357 lines
15 KiB
C++
357 lines
15 KiB
C++
/**
|
|
* \file SphericalHarmonic.hpp
|
|
* \brief Header for GeographicLib::SphericalHarmonic class
|
|
*
|
|
* Copyright (c) Charles Karney (2011-2019) <charles@karney.com> and licensed
|
|
* under the MIT/X11 License. For more information, see
|
|
* https://geographiclib.sourceforge.io/
|
|
**********************************************************************/
|
|
|
|
#if !defined(GEOGRAPHICLIB_SPHERICALHARMONIC_HPP)
|
|
#define GEOGRAPHICLIB_SPHERICALHARMONIC_HPP 1
|
|
|
|
#include <vector>
|
|
#include <GeographicLib/Constants.hpp>
|
|
#include <GeographicLib/SphericalEngine.hpp>
|
|
#include <GeographicLib/CircularEngine.hpp>
|
|
|
|
namespace GeographicLib {
|
|
|
|
/**
|
|
* \brief Spherical harmonic series
|
|
*
|
|
* This class evaluates the spherical harmonic sum \verbatim
|
|
V(x, y, z) = sum(n = 0..N)[ q^(n+1) * sum(m = 0..n)[
|
|
(C[n,m] * cos(m*lambda) + S[n,m] * sin(m*lambda)) *
|
|
P[n,m](cos(theta)) ] ]
|
|
\endverbatim
|
|
* where
|
|
* - <i>p</i><sup>2</sup> = <i>x</i><sup>2</sup> + <i>y</i><sup>2</sup>,
|
|
* - <i>r</i><sup>2</sup> = <i>p</i><sup>2</sup> + <i>z</i><sup>2</sup>,
|
|
* - \e q = <i>a</i>/<i>r</i>,
|
|
* - θ = atan2(\e p, \e z) = the spherical \e colatitude,
|
|
* - λ = atan2(\e y, \e x) = the longitude.
|
|
* - P<sub><i>nm</i></sub>(\e t) is the associated Legendre polynomial of
|
|
* degree \e n and order \e m.
|
|
*
|
|
* Two normalizations are supported for P<sub><i>nm</i></sub>
|
|
* - fully normalized denoted by SphericalHarmonic::FULL.
|
|
* - Schmidt semi-normalized denoted by SphericalHarmonic::SCHMIDT.
|
|
*
|
|
* Clenshaw summation is used for the sums over both \e n and \e m. This
|
|
* allows the computation to be carried out without the need for any
|
|
* temporary arrays. See SphericalEngine.cpp for more information on the
|
|
* implementation.
|
|
*
|
|
* References:
|
|
* - C. W. Clenshaw,
|
|
* <a href="https://doi.org/10.1090/S0025-5718-1955-0071856-0">
|
|
* A note on the summation of Chebyshev series</a>,
|
|
* %Math. Tables Aids Comput. 9(51), 118--120 (1955).
|
|
* - R. E. Deakin, Derivatives of the earth's potentials, Geomatics
|
|
* Research Australasia 68, 31--60, (June 1998).
|
|
* - W. A. Heiskanen and H. Moritz, Physical Geodesy, (Freeman, San
|
|
* Francisco, 1967). (See Sec. 1-14, for a definition of Pbar.)
|
|
* - S. A. Holmes and W. E. Featherstone,
|
|
* <a href="https://doi.org/10.1007/s00190-002-0216-2">
|
|
* A unified approach to the Clenshaw summation and the recursive
|
|
* computation of very high degree and order normalised associated Legendre
|
|
* functions</a>, J. Geodesy 76(5), 279--299 (2002).
|
|
* - C. C. Tscherning and K. Poder,
|
|
* <a href="http://cct.gfy.ku.dk/publ_cct/cct80.pdf">
|
|
* Some geodetic applications of Clenshaw summation</a>,
|
|
* Boll. Geod. Sci. Aff. 41(4), 349--375 (1982).
|
|
*
|
|
* Example of use:
|
|
* \include example-SphericalHarmonic.cpp
|
|
**********************************************************************/
|
|
|
|
class GEOGRAPHICLIB_EXPORT SphericalHarmonic {
|
|
public:
|
|
/**
|
|
* Supported normalizations for the associated Legendre polynomials.
|
|
**********************************************************************/
|
|
enum normalization {
|
|
/**
|
|
* Fully normalized associated Legendre polynomials.
|
|
*
|
|
* These are defined by
|
|
* <i>P</i><sub><i>nm</i></sub><sup>full</sup>(\e z)
|
|
* = (−1)<sup><i>m</i></sup>
|
|
* sqrt(\e k (2\e n + 1) (\e n − \e m)! / (\e n + \e m)!)
