double (with a 53-bit fraction).
 | |
|    *
 | |
|    * This algorithm is about 4.5 times slower than the 6th-order Krüger
 | |
|    * method, TransverseMercator, taking about 11 us for a combined forward and
 | |
|    * reverse projection on a 2.66 GHz Intel machine (g++, version 4.3.0, -O3).
 | |
|    *
 | |
|    * The ellipsoid parameters and the central scale are set in the constructor.
 | |
|    * The central meridian (which is a trivial shift of the longitude) is
 | |
|    * specified as the \e lon0 argument of the TransverseMercatorExact::Forward
 | |
|    * and TransverseMercatorExact::Reverse functions.  The latitude of origin is
 | |
|    * taken to be the equator.  See the documentation on TransverseMercator for
 | |
|    * how to include a false easting, false northing, or a latitude of origin.
 | |
|    *
 | |
|    * See <a href="https://geographiclib.sourceforge.io/tm-grid.kmz"
 | |
|    * type="application/vnd.google-earth.kmz"> tm-grid.kmz</a>, for an
 | |
|    * illustration of the transverse Mercator grid in Google Earth.
 | |
|    *
 | |
|    * This class also returns the meridian convergence \e gamma and scale \e k.
 | |
|    * The meridian convergence is the bearing of grid north (the \e y axis)
 | |
|    * measured clockwise from true north.
 | |
|    *
 | |
|    * See TransverseMercatorExact.cpp for more information on the
 | |
|    * implementation.
 | |
|    *
 | |
|    * See \ref transversemercator for a discussion of this projection.
 | |
|    *
 | |
|    * Example of use:
 | |
|    * \include example-TransverseMercatorExact.cpp
 | |
|    *
 | |
|    * <a href="TransverseMercatorProj.1.html">TransverseMercatorProj</a> is a
 | |
|    * command-line utility providing access to the functionality of
 | |
|    * TransverseMercator and TransverseMercatorExact.
 | |
|    **********************************************************************/
 | |
| 
 | |
|   class GEOGRAPHICLIB_EXPORT TransverseMercatorExact {
 | |
|   private:
 | |
|     typedef Math::real real;
 | |
|     static const int numit_ = 10;
 | |
|     real tol_, tol2_, taytol_;
 | |
|     real _a, _f, _k0, _mu, _mv, _e;
 | |
|     bool _extendp;
 | |
|     EllipticFunction _Eu, _Ev;
 | |
| 
 | |
|     void zeta(real u, real snu, real cnu, real dnu,
 | |
|               real v, real snv, real cnv, real dnv,
 | |
|               real& taup, real& lam) const;
 | |
| 
 | |
|     void dwdzeta(real u, real snu, real cnu, real dnu,
 | |
|                  real v, real snv, real cnv, real dnv,
 | |
|                  real& du, real& dv) const;
 | |
| 
 | |
|     bool zetainv0(real psi, real lam, real& u, real& v) const;
 | |
|     void zetainv(real taup, real lam, real& u, real& v) const;
 | |
| 
 | |
|     void sigma(real u, real snu, real cnu, real dnu,
 | |
|                real v, real snv, real cnv, real dnv,
 | |
|                real& xi, real& eta) const;
 | |
| 
 | |
|     void dwdsigma(real u, real snu, real cnu, real dnu,
 | |
|                   real v, real snv, real cnv, real dnv,
 | |
|                   real& du, real& dv) const;
 | |
| 
 | |
|     bool sigmainv0(real xi, real eta, real& u, real& v) const;
 | |
|     void sigmainv(real xi, real eta, real& u, real& v) const;
 | |
| 
 | |
|     void Scale(real tau, real lam,
 | |
|                real snu, real cnu, real dnu,
 | |
|                real snv, real cnv, real dnv,
 | |
|                real& gamma, real& k) const;
 | |
| 
 | |
|   public:
 | |
| 
 | |
|     /**
 | |
|      * Constructor for a ellipsoid with
 | |
|      *
 | |
|      * @param[in] a equatorial radius (meters).
