Files
aman-es/external/include/GeographicLib/SphericalHarmonic1.hpp
2021-11-22 16:16:36 +01:00

284 lines
12 KiB
C++

/**
* \file SphericalHarmonic1.hpp
* \brief Header for GeographicLib::SphericalHarmonic1 class
*
* Copyright (c) Charles Karney (2011) <charles@karney.com> and licensed under
* the MIT/X11 License. For more information, see
* https://geographiclib.sourceforge.io/
**********************************************************************/
#if !defined(GEOGRAPHICLIB_SPHERICALHARMONIC1_HPP)
#define GEOGRAPHICLIB_SPHERICALHARMONIC1_HPP 1
#include <vector>
#include <GeographicLib/Constants.hpp>
#include <GeographicLib/SphericalEngine.hpp>
#include <GeographicLib/CircularEngine.hpp>
namespace GeographicLib {
/**
* \brief Spherical harmonic series with a correction to the coefficients
*
* This classes is similar to SphericalHarmonic, except that the coefficients
* <i>C</i><sub><i>nm</i></sub> are replaced by
* <i>C</i><sub><i>nm</i></sub> + \e tau <i>C'</i><sub><i>nm</i></sub> (and
* similarly for <i>S</i><sub><i>nm</i></sub>).
*
* Example of use:
* \include example-SphericalHarmonic1.cpp
**********************************************************************/
class GEOGRAPHICLIB_EXPORT SphericalHarmonic1 {
public:
/**
* Supported normalizations for associate Legendre polynomials.
**********************************************************************/
enum normalization {
/**
* Fully normalized associated Legendre polynomials. See
* SphericalHarmonic::FULL for documentation.
*
* @hideinitializer
**********************************************************************/
FULL = SphericalEngine::FULL,
/**
* Schmidt semi-normalized associated Legendre polynomials. See
* SphericalHarmonic::SCHMIDT for documentation.
*
* @hideinitializer
**********************************************************************/
SCHMIDT = SphericalEngine::SCHMIDT,
};
private:
typedef Math::real real;
SphericalEngine::coeff _c[2];
real _a;
unsigned _norm;
public:
/**
* Constructor with a full set of coefficients specified.
*
* @param[in] C the coefficients <i>C</i><sub><i>nm</i></sub>.
* @param[in] S the coefficients <i>S</i><sub><i>nm</i></sub>.
* @param[in] N the maximum degree and order of the sum
* @param[in] C1 the coefficients <i>C'</i><sub><i>nm</i></sub>.
* @param[in] S1 the coefficients <i>S'</i><sub><i>nm</i></sub>.
* @param[in] N1 the maximum degree and order of the correction
* coefficients <i>C'</i><sub><i>nm</i></sub> and
* <i>S'</i><sub><i>nm</i></sub>.
* @param[in] a the reference radius appearing in the definition of the
* sum.
* @param[in] norm the normalization for the associated Legendre
* polynomials, either SphericalHarmonic1::FULL (the default) or
* SphericalHarmonic1::SCHMIDT.
* @exception GeographicErr if \e N and \e N1 do not satisfy \e N &ge;
* \e N1 &ge; &minus;1.
* @exception GeographicErr if any of the vectors of coefficients is not
* large enough.
*
* See SphericalHarmonic for the way the coefficients should be stored.
*
* The class stores <i>pointers</i> to the first elements of \e C, \e S, \e
* C', and \e S'. These arrays should not be altered or destroyed during
* the lifetime of a SphericalHarmonic object.
**********************************************************************/
SphericalHarmonic1(const std::vector<real>& C,
const std::vector<real>& S,
int N,
const std::vector<real>& C1,
const std::vector<real>& S1,
int N1,
real a, unsigned norm = FULL)
: _a(a)
, _norm(norm) {
if (!(N1 <= N))
throw GeographicErr("N1 cannot be larger that N");
_c[0] = SphericalEngine::coeff(C, S, N);
_c[1] = SphericalEngine::coeff(C1, S1, N1);
}
/**
* Constructor with a subset of coefficients specified.
*
* @param[in] C the coefficients <i>C</i><sub><i>nm</i></sub>.
* @param[in] S the coefficients <i>S</i><sub><i>nm</i></sub>.
* @param[in] N the degree used to determine the layout of \e C and \e S.
* @param[in] nmx the maximum degree used in the sum. The sum over \e n is
* from 0 thru \e nmx.
* @param[in] mmx the maximum order used in the sum. The sum over \e m is
* from 0 thru min(\e n, \e mmx).
* @param[in] C1 the coefficients <i>C'</i><sub><i>nm</i></sub>.
* @param[in] S1 the coefficients <i>S'</i><sub><i>nm</i></sub>.
* @param[in] N1 the degree used to determine the layout of \e C' and \e
* S'.
* @param[in] nmx1 the maximum degree used for \e C' and \e S'.
* @param[in] mmx1 the maximum order used for \e C' and \e S'.
* @param[in] a the reference radius appearing in the definition of the
* sum.
* @param[in] norm the normalization for the associated Legendre
* polynomials, either SphericalHarmonic1::FULL (the default) or
* SphericalHarmonic1::SCHMIDT.
* @exception GeographicErr if the parameters do not satisfy \e N &ge; \e
* nmx &ge; \e mmx &ge; &minus;1; \e N1 &ge; \e nmx1 &ge; \e mmx1 &ge;
* &minus;1; \e N &ge; \e N1; \e nmx &ge; \e nmx1; \e mmx &ge; \e mmx1.
* @exception GeographicErr if any of the vectors of coefficients is not
* large enough.
