284 lines
12 KiB
C++
284 lines
12 KiB
C++
/**
|
|
* \file SphericalHarmonic1.hpp
|
|
* \brief Header for GeographicLib::SphericalHarmonic1 class
|
|
*
|
|
* Copyright (c) Charles Karney (2011) <charles@karney.com> and licensed under
|
|
* the MIT/X11 License. For more information, see
|
|
* https://geographiclib.sourceforge.io/
|
|
**********************************************************************/
|
|
|
|
#if !defined(GEOGRAPHICLIB_SPHERICALHARMONIC1_HPP)
|
|
#define GEOGRAPHICLIB_SPHERICALHARMONIC1_HPP 1
|
|
|
|
#include <vector>
|
|
#include <GeographicLib/Constants.hpp>
|
|
#include <GeographicLib/SphericalEngine.hpp>
|
|
#include <GeographicLib/CircularEngine.hpp>
|
|
|
|
namespace GeographicLib {
|
|
|
|
/**
|
|
* \brief Spherical harmonic series with a correction to the coefficients
|
|
*
|
|
* This classes is similar to SphericalHarmonic, except that the coefficients
|
|
* <i>C</i><sub><i>nm</i></sub> are replaced by
|
|
* <i>C</i><sub><i>nm</i></sub> + \e tau <i>C'</i><sub><i>nm</i></sub> (and
|
|
* similarly for <i>S</i><sub><i>nm</i></sub>).
|
|
*
|
|
* Example of use:
|
|
* \include example-SphericalHarmonic1.cpp
|
|
**********************************************************************/
|
|
|
|
class GEOGRAPHICLIB_EXPORT SphericalHarmonic1 {
|
|
public:
|
|
/**
|
|
* Supported normalizations for associate Legendre polynomials.
|
|
**********************************************************************/
|
|
enum normalization {
|
|
/**
|
|
* Fully normalized associated Legendre polynomials. See
|
|
* SphericalHarmonic::FULL for documentation.
|
|
*
|
|
* @hideinitializer
|
|
**********************************************************************/
|
|
FULL = SphericalEngine::FULL,
|
|
/**
|
|
* Schmidt semi-normalized associated Legendre polynomials. See
|
|
* SphericalHarmonic::SCHMIDT for documentation.
|
|
*
|
|
* @hideinitializer
|
|
**********************************************************************/
|
|
SCHMIDT = SphericalEngine::SCHMIDT,
|
|
};
|
|
|
|
private:
|
|
typedef Math::real real;
|
|
SphericalEngine::coeff _c[2];
|
|
real _a;
|
|
unsigned _norm;
|
|
|
|
public:
|
|
/**
|
|
* Constructor with a full set of coefficients specified.
|
|
*
|
|
* @param[in] C the coefficients <i>C</i><sub><i>nm</i></sub>.
|
|
* @param[in] S the coefficients <i>S</i><sub><i>nm</i></sub>.
|
|
* @param[in] N the maximum degree and order of the sum
|
|
* @param[in] C1 the coefficients <i>C'</i><sub><i>nm</i></sub>.
|
|
* @param[in] S1 the coefficients <i>S'</i><sub><i>nm</i></sub>.
|
|
* @param[in] N1 the maximum degree and order of the correction
|
|
* coefficients <i>C'</i><sub><i>nm</i></sub> and
|
|
* <i>S'</i><sub><i>nm</i></sub>.
|
|
* @param[in] a the reference radius appearing in the definition of the
|
|
* sum.
|
|
* @param[in] norm the normalization for the associated Legendre
|
|
* polynomials, either SphericalHarmonic1::FULL (the default) or
|
|
* SphericalHarmonic1::SCHMIDT.
|
|
* @exception GeographicErr if \e N and \e N1 do not satisfy \e N ≥
|
|
* \e N1 ≥ −1.
|
|
* @exception GeographicErr if any of the vectors of coefficients is not
|
|
* large enough.
|
|
*
|
|
* See SphericalHarmonic for the way the coefficients should be stored.
|
|
*
|
|
* The class stores <i>pointers</i> to the first elements of \e C, \e S, \e
|
|
* C', and \e S'. These arrays should not be altered or destroyed during
|
|
* the lifetime of a SphericalHarmonic object.
|
|
**********************************************************************/
|
|
SphericalHarmonic1(const std::vector<real>& C,
|
|
const std::vector<real>& S,
|
|
int N,
|
|
const std::vector<real>& C1,
|
|
const std::vector<real>& S1,
|
|
int N1,
|
|
real a, unsigned norm = FULL)
|
|
: _a(a)
|
|
, _norm(norm) {
|
|
if (!(N1 <= N))
|
|
throw GeographicErr("N1 cannot be larger that N");
|
|
_c[0] = SphericalEngine::coeff(C, S, N);
|
|
_c[1] = SphericalEngine::coeff(C1, S1, N1);
|
|
}
|
|
|
|
/**
|
|
* Constructor with a subset of coefficients specified.
|
|
*
|
|
* @param[in] C the coefficients <i>C</i><sub><i>nm</i></sub>.
|
|
* @param[in] S the coefficients <i>S</i><sub><i>nm</i></sub>.
|
|
* @param[in] N the degree used to determine the layout of \e C and \e S.
|
|
* @param[in] nmx the maximum degree used in the sum. The sum over \e n is
|
|
* from 0 thru \e nmx.
|
|
* @param[in] mmx the maximum order used in the sum. The sum over \e m is
|
|
* from 0 thru min(\e n, \e mmx).
|
|
* @param[in] C1 the coefficients <i>C'</i><sub><i>nm</i></sub>.
|
|
* @param[in] S1 the coefficients <i>S'</i><sub><i>nm</i></sub>.
|
|
* @param[in] N1 the degree used to determine the layout of \e C' and \e
|
|
* S'.
|
|
* @param[in] nmx1 the maximum degree used for \e C' and \e S'.
|
|
* @param[in] mmx1 the maximum order used for \e C' and \e S'.
|
|
* @param[in] a the reference radius appearing in the definition of the
|
|
* sum.
|
|
* @param[in] norm the normalization for the associated Legendre
|
|
* polynomials, either SphericalHarmonic1::FULL (the default) or
|
|
* SphericalHarmonic1::SCHMIDT.
|
|
* @exception GeographicErr if the parameters do not satisfy \e N ≥ \e
|
|
* nmx ≥ \e mmx ≥ −1; \e N1 ≥ \e nmx1 ≥ \e mmx1 ≥
|
|
* −1; \e N ≥ \e N1; \e nmx ≥ \e nmx1; \e mmx ≥ \e mmx1.
|
|
* @exception GeographicErr if any of the vectors of coefficients is not
|
|
* large enough.
|
|
*
|
|
* The class stores <i>pointers</i> to the first elements of \e C, \e S, \e
|
|
* C', and \e S'. These arrays should not be altered or destroyed during
|
|
* the lifetime of a SphericalHarmonic object.
|
|
**********************************************************************/
|
|
SphericalHarmonic1(const std::vector<real>& C,
|
|
const std::vector<real>& S,
|
|
int N, int nmx, int mmx,
|
|
const std::vector<real>& C1,
|
|
const std::vector<real>& S1,
|
|
int N1, int nmx1, int mmx1,
|
|
real a, unsigned norm = FULL)
|
|
: _a(a)
|
|
, _norm(norm) {
|
|
if (!(nmx1 <= nmx))
|
|
throw GeographicErr("nmx1 cannot be larger that nmx");
|
|
if (!(mmx1 <= mmx))
|
|
throw GeographicErr("mmx1 cannot be larger that mmx");
|
|
_c[0] = SphericalEngine::coeff(C, S, N, nmx, mmx);
|
|
_c[1] = SphericalEngine::coeff(C1, S1, N1, nmx1, mmx1);
|
|
}
|
|
|
|
/**
|
|
* A default constructor so that the object can be created when the
|
|
* constructor for another object is initialized. This default object can
|
|
* then be reset with the default copy assignment operator.
|
|
**********************************************************************/
|
|
SphericalHarmonic1() {}
|
|
|
|
/**
|
|
* Compute a spherical harmonic sum with a correction term.
|
|
*
|
|
* @param[in] tau multiplier for correction coefficients \e C' and \e S'.
|
|
* @param[in] x cartesian coordinate.
|
|
* @param[in] y cartesian coordinate.
|
|
* @param[in] z cartesian coordinate.
|
|
* @return \e V the spherical harmonic sum.
|
|
*
|
|
* This routine requires constant memory and thus never throws
|
|
* an exception.
|
|
**********************************************************************/
|
|
Math::real operator()(real tau, real x, real y, real z) const {
|
|
real f[] = {1, tau};
|
|
real v = 0;
|
|
real dummy;
|
|
switch (_norm) {
|
|
case FULL:
|
|
v = SphericalEngine::Value<false, SphericalEngine::FULL, 2>
|
|
(_c, f, x, y, z, _a, dummy, dummy, dummy);
|
|
break;
|
|
case SCHMIDT:
|
|
default: // To avoid compiler warnings
|
|
v = SphericalEngine::Value<false, SphericalEngine::SCHMIDT, 2>
|
|
(_c, f, x, y, z, _a, dummy, dummy, dummy);
|
|
break;
|
|
}
|
|
return v;
|
|
}
|
|
|
|
/**
|
|
* Compute a spherical harmonic sum with a correction term and its
|
|
* gradient.
|
|
*
|
|
* @param[in] tau multiplier for correction coefficients \e C' and \e S'.
|
|
* @param[in] x cartesian coordinate.
|
|
* @param[in] y cartesian coordinate.
|
|
* @param[in] z cartesian coordinate.
|
|
* @param[out] gradx \e x component of the gradient
|
|
* @param[out] grady \e y component of the gradient
|
|
* @param[out] gradz \e z component of the gradient
|
|
* @return \e V the spherical harmonic sum.
|
|
*
|
|
* This is the same as the previous function, except that the components of
|
|
* the gradients of the sum in the \e x, \e y, and \e z directions are
|
|
* computed. This routine requires constant memory and thus never throws
|
|
* an exception.
|
|
**********************************************************************/
|
|
Math::real operator()(real tau, real x, real y, real z,
|
|
real& gradx, real& grady, real& gradz) const {
|
|
real f[] = {1, tau};
|
|
real v = 0;
|
|
switch (_norm) {
|
|
case FULL:
|
|
v = SphericalEngine::Value<true, SphericalEngine::FULL, 2>
|
|
(_c, f, x, y, z, _a, gradx, grady, gradz);
|
|
break;
|
|
case SCHMIDT:
|
|
default: // To avoid compiler warnings
|
|
v = SphericalEngine::Value<true, SphericalEngine::SCHMIDT, 2>
|
|
(_c, f, x, y, z, _a, gradx, grady, gradz);
|
|
break;
|
|
}
|
|
return v;
|
|
}
|
|
|
|
/**
|
|
* Create a CircularEngine to allow the efficient evaluation of several
|
|
* points on a circle of latitude at a fixed value of \e tau.
|
|
*
|
|
* @param[in] tau the multiplier for the correction coefficients.
|
|
* @param[in] p the radius of the circle.
|
|
* @param[in] z the height of the circle above the equatorial plane.
|
|
* @param[in] gradp if true the returned object will be able to compute the
|
|
* gradient of the sum.
|
|
* @exception std::bad_alloc if the memory for the CircularEngine can't be
|
|
* allocated.
|
|
* @return the CircularEngine object.
|
|
*
|
|
* SphericalHarmonic1::operator()() exchanges the order of the sums in the
|
|
* definition, i.e., ∑<sub><i>n</i> = 0..<i>N</i></sub>
|
|
* ∑<sub><i>m</i> = 0..<i>n</i></sub> becomes ∑<sub><i>m</i> =
|
|
* 0..<i>N</i></sub> ∑<sub><i>n</i> = <i>m</i>..<i>N</i></sub>.
|
|
* SphericalHarmonic1::Circle performs the inner sum over degree \e n
|
|
* (which entails about <i>N</i><sup>2</sup> operations). Calling
|
|
* CircularEngine::operator()() on the returned object performs the outer
|
|
* sum over the order \e m (about \e N operations).
|
|
*
|
|
* See SphericalHarmonic::Circle for an example of its use.
|
|
**********************************************************************/
|
|
CircularEngine Circle(real tau, real p, real z, bool gradp) const {
|
|
real f[] = {1, tau};
|
|
switch (_norm) {
|
|
case FULL:
|
|
return gradp ?
|
|
SphericalEngine::Circle<true, SphericalEngine::FULL, 2>
|
|
(_c, f, p, z, _a) :
|
|
SphericalEngine::Circle<false, SphericalEngine::FULL, 2>
|
|
(_c, f, p, z, _a);
|
|
break;
|
|
case SCHMIDT:
|
|
default: // To avoid compiler warnings
|
|
return gradp ?
|
|
SphericalEngine::Circle<true, SphericalEngine::SCHMIDT, 2>
|
|
(_c, f, p, z, _a) :
|
|
SphericalEngine::Circle<false, SphericalEngine::SCHMIDT, 2>
|
|
(_c, f, p, z, _a);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @return the zeroth SphericalEngine::coeff object.
|
|
**********************************************************************/
|
|
const SphericalEngine::coeff& Coefficients() const
|
|
{ return _c[0]; }
|
|
/**
|
|
* @return the first SphericalEngine::coeff object.
|
|
**********************************************************************/
|
|
const SphericalEngine::coeff& Coefficients1() const
|
|
{ return _c[1]; }
|
|
};
|
|
|
|
} // namespace GeographicLib
|
|
|
|
#endif // GEOGRAPHICLIB_SPHERICALHARMONIC1_HPP
|