 | |
|      * @param[in] f flattening of ellipsoid.
 | |
|      * @param[in] k0 central scale factor.
 | |
|      * @param[in] extendp use extended domain.
 | |
|      * @exception GeographicErr if \e a, \e f, or \e k0 is not positive.
 | |
|      *
 | |
|      * The transverse Mercator projection has a branch point singularity at \e
 | |
|      * lat = 0 and \e lon − \e lon0 = 90 (1 − \e e) or (for
 | |
|      * TransverseMercatorExact::UTM) x = 18381 km, y = 0m.  The \e extendp
 | |
|      * argument governs where the branch cut is placed.  With \e extendp =
 | |
|      * false, the "standard" convention is followed, namely the cut is placed
 | |
|      * along \e x > 18381 km, \e y = 0m.  Forward can be called with any \e lat
 | |
|      * and \e lon then produces the transformation shown in Lee, Fig 46.
 | |
|      * Reverse analytically continues this in the ± \e x direction.  As
 | |
|      * a consequence, Reverse may map multiple points to the same geographic
 | |
|      * location; for example, for TransverseMercatorExact::UTM, \e x =
 | |
|      * 22051449.037349 m, \e y = −7131237.022729 m and \e x =
 | |
|      * 29735142.378357 m, \e y = 4235043.607933 m both map to \e lat =
 | |
|      * −2°, \e lon = 88°.
 | |
|      *
 | |
|      * With \e extendp = true, the branch cut is moved to the lower left
 | |
|      * quadrant.  The various symmetries of the transverse Mercator projection
 | |
|      * can be used to explore the projection on any sheet.  In this mode the
 | |
|      * domains of \e lat, \e lon, \e x, and \e y are restricted to
 | |
|      * - the union of
 | |
|      *   - \e lat in [0, 90] and \e lon − \e lon0 in [0, 90]
 | |
|      *   - \e lat in (-90, 0] and \e lon − \e lon0 in [90 (1 − \e
 | |
|            e), 90]
 | |
|      * - the union of
 | |
|      *   - <i>x</i>/(\e k0 \e a) in [0, ∞) and
 | |
|      *     <i>y</i>/(\e k0 \e a) in [0, E(<i>e</i><sup>2</sup>)]
 | |
|      *   - <i>x</i>/(\e k0 \e a) in [K(1 − <i>e</i><sup>2</sup>) −
 | |
|      *     E(1 − <i>e</i><sup>2</sup>), ∞) and <i>y</i>/(\e k0 \e
 | |
|      *     a) in (−∞, 0]
 | |
|      * .
 | |
|      * See Sec. 5 of
 | |
|      * <a href="https://arxiv.org/abs/1002.1417">arXiv:1002.1417</a> for a full
 | |
|      * discussion of the treatment of the branch cut.
 | |
|      *
 | |
|      * The method will work for all ellipsoids used in terrestrial geodesy.
 | |
|      * The method cannot be applied directly to the case of a sphere (\e f = 0)
 | |
|      * because some the constants characterizing this method diverge in that
 | |
|      * limit, and in practice, \e f should be larger than about
 | |
|      * numeric_limits<real>::epsilon().  However, TransverseMercator treats the
 | |
|      * sphere exactly.
 | |
|      **********************************************************************/
 | |
|     TransverseMercatorExact(real a, real f, real k0, bool extendp = false);
 | |
| 
 | |
|     /**
 | |
|      * Forward projection, from geographic to transverse Mercator.
 | |
|      *
 | |
|      * @param[in] lon0 central meridian of the projection (degrees).
 | |
|      * @param[in] lat latitude of point (degrees).
 | |
|      * @param[in] lon longitude of point (degrees).
 | |
|      * @param[out] x easting of point (meters).
 | |
|      * @param[out] y northing of point (meters).