|
|
* <b>P</b><sub><i>n</i></sub><sup><i>m</i></sup>(\e z), where
|
|
* <b>P</b><sub><i>n</i></sub><sup><i>m</i></sup>(\e z) is Ferrers
|
|
* function (also known as the Legendre function on the cut or the
|
|
* associated Legendre polynomial) https://dlmf.nist.gov/14.7.E10 and
|
|
* \e k = 1 for \e m = 0 and \e k = 2 otherwise.
|
|
*
|
|
* The mean squared value of
|
|
* <i>P</i><sub><i>nm</i></sub><sup>full</sup>(cosθ)
|
|
* cos(<i>m</i>λ) and
|
|
* <i>P</i><sub><i>nm</i></sub><sup>full</sup>(cosθ)
|
|
* sin(<i>m</i>λ) over the sphere is 1.
|
|
*
|
|
* @hideinitializer
|
|
**********************************************************************/
|
|
FULL = SphericalEngine::FULL,
|
|
/**
|
|
* Schmidt semi-normalized associated Legendre polynomials.
|
|
*
|
|
* These are defined by
|
|
* <i>P</i><sub><i>nm</i></sub><sup>schmidt</sup>(\e z)
|
|
* = (−1)<sup><i>m</i></sup>
|
|
* sqrt(\e k (\e n − \e m)! / (\e n + \e m)!)
|
|
* <b>P</b><sub><i>n</i></sub><sup><i>m</i></sup>(\e z), where
|
|
* <b>P</b><sub><i>n</i></sub><sup><i>m</i></sup>(\e z) is Ferrers
|
|
* function (also known as the Legendre function on the cut or the
|
|
* associated Legendre polynomial) https://dlmf.nist.gov/14.7.E10 and
|
|
* \e k = 1 for \e m = 0 and \e k = 2 otherwise.
|
|
*
|
|
* The mean squared value of
|
|
* <i>P</i><sub><i>nm</i></sub><sup>schmidt</sup>(cosθ)
|
|
* cos(<i>m</i>λ) and
|
|
* <i>P</i><sub><i>nm</i></sub><sup>schmidt</sup>(cosθ)
|
|
* sin(<i>m</i>λ) over the sphere is 1/(2\e n + 1).
|
|
*
|
|
* @hideinitializer
|
|
**********************************************************************/
|
|
SCHMIDT = SphericalEngine::SCHMIDT,
|
|
};
|
|
|
|
private:
|
|
typedef Math::real real;
|
|
SphericalEngine::coeff _c[1];
|
|
real _a;
|
|
unsigned _norm;
|
|
|
|
public:
|
|
/**
|
|
* Constructor with a full set of coefficients specified.
|
|
*
|
|
* @param[in] C the coefficients <i>C</i><sub><i>nm</i></sub>.
|
|
* @param[in] S the coefficients <i>S</i><sub><i>nm</i></sub>.
|
|
* @param[in] N the maximum degree and order of the sum
|
|
* @param[in] a the reference radius appearing in the definition of the
|
|
* sum.
|
|
* @param[in] norm the normalization for the associated Legendre
|
|
* polynomials, either SphericalHarmonic::FULL (the default) or
|
|
* SphericalHarmonic::SCHMIDT.
|
|
* @exception GeographicErr if \e N does not satisfy \e N ≥ −1.
|
|
* @exception GeographicErr if \e C or \e S is not big enough to hold the
|
|
* coefficients.
|
|
*
|
|
* The coefficients <i>C</i><sub><i>nm</i></sub> and
|
|
* <i>S</i><sub><i>nm</i></sub> are stored in the one-dimensional vectors
|
|
* \e C and \e S which must contain (\e N + 1)(\e N + 2)/2 and \e N (\e N +
|
|
* 1)/2 elements, respectively, stored in "column-major" order. Thus for
|
|
* \e N = 3, the order would be:
|
|
* <i>C</i><sub>00</sub>,
|
|
* <i>C</i><sub>10</sub>,
|
|
* <i>C</i><sub>20</sub>,
|
|
* <i>C</i><sub>30</sub>,
|
|
* <i>C</i><sub>11</sub>,
|
|
* <i>C</i><sub>21</sub>,
|
|
* <i>C</i><sub>31</sub>,
|
|
* <i>C</i><sub>22</sub>,
|
|
* <i>C</i><sub>32</sub>,
|
|
* <i>C</i><sub>33</sub>.
|
|
* In general the (\e n,\e m) element is at index \e m \e N − \e m
|
|
* (\e m − 1)/2 + \e n. The layout of \e S is the same except that
|
|
* the first column is omitted (since the \e m = 0 terms never contribute
|
|
* to the sum) and the 0th element is <i>S</i><sub>11</sub>
|
|
*
|
|
* The class stores <i>pointers</i> to the first elements of \e C and \e S.
