703 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			703 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /**
 | |
|  * \file EllipticFunction.hpp
 | |
|  * \brief Header for GeographicLib::EllipticFunction class
 | |
|  *
 | |
|  * Copyright (c) Charles Karney (2008-2021) <charles@karney.com> and licensed
 | |
|  * under the MIT/X11 License.  For more information, see
 | |
|  * https://geographiclib.sourceforge.io/
 | |
|  **********************************************************************/
 | |
| 
 | |
| #if !defined(GEOGRAPHICLIB_ELLIPTICFUNCTION_HPP)
 | |
| #define GEOGRAPHICLIB_ELLIPTICFUNCTION_HPP 1
 | |
| 
 | |
| #include <GeographicLib/Constants.hpp>
 | |
| 
 | |
| namespace GeographicLib {
 | |
| 
 | |
|   /**
 | |
|    * \brief Elliptic integrals and functions
 | |
|    *
 | |
|    * This provides the elliptic functions and integrals needed for Ellipsoid,
 | |
|    * GeodesicExact, and TransverseMercatorExact.  Two categories of function
 | |
|    * are provided:
 | |
|    * - \e static functions to compute symmetric elliptic integrals
 | |
|    *   (https://dlmf.nist.gov/19.16.i)
 | |
|    * - \e member functions to compute Legrendre's elliptic
 | |
|    *   integrals (https://dlmf.nist.gov/19.2.ii) and the
 | |
|    *   Jacobi elliptic functions (https://dlmf.nist.gov/22.2).
 | |
|    * .
 | |
|    * In the latter case, an object is constructed giving the modulus \e k (and
 | |
|    * optionally the parameter α<sup>2</sup>).  The modulus is always
 | |
|    * passed as its square <i>k</i><sup>2</sup> which allows \e k to be pure
 | |
|    * imaginary (<i>k</i><sup>2</sup> < 0).  (Confusingly, Abramowitz and
 | |
|    * Stegun call \e m = <i>k</i><sup>2</sup> the "parameter" and \e n =
 | |
|    * α<sup>2</sup> the "characteristic".)
 | |
|    *
 | |
|    * In geodesic applications, it is convenient to separate the incomplete
 | |
|    * integrals into secular and periodic components, e.g.,
 | |
|    * \f[
 | |
|    *   E(\phi, k) = (2 E(k) / \pi) [ \phi + \delta E(\phi, k) ]
 | |
|    * \f]
 | |
|    * where δ\e E(φ, \e k) is an odd periodic function with period
 | |
|    * π.
 | |
|    *
 | |
|    * The computation of the elliptic integrals uses the algorithms given in
 | |
|    * - B. C. Carlson,
 | |
|    *   <a href="https://doi.org/10.1007/BF02198293"> Computation of real or
 | |
|    *   complex elliptic integrals</a>, Numerical Algorithms 10, 13--26 (1995)
 | |
|    * .
 | |
|    * with the additional optimizations given in https://dlmf.nist.gov/19.36.i.
 | |
|    * The computation of the Jacobi elliptic functions uses the algorithm given
 | |
|    * in
 | |
|    * - R. Bulirsch,
 | |
|    *   <a href="https://doi.org/10.1007/BF01397975"> Numerical Calculation of
 | |
|    *   Elliptic Integrals and Elliptic Functions</a>, Numericshe Mathematik 7,
 | |
|    *   78--90 (1965).
 | |
|    * .
 | |
|    * The notation follows https://dlmf.nist.gov/19 and https://dlmf.nist.gov/22
 | |
|    *
 | |
|    * Example of use:
 | |
|    * \include example-EllipticFunction.cpp
 | |
|    **********************************************************************/
 | |
|   class GEOGRAPHICLIB_EXPORT EllipticFunction {
 | |
|   private:
 | |
|     typedef Math::real real;
 | |
| 
 | |
|     enum { num_ = 13 }; // Max depth required for sncndn; probably 5 is enough.
 | |
|     real _k2, _kp2, _alpha2, _alphap2, _eps;
 | |
|     real _Kc, _Ec, _Dc, _Pic, _Gc, _Hc;
 | |
|   public:
 | |
|     /** \name Constructor
 | |
|      **********************************************************************/
 | |
|     ///@{
 | |
|     /**
 | |
|      * Constructor specifying the modulus and parameter.
 | |
|      *
 | |
|      * @param[in] k2 the square of the modulus <i>k</i><sup>2</sup>.