 | |
|      * @param[out] gamma meridian convergence at point (degrees).
 | |
|      * @param[out] k scale of projection at point.
 | |
|      *
 | |
|      * No false easting or northing is added. \e lat should be in the range
 | |
|      * [−90°, 90°].
 | |
|      **********************************************************************/
 | |
|     void Forward(real lon0, real lat, real lon,
 | |
|                  real& x, real& y, real& gamma, real& k) const;
 | |
| 
 | |
|     /**
 | |
|      * Reverse projection, from transverse Mercator to geographic.
 | |
|      *
 | |
|      * @param[in] lon0 central meridian of the projection (degrees).
 | |
|      * @param[in] x easting of point (meters).
 | |
|      * @param[in] y northing of point (meters).
 | |
|      * @param[out] lat latitude of point (degrees).
 | |
|      * @param[out] lon longitude of point (degrees).
 | |
|      * @param[out] gamma meridian convergence at point (degrees).
 | |
|      * @param[out] k scale of projection at point.
 | |
|      *
 | |
|      * No false easting or northing is added.  The value of \e lon returned is
 | |
|      * in the range [−180°, 180°].
 | |
|      **********************************************************************/
 | |
|     void Reverse(real lon0, real x, real y,
 | |
|                  real& lat, real& lon, real& gamma, real& k) const;
 | |
| 
 | |
|     /**
 | |
|      * TransverseMercatorExact::Forward without returning the convergence and
 | |
|      * scale.
 | |
|      **********************************************************************/
 | |
|     void Forward(real lon0, real lat, real lon,
 | |
|                  real& x, real& y) const {
 | |
|       real gamma, k;
 | |
|       Forward(lon0, lat, lon, x, y, gamma, k);
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * TransverseMercatorExact::Reverse without returning the convergence and
 | |
|      * scale.
 | |
|      **********************************************************************/
 | |
|     void Reverse(real lon0, real x, real y,
 | |
|                  real& lat, real& lon) const {
 | |
|       real gamma, k;
 | |
|       Reverse(lon0, x, y, lat, lon, gamma, k);
 | |
|     }
 | |
| 
 | |
|     /** \name Inspector functions
 | |
|      **********************************************************************/
 | |
|     ///@{
 | |
|     /**
 | |
|      * @return \e a the equatorial radius of the ellipsoid (meters).  This is
 | |
|      *   the value used in the constructor.
 | |
|      **********************************************************************/
 | |
|     Math::real EquatorialRadius() const { return _a; }
 | |
| 
 | |
|     /**
 | |
|      * @return \e f the flattening of the ellipsoid.  This is the value used in
 | |
|      *   the constructor.
 | |
|      **********************************************************************/
 | |
|     Math::real Flattening() const { return _f; }
 | |
| 
 | |
|     /**
 | |
|      * @return \e k0 central scale for the projection.  This is the value of \e
 | |
|      *   k0 used in the constructor and is the scale on the central meridian.
 | |
|      **********************************************************************/
 | |
|     Math::real CentralScale() const { return _k0; }
 | |
| 
 | |
|     /**
 | |
|      * \deprecated An old name for EquatorialRadius().
 | |
|      **********************************************************************/
 | |
|     GEOGRAPHICLIB_DEPRECATED("Use EquatorialRadius()")
 | |
|     Math::real MajorRadius() const { return EquatorialRadius(); }
 | |
|     ///@}
 | |
| 
 | |
|     /**
 | |
|      * A global instantiation of TransverseMercatorExact with the WGS84
 | |
|      * ellipsoid and the UTM scale factor.  However, unlike UTM, no false
 | |
|      * easting or northing is added.
 | |
|      **********************************************************************/
 | |
|     static const TransverseMercatorExact& UTM();
 | |
|   };
 | |
| 
 | |
| } // namespace GeographicLib
 | |
| 
 | |
| #endif  // GEOGRAPHICLIB_TRANSVERSEMERCATOREXACT_HPP
 |