|
|
* These arrays should not be altered or destroyed during the lifetime of a
|
|
* SphericalHarmonic object.
|
|
**********************************************************************/
|
|
SphericalHarmonic(const std::vector<real>& C,
|
|
const std::vector<real>& S,
|
|
int N, real a, unsigned norm = FULL)
|
|
: _a(a)
|
|
, _norm(norm)
|
|
{ _c[0] = SphericalEngine::coeff(C, S, N); }
|
|
|
|
/**
|
|
* Constructor with a subset of coefficients specified.
|
|
*
|
|
* @param[in] C the coefficients <i>C</i><sub><i>nm</i></sub>.
|
|
* @param[in] S the coefficients <i>S</i><sub><i>nm</i></sub>.
|
|
* @param[in] N the degree used to determine the layout of \e C and \e S.
|
|
* @param[in] nmx the maximum degree used in the sum. The sum over \e n is
|
|
* from 0 thru \e nmx.
|
|
* @param[in] mmx the maximum order used in the sum. The sum over \e m is
|
|
* from 0 thru min(\e n, \e mmx).
|
|
* @param[in] a the reference radius appearing in the definition of the
|
|
* sum.
|
|
* @param[in] norm the normalization for the associated Legendre
|
|
* polynomials, either SphericalHarmonic::FULL (the default) or
|
|
* SphericalHarmonic::SCHMIDT.
|
|
* @exception GeographicErr if \e N, \e nmx, and \e mmx do not satisfy
|
|
* \e N ≥ \e nmx ≥ \e mmx ≥ −1.
|
|
* @exception GeographicErr if \e C or \e S is not big enough to hold the
|
|
* coefficients.
|
|
*
|
|
* The class stores <i>pointers</i> to the first elements of \e C and \e S.
|
|
* These arrays should not be altered or destroyed during the lifetime of a
|
|
* SphericalHarmonic object.
|
|
**********************************************************************/
|
|
SphericalHarmonic(const std::vector<real>& C,
|
|
const std::vector<real>& S,
|
|
int N, int nmx, int mmx,
|
|
real a, unsigned norm = FULL)
|
|
: _a(a)
|
|
, _norm(norm)
|
|
{ _c[0] = SphericalEngine::coeff(C, S, N, nmx, mmx); }
|
|
|
|
/**
|
|
* A default constructor so that the object can be created when the
|
|
* constructor for another object is initialized. This default object can
|
|
* then be reset with the default copy assignment operator.
|
|
**********************************************************************/
|
|
SphericalHarmonic() {}
|
|
|
|
/**
|
|
* Compute the spherical harmonic sum.
|
|
*
|
|
* @param[in] x cartesian coordinate.
|
|
* @param[in] y cartesian coordinate.
|
|
* @param[in] z cartesian coordinate.
|
|
* @return \e V the spherical harmonic sum.
|
|
*
|
|
* This routine requires constant memory and thus never throws an
|
|
* exception.
|
|
**********************************************************************/
|
|
Math::real operator()(real x, real y, real z) const {
|
|
real f[] = {1};
|
|
real v = 0;
|
|
real dummy;
|
|
switch (_norm) {
|
|
case FULL:
|
|
v = SphericalEngine::Value<false, SphericalEngine::FULL, 1>
|
|
(_c, f, x, y, z, _a, dummy, dummy, dummy);
|
|
break;
|
|
case SCHMIDT:
|
|
default: // To avoid compiler warnings
|
|
v = SphericalEngine::Value<false, SphericalEngine::SCHMIDT, 1>
|
|
(_c, f, x, y, z, _a, dummy, dummy, dummy);
|
|
break;
|
|
}
|
|
return v;
|
|
}
|
|
|
|
/**
|
|
* Compute a spherical harmonic sum and its gradient.
|
|
*
|
|
* @param[in] x cartesian coordinate.
|
|
* @param[in] y cartesian coordinate.
|
|
* @param[in] z cartesian coordinate.
|
|
* @param[out] gradx \e x component of the gradient
|
|
* @param[out] grady \e y component of the gradient
|
|
* @param[out] gradz \e z component of the gradient
|
|
* @return \e V the spherical harmonic sum.
|
|
*
|
|
* This is the same as the previous function, except that the components of
|
|
* the gradients of the sum in the \e x, \e y, and \e z directions are
|
|
* computed. This routine requires constant memory and thus never throws
|
|
* an exception.
|
|
**********************************************************************/
|
|
Math::real operator()(real x, real y, real z,
|
|
real& gradx, real& grady, real& gradz) const {
|
|
real f[] = {1};
|
|
real v = 0;
|
|
switch (_norm) {
|
|
case FULL:
|
|
v = SphericalEngine::Value<true, SphericalEngine::FULL, 1>
|
|
(_c, f, x, y, z, _a, gradx, grady, gradz);
|
|
break;
|
|
case SCHMIDT:
|
|
default: // To avoid compiler warnings
|
|
v = SphericalEngine::Value<true, SphericalEngine::SCHMIDT, 1>
|
|
(_c, f, x, y, z, _a, gradx, grady, gradz);
|
|
break;
|
|
}
|
|
return v;
|
|
}
|
|
|
|
/**
|
|
* Create a CircularEngine to allow the efficient evaluation of several
|
|
* points on a circle of latitude.
|
|
*
|
|
* @param[in] p the radius of the circle.
|
|
* @param[in] z the height of the circle above the equatorial plane.
|
|
* @param[in] gradp if true the returned object will be able to compute the
|
|
* gradient of the sum.
|
|
* @exception std::bad_alloc if the memory for the CircularEngine can't be
|
|
* allocated.
|
|
* @return the CircularEngine object.
|
|
*
|
|
* SphericalHarmonic::operator()() exchanges the order of the sums in the
|
|
* definition, i.e., ∑<sub><i>n</i> = 0..<i>N</i></sub>
|
|
* ∑<sub><i>m</i> = 0..<i>n</i></sub> becomes ∑<sub><i>m</i> =
|
|
* 0..<i>N</i></sub> ∑<sub><i>n</i> = <i>m</i>..<i>N</i></sub>.
|
|
* SphericalHarmonic::Circle performs the inner sum over degree \e n (which
|
|
* entails about <i>N</i><sup>2</sup> operations). Calling
|
|
* CircularEngine::operator()() on the returned object performs the outer
|
|
* sum over the order \e m (about \e N operations).
|
|
*
|
|
* Here's an example of computing the spherical sum at a sequence of
|
|
* longitudes without using a CircularEngine object \code
|
|
SphericalHarmonic h(...); // Create the SphericalHarmonic object
|
|
double r = 2, lat = 33, lon0 = 44, dlon = 0.01;
|
|
double
|
|
phi = lat * Math::degree<double>(),
|
|
z = r * sin(phi), p = r * cos(phi);
|
|
for (int i = 0; i <= 100; ++i) {
|
|
real
|
|
lon = lon0 + i * dlon,
|
|
lam = lon * Math::degree<double>();
|
|
std::cout << lon << " " << h(p * cos(lam), p * sin(lam), z) << "\n";
|
|
}
|
|
\endcode
|
|
* Here is the same calculation done using a CircularEngine object. This
|
|
* will be about <i>N</i>/2 times faster. \code
|
|
SphericalHarmonic h(...); // Create the SphericalHarmonic object
|
|
double r = 2, lat = 33, lon0 = 44, dlon = 0.01;
|
|
double
|
|
phi = lat * Math::degree<double>(),
|
|
z = r * sin(phi), p = r * cos(phi);
|
|
CircularEngine c(h(p, z, false)); // Create the CircularEngine object
|
|
for (int i = 0; i <= 100; ++i) {
|
|
real
|
|
lon = lon0 + i * dlon;
|
|
std::cout << lon << " " << c(lon) << "\n";
|
|
}
|
|
\endcode
|
|
**********************************************************************/
|
|
CircularEngine Circle(real p, real z, bool gradp) const {
|
|
real f[] = {1};
|
|
switch (_norm) {
|
|
case FULL:
|
|
return gradp ?
|
|
SphericalEngine::Circle<true, SphericalEngine::FULL, 1>
|
|
(_c, f, p, z, _a) :
|
|
SphericalEngine::Circle<false, SphericalEngine::FULL, 1>
|
|
(_c, f, p, z, _a);
|
|
break;
|
|
case SCHMIDT:
|
|
default: // To avoid compiler warnings
|
|
return gradp ?
|
|
SphericalEngine::Circle<true, SphericalEngine::SCHMIDT, 1>
|
|
(_c, f, p, z, _a) :
|
|
SphericalEngine::Circle<false, SphericalEngine::SCHMIDT, 1>
|
|
(_c, f, p, z, _a);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @return the zeroth SphericalEngine::coeff object.
|
|
**********************************************************************/
|
|
const SphericalEngine::coeff& Coefficients() const
|
|
{ return _c[0]; }
|
|
};
|
|
|
|
} // namespace GeographicLib
|
|
|
|
#endif // GEOGRAPHICLIB_SPHERICALHARMONIC_HPP
|