 | |
|      *   <i>k</i><sup>2</sup> must lie in (−∞, 1].
 | |
|      * @param[in] alpha2 the parameter α<sup>2</sup>.
 | |
|      *   α<sup>2</sup> must lie in (−∞, 1].
 | |
|      * @exception GeographicErr if \e k2 or \e alpha2 is out of its legal
 | |
|      *   range.
 | |
|      *
 | |
|      * If only elliptic integrals of the first and second kinds are needed,
 | |
|      * then set α<sup>2</sup> = 0 (the default value); in this case, we
 | |
|      * have Π(φ, 0, \e k) = \e F(φ, \e k), \e G(φ, 0, \e k) = \e
 | |
|      * E(φ, \e k), and \e H(φ, 0, \e k) = \e F(φ, \e k) - \e
 | |
|      * D(φ, \e k).
 | |
|      **********************************************************************/
 | |
|     EllipticFunction(real k2 = 0, real alpha2 = 0)
 | |
|       { Reset(k2, alpha2); }
 | |
| 
 | |
|     /**
 | |
|      * Constructor specifying the modulus and parameter and their complements.
 | |
|      *
 | |
|      * @param[in] k2 the square of the modulus <i>k</i><sup>2</sup>.
 | |
|      *   <i>k</i><sup>2</sup> must lie in (−∞, 1].
 | |
|      * @param[in] alpha2 the parameter α<sup>2</sup>.
 | |
|      *   α<sup>2</sup> must lie in (−∞, 1].
 | |
|      * @param[in] kp2 the complementary modulus squared <i>k'</i><sup>2</sup> =
 | |
|      *   1 − <i>k</i><sup>2</sup>.  This must lie in [0, ∞).
 | |
|      * @param[in] alphap2 the complementary parameter α'<sup>2</sup> = 1
 | |
|      *   − α<sup>2</sup>.  This must lie in [0, ∞).
 | |
|      * @exception GeographicErr if \e k2, \e alpha2, \e kp2, or \e alphap2 is
 | |
|      *   out of its legal range.
 | |
|      *
 | |
|      * The arguments must satisfy \e k2 + \e kp2 = 1 and \e alpha2 + \e alphap2
 | |
|      * = 1.  (No checking is done that these conditions are met.)  This
 | |
|      * constructor is provided to enable accuracy to be maintained, e.g., when
 | |
|      * \e k is very close to unity.
 | |
|      **********************************************************************/
 | |
|     EllipticFunction(real k2, real alpha2, real kp2, real alphap2)
 | |
|       { Reset(k2, alpha2, kp2, alphap2); }
 | |
| 
 | |
|     /**
 | |
|      * Reset the modulus and parameter.
 | |
|      *
 | |
|      * @param[in] k2 the new value of square of the modulus
 | |
|      *   <i>k</i><sup>2</sup> which must lie in (−∞, ].
 | |
|      *   done.)
 | |
|      * @param[in] alpha2 the new value of parameter α<sup>2</sup>.
 | |
|      *   α<sup>2</sup> must lie in (−∞, 1].
 | |
|      * @exception GeographicErr if \e k2 or \e alpha2 is out of its legal
 | |
|      *   range.
 | |
|      **********************************************************************/
 | |
|     void Reset(real k2 = 0, real alpha2 = 0)
 | |
|     { Reset(k2, alpha2, 1 - k2, 1 - alpha2); }
 | |
| 
 | |
|     /**
 | |
|      * Reset the modulus and parameter supplying also their complements.
 | |
|      *
 | |
|      * @param[in] k2 the square of the modulus <i>k</i><sup>2</sup>.
 | |
|      *   <i>k</i><sup>2</sup> must lie in (−∞, 1].
 | |
|      * @param[in] alpha2 the parameter α<sup>2</sup>.
 | |
|      *   α<sup>2</sup> must lie in (−∞, 1].
 | |
|      * @param[in] kp2 the complementary modulus squared <i>k'</i><sup>2</sup> =
 | |
|      *   1 − <i>k</i><sup>2</sup>.  This must lie in [0, ∞).
 | |
|      * @param[in] alphap2 the complementary parameter α'<sup>2</sup> = 1
 | |
|      *   − α<sup>2</sup>.  This must lie in [0, ∞).
 | |
|      * @exception GeographicErr if \e k2, \e alpha2, \e kp2, or \e alphap2 is
 | |
|      *   out of its legal range.
 | |
|      *
 | |
|      * The arguments must satisfy \e k2 + \e kp2 = 1 and \e alpha2 + \e alphap2
 | |
|      * = 1.  (No checking is done that these conditions are met.)  This
 | |
|      * constructor is provided to enable accuracy to be maintained, e.g., when
 | |
|      * is very small.
 | |
|      **********************************************************************/
 | |
|     void Reset(real k2, real alpha2, real kp2, real alphap2);
 | |
| 
 | |
|     ///@}
 | |
| 
 | |
|     /** \name Inspector functions.
 | |
|      **********************************************************************/
 | |
|     ///@{
 | |
|     /**
 | |
|      * @return the square of the modulus <i>k</i><sup>2</sup>.
 | |
|      **********************************************************************/
 | |
|     Math::real k2() const { return _k2; }
 | |
| 
 | |
|     /**
 | |
|      * @return the square of the complementary modulus <i>k'</i><sup>2</sup> =
 | |
|      *   1 − <i>k</i><sup>2</sup>.
 | |
|      **********************************************************************/
 | |
|     Math::real kp2() const { return _kp2; }
 | |
| 
 | |
|     /**
 | |
|      * @return the parameter α<sup>2</sup>.
 | |
|      **********************************************************************/
 | |
|     Math::real alpha2() const { return _alpha2; }
 | |
| 
 | |
|     /**
 | |
|      * @return the complementary parameter α'<sup>2</sup> = 1 −
 | |
|      *   α<sup>2</sup>.
 | |
|      **********************************************************************/
 | |
|     Math::real alphap2() const { return _alphap2; }
 | |
|     ///@}
 | |
| 
 | |
|     /** \name Complete elliptic integrals.
 | |
|      **********************************************************************/
 | |
|     ///@{
 | |
|     /**
 | |
|      * The complete integral of the first kind.
 | |
|      *
 | |
|      * @return \e K(\e k).
 | |
|      *
 | |
|      * \e K(\e k) is defined in https://dlmf.nist.gov/19.2.E4
 | |
|      * \f[
 | |
|      *   K(k) = \int_0^{\pi/2} \frac1{\sqrt{1-k^2\sin^2\phi}}\,d\phi.
 | |
|      * \f]
 | |
|      **********************************************************************/
 | |
|     Math::real K() const { return _Kc; }
 | |
| 
 | |
|     /**
 | |
|      * The complete integral of the second kind.
 | |
|      *
 | |
|      * @return \e E(\e k).
 | |
|      *
 | |
|      * \e E(\e k) is defined in https://dlmf.nist.gov/19.2.E5
 | |
|      * \f[
 | |
|      *   E(k) = \int_0^{\pi/2} \sqrt{1-k^2\sin^2\phi}\,d\phi.
 | |
|      * \f]
 | |
|      **********************************************************************/
 | |
|     Math::real E() const { return _Ec; }
 | |
| 
 | |
|     /**
 | |
|      * Jahnke's complete integral.
 | |
|      *
 | |
|      * @return \e D(\e k).
 | |
|      *
 | |
|      * \e D(\e k) is defined in https://dlmf.nist.gov/19.2.E6
 | |
|      * \f[
 | |
|      *   D(k) =
 | |
|      *   \int_0^{\pi/2} \frac{\sin^2\phi}{\sqrt{1-k^2\sin^2\phi}}\,d\phi.
 | |
|      * \f]
 | |
|      **********************************************************************/
 | |
|     Math::real D() const { return _Dc; }
 | |
| 
 | |
|     /**
 | |
|      * The difference between the complete integrals of the first and second
 | |
|      * kinds.
 | |
|      *
 | |
|      * @return \e K(\e k) − \e E(\e k).
 | |
|      **********************************************************************/
 | |
|     Math::real KE() const { return _k2 * _Dc; }
 | |
| 
 | |
|     /**
 | |
|      * The complete integral of the third kind.
 | |
|      *
 | |
|      * @return Π(α<sup>2</sup>, \e k).
 | |
|      *
 | |
|      * Π(α<sup>2</sup>, \e k) is defined in
 | |
|      * https://dlmf.nist.gov/19.2.E7
 | |
|      * \f[
 | |
|      *   \Pi(\alpha^2, k) = \int_0^{\pi/2}
 | |
|      *     \frac1{\sqrt{1-k^2\sin^2\phi}(1 - \alpha^2\sin^2\phi)}\,d\phi.
 | |
|      * \f]
 | |
|      **********************************************************************/
 | |
|     Math::real Pi() const { return _Pic; }
 | |
| 
 | |
|     /**
 | |
|      * Legendre's complete geodesic longitude integral.
 | |
|      *
 | |
|      * @return \e G(α<sup>2</sup>, \e k).
 | |
|      *
 | |
|      * \e G(α<sup>2</sup>, \e k) is given by
 | |
|      * \f[
 | |
|      *   G(\alpha^2, k) = \int_0^{\pi/2}
 | |
|      *     \frac{\sqrt{1-k^2\sin^2\phi}}{1 - \alpha^2\sin^2\phi}\,d\phi.
 | |
|      * \f]
 | |
|      **********************************************************************/
 | |
|     Math::real G() const { return _Gc; }
 | |
| 
 | |
|     /**
 | |
|      * Cayley's complete geodesic longitude difference integral.
 | |
|      *
 | |
|      * @return \e H(α<sup>2</sup>, \e k).
 | |
|      *
 | |
|      * \e H(α<sup>2</sup>, \e k) is given by
 | |
|      * \f[
 | |
|      *   H(\alpha^2, k) = \int_0^{\pi/2}
 | |
|      *     \frac{\cos^2\phi}{(1-\alpha^2\sin^2\phi)\sqrt{1-k^2\sin^2\phi}}
 | |
|      *     \,d\phi.
 | |
|      * \f]
 | |
|      **********************************************************************/
 | |
|     Math::real H() const { return _Hc; }
 | |
|     ///@}
 | |
| 
 | |
|     /** \name Incomplete elliptic integrals.
 | |
|      **********************************************************************/
 | |
|     ///@{
 | |
|     /**
 | |
|      * The incomplete integral of the first kind.
 | |
|      *
 | |
|      * @param[in] phi
 | |
|      * @return \e F(φ, \e k).
 | |
|      *
 | |
|      * \e F(φ, \e k) is defined in https://dlmf.nist.gov/19.2.E4
 | |
|      * \f[
 | |
|      *   F(\phi, k) = \int_0^\phi \frac1{\sqrt{1-k^2\sin^2\theta}}\,d\theta.
 | |
|      * \f]
 | |
|      **********************************************************************/
 | |
|     Math::real F(real phi) const;
 | |
| 
 | |
|     /**
 | |
|      * The incomplete integral of the second kind.
 | |
|      *
 | |
|      * @param[in] phi
 | |
|      * @return \e E(φ, \e k).
 | |
|      *
 | |
|      * \e E(φ, \e k) is defined in https://dlmf.nist.gov/19.2.E5
 | |
|      * \f[
 | |
|      *   E(\phi, k) = \int_0^\phi \sqrt{1-k^2\sin^2\theta}\,d\theta.
 | |
|      * \f]
 | |
|      **********************************************************************/
 | |
|     Math::real E(real phi) const;
 | |
| 
 | |
|     /**
 | |
|      * The incomplete integral of the second kind with the argument given in
 | |
|      * degrees.
 | |
|      *
 | |
|      * @param[in] ang in <i>degrees</i>.
 | |
|      * @return \e E(π <i>ang</i>/180, \e k).
 | |
|      **********************************************************************/
 | |
|     Math::real Ed(real ang) const;
 | |
| 
 | |
|     /**
 | |
|      * The inverse of the incomplete integral of the second kind.
 | |
|      *
 | |
|      * @param[in] x
 | |
|      * @return φ = <i>E</i><sup>−1</sup>(\e x, \e k); i.e., the
 | |
|      *   solution of such that \e E(φ, \e k) = \e x.
 | |
|      **********************************************************************/
 | |
|     Math::real Einv(real x) const;
 | |
| 
 | |
|     /**
 | |
|      * The incomplete integral of the third kind.
 | |
|      *
 | |
|      * @param[in] phi
 | |
|      * @return Π(φ, α<sup>2</sup>, \e k).
 | |
|      *
 | |
|      * Π(φ, α<sup>2</sup>, \e k) is defined in
 | |
|      * https://dlmf.nist.gov/19.2.E7
 | |
|      * \f[
 | |
|      *   \Pi(\phi, \alpha^2, k) = \int_0^\phi
 | |
|      *     \frac1{\sqrt{1-k^2\sin^2\theta}(1 - \alpha^2\sin^2\theta)}\,d\theta.
 | |
|      * \f]
 | |
|      **********************************************************************/
 | |
|     Math::real Pi(real phi) const;
 | |
| 
 | |
|     /**
 | |
|      * Jahnke's incomplete elliptic integral.
 | |
|      *
 | |
|      * @param[in] phi
 | |
|      * @return \e D(φ, \e k).
 | |
|      *
 | |
|      * \e D(φ, \e k) is defined in https://dlmf.nist.gov/19.2.E4
 | |
|      * \f[
 | |
|      *   D(\phi, k) = \int_0^\phi
 | |
|      *    \frac{\sin^2\theta}{\sqrt{1-k^2\sin^2\theta}}\,d\theta.
 | |
|      * \f]
 | |
|      **********************************************************************/
 | |
|     Math::real D(real phi) const;
 | |
| 
 | |
|     /**
 | |
|      * Legendre's geodesic longitude integral.
 | |
|      *
 | |
|      * @param[in] phi
 | |
|      * @return \e G(φ, α<sup>2</sup>, \e k).
 | |
|      *
 | |
|      * \e G(φ, α<sup>2</sup>, \e k) is defined by
 | |
|      * \f[
 | |
|      *   \begin{align}
 | |
|      *   G(\phi, \alpha^2, k) &=
 | |
|      *   \frac{k^2}{\alpha^2} F(\phi, k) +
 | |
|      *      \biggl(1 - \frac{k^2}{\alpha^2}\biggr) \Pi(\phi, \alpha^2, k) \\
 | |
|      *    &= \int_0^\phi
 | |
|      *     \frac{\sqrt{1-k^2\sin^2\theta}}{1 - \alpha^2\sin^2\theta}\,d\theta.
 | |
|      *   \end{align}
 | |
|      * \f]
 | |
|      *
 | |
|      * Legendre expresses the longitude of a point on the geodesic in terms of
 | |
|      * this combination of elliptic integrals in Exercices de Calcul
 | |
|      * Intégral, Vol. 1 (1811), p. 181,
 | |
|      * https://books.google.com/books?id=riIOAAAAQAAJ&pg=PA181.
 | |
|      *
 | |
|      * See \ref geodellip for the expression for the longitude in terms of this
 | |
|      * function.
 | |
|      **********************************************************************/
 | |
|     Math::real G(real phi) const;
 | |
| 
 | |
|     /**
 | |
|      * Cayley's geodesic longitude difference integral.
 | |
|      *
 | |
|      * @param[in] phi
 | |
|      * @return \e H(φ, α<sup>2</sup>, \e k).
 | |
|      *
 | |
|      * \e H(φ, α<sup>2</sup>, \e k) is defined by
 | |
|      * \f[
 | |
|      *   \begin{align}
 | |
|      *   H(\phi, \alpha^2, k) &=
 | |
|      *   \frac1{\alpha^2} F(\phi, k) +
 | |
|      *        \biggl(1 - \frac1{\alpha^2}\biggr) \Pi(\phi, \alpha^2, k) \\
 | |
|      *   &= \int_0^\phi
 | |
|      *     \frac{\cos^2\theta}
 | |
|      *          {(1-\alpha^2\sin^2\theta)\sqrt{1-k^2\sin^2\theta}}
 | |
|      *     \,d\theta.
 | |
|      *   \end{align}
 | |
|      * \f]
 | |
|      *
 | |
|      * Cayley expresses the longitude difference of a point on the geodesic in
 | |
|      * terms of this combination of elliptic integrals in Phil. Mag. <b>40</b>
 | |
|      * (1870), p. 333, https://books.google.com/books?id=Zk0wAAAAIAAJ&pg=PA333.
 | |
|      *
 | |
|      * See \ref geodellip for the expression for the longitude in terms of this
 | |
|      * function.
 | |
|      **********************************************************************/
 | |
|     Math::real H(real phi) const;
 | |
|     ///@}
 | |
| 
 | |
|     /** \name Incomplete integrals in terms of Jacobi elliptic functions.
 | |
|      **********************************************************************/
 | |
|     ///@{
 | |
|     /**
 | |
|      * The incomplete integral of the first kind in terms of Jacobi elliptic
 | |
|      * functions.
 | |
|      *
 | |
|      * @param[in] sn = sinφ.
 | |
|      * @param[in] cn = cosφ.
 | |
|      * @param[in] dn = sqrt(1 − <i>k</i><sup>2</sup>
 | |
|      *   sin<sup>2</sup>φ).
 | |
|      * @return \e F(φ, \e k) as though φ ∈ (−π, π].
 | |
|      **********************************************************************/
 | |
|     Math::real F(real sn, real cn, real dn) const;
 | |
| 
 | |
|     /**
 | |
|      * The incomplete integral of the second kind in terms of Jacobi elliptic
 | |
|      * functions.
 | |
|      *
 | |
|      * @param[in] sn = sinφ.
 | |
|      * @param[in] cn = cosφ.
 | |
|      * @param[in] dn = sqrt(1 − <i>k</i><sup>2</sup>
 | |
|      *   sin<sup>2</sup>φ).
 | |
|      * @return \e E(φ, \e k) as though φ ∈ (−π, π].
 | |
|      **********************************************************************/
 | |
|     Math::real E(real sn, real cn, real dn) const;
 | |
| 
 | |
|     /**
 | |
|      * The incomplete integral of the third kind in terms of Jacobi elliptic
 | |
|      * functions.
 | |
|      *
 | |
|      * @param[in] sn = sinφ.
 | |
|      * @param[in] cn = cosφ.
 | |
|      * @param[in] dn = sqrt(1 − <i>k</i><sup>2</sup>
 | |
|      *   sin<sup>2</sup>φ).
 | |
|      * @return Π(φ, α<sup>2</sup>, \e k) as though φ ∈
 | |
|      *   (−π, π].
 | |
|      **********************************************************************/
 | |
|     Math::real Pi(real sn, real cn, real dn) const;
 | |
| 
 | |
|     /**
 | |
|      * Jahnke's incomplete elliptic integral in terms of Jacobi elliptic
 | |
|      * functions.
 | |
|      *
 | |
|      * @param[in] sn = sinφ.
 | |
|      * @param[in] cn = cosφ.
 | |
|      * @param[in] dn = sqrt(1 − <i>k</i><sup>2</sup>
 | |
|      *   sin<sup>2</sup>φ).
 | |
|      * @return \e D(φ, \e k) as though φ ∈ (−π, π].
 | |
|      **********************************************************************/
 | |
|     Math::real D(real sn, real cn, real dn) const;
 | |
| 
 | |
|     /**
 | |
|      * Legendre's geodesic longitude integral in terms of Jacobi elliptic
 | |
|      * functions.
 | |
|      *
 | |
|      * @param[in] sn = sinφ.
 | |
|      * @param[in] cn = cosφ.
 | |
|      * @param[in] dn = sqrt(1 − <i>k</i><sup>2</sup>
 | |
|      *   sin<sup>2</sup>φ).
 | |
|      * @return \e G(φ, α<sup>2</sup>, \e k) as though φ ∈
 | |
|      *   (−π, π].
 | |
|      **********************************************************************/
 | |
|     Math::real G(real sn, real cn, real dn) const;
 | |
| 
 | |
|     /**
 | |
|      * Cayley's geodesic longitude difference integral in terms of Jacobi
 | |
|      * elliptic functions.
 | |
|      *
 | |
|      * @param[in] sn = sinφ.
 | |
|      * @param[in] cn = cosφ.
 | |
|      * @param[in] dn = sqrt(1 − <i>k</i><sup>2</sup>
 | |
|      *   sin<sup>2</sup>φ).
 | |
|      * @return \e H(φ, α<sup>2</sup>, \e k) as though φ ∈
 | |
|      *   (−π, π].
 | |
|      **********************************************************************/
 | |
|     Math::real H(real sn, real cn, real dn) const;
 | |
|     ///@}
 | |
| 
 | |
|     /** \name Periodic versions of incomplete elliptic integrals.
 | |
|      **********************************************************************/
 | |
|     ///@{
 | |
|     /**
 | |
|      * The periodic incomplete integral of the first kind.
 | |
|      *
 | |
|      * @param[in] sn = sinφ.
 | |
|      * @param[in] cn = cosφ.
 | |
|      * @param[in] dn = sqrt(1 − <i>k</i><sup>2</sup>
 | |
|      *   sin<sup>2</sup>φ).
 | |
|      * @return the periodic function π \e F(φ, \e k) / (2 \e K(\e k)) -
 | |
|      *   φ.
 | |
|      **********************************************************************/
 | |
|     Math::real deltaF(real sn, real cn, real dn) const;
 | |
| 
 | |
|     /**
 | |
|      * The periodic incomplete integral of the second kind.
 | |
|      *
 | |
|      * @param[in] sn = sinφ