*
* The class stores <i>pointers</i> to the first elements of \e C, \e S, \e
* C', and \e S'. These arrays should not be altered or destroyed during
* the lifetime of a SphericalHarmonic object.
**********************************************************************/
SphericalHarmonic1(const std::vector<real>& C,
const std::vector<real>& S,
int N, int nmx, int mmx,
const std::vector<real>& C1,
const std::vector<real>& S1,
int N1, int nmx1, int mmx1,
real a, unsigned norm = FULL)
: _a(a)
, _norm(norm) {
if (!(nmx1 <= nmx))
throw GeographicErr("nmx1 cannot be larger that nmx");
if (!(mmx1 <= mmx))
throw GeographicErr("mmx1 cannot be larger that mmx");
_c[0] = SphericalEngine::coeff(C, S, N, nmx, mmx);
_c[1] = SphericalEngine::coeff(C1, S1, N1, nmx1, mmx1);
}
/**
* A default constructor so that the object can be created when the
* constructor for another object is initialized. This default object can
* then be reset with the default copy assignment operator.
**********************************************************************/
SphericalHarmonic1() {}
/**
* Compute a spherical harmonic sum with a correction term.
*
* @param[in] tau multiplier for correction coefficients \e C' and \e S'.
* @param[in] x cartesian coordinate.
* @param[in] y cartesian coordinate.
* @param[in] z cartesian coordinate.
* @return \e V the spherical harmonic sum.
*
* This routine requires constant memory and thus never throws
* an exception.
**********************************************************************/
Math::real operator()(real tau, real x, real y, real z) const {
real f[] = {1, tau};
real v = 0;
real dummy;
switch (_norm) {
case FULL:
v = SphericalEngine::Value<false, SphericalEngine::FULL, 2>
(_c, f, x, y, z, _a, dummy, dummy, dummy);
break;
case SCHMIDT:
default: // To avoid compiler warnings
v = SphericalEngine::Value<false, SphericalEngine::SCHMIDT, 2>
(_c, f, x, y, z, _a, dummy, dummy, dummy);
break;
}
return v;
}
/**
* Compute a spherical harmonic sum with a correction term and its
* gradient.
*
* @param[in] tau multiplier for correction coefficients \e C' and \e S'.
* @param[in] x cartesian coordinate.
* @param[in] y cartesian coordinate.
* @param[in] z cartesian coordinate.
* @param[out] gradx \e x component of the gradient
* @param[out] grady \e y component of the gradient
* @param[out] gradz \e z component of the gradient
* @return \e V the spherical harmonic sum.
*
* This is the same as the previous function, except that the components of
* the gradients of the sum in the \e x, \e y, and \e z directions are
* computed. This routine requires constant memory and thus never throws
* an exception.
**********************************************************************/
Math::real operator()(real tau, real x, real y, real z,
real& gradx, real& grady, real& gradz) const {
real f[] = {1, tau};
real v = 0;
switch (_norm) {
case FULL:
v = SphericalEngine::Value<true, SphericalEngine::FULL, 2>
(_c, f, x, y, z, _a, gradx, grady, gradz);
break;
case SCHMIDT:
default: // To avoid compiler warnings
v = SphericalEngine::Value<true, SphericalEngine::SCHMIDT, 2>
(_c, f, x, y, z, _a, gradx, grady, gradz);
break;
}
return v;
}
/**
* Create a CircularEngine to allow the efficient evaluation of several
* points on a circle of latitude at a fixed value of \e tau.
*
* @param[in] tau the multiplier for the correction coefficients.
* @param[in] p the radius of the circle.
* @param[in] z the height of the circle above the equatorial plane.
* @param[in] gradp if true the returned object will be able to compute the
* gradient of the sum.
* @exception std::bad_alloc if the memory for the CircularEngine can't be
* allocated.
* @return the CircularEngine object.
*
* SphericalHarmonic1::operator()() exchanges the order of the sums in the
* definition, i.e., &sum;<sub><i>n</i> = 0..<i>N</i></sub>
* &sum;<sub><i>m</i> = 0..<i>n</i></sub> becomes &sum;<sub><i>m</i> =
* 0..<i>N</i></sub> &sum;<sub><i>n</i> = <i>m</i>..<i>N</i></sub>.
* SphericalHarmonic1::Circle performs the inner sum over degree \e n
* (which entails about <i>N</i><sup>2</sup> operations). Calling
* CircularEngine::operator()() on the returned object performs the outer
* sum over the order \e m (about \e N operations).
*
* See SphericalHarmonic::Circle for an example of its use.
**********************************************************************/
CircularEngine Circle(real tau, real p, real z, bool gradp) const {
real f[] = {1, tau};
switch (_norm) {
case FULL:
return gradp ?
SphericalEngine::Circle<true, SphericalEngine::FULL, 2>
(_c, f, p, z, _a) :
SphericalEngine::Circle<false, SphericalEngine::FULL, 2>
(_c, f, p, z, _a);
break;
case SCHMIDT:
default: // To avoid compiler warnings
return gradp ?
SphericalEngine::Circle<true, SphericalEngine::SCHMIDT, 2>
(_c, f, p, z, _a) :
SphericalEngine::Circle<false, SphericalEngine::SCHMIDT, 2>
(_c, f, p, z, _a);
break;
}
}
/**
* @return the zeroth SphericalEngine::coeff object.
**********************************************************************/
const SphericalEngine::coeff& Coefficients() const
{ return _c[0]; }
/**
* @return the first SphericalEngine::coeff object.
**********************************************************************/
const SphericalEngine::coeff& Coefficients1() const
{ return _c[1]; }
};
} // namespace GeographicLib
#endif // GEOGRAPHICLIB_SPHERICALHARMONIC1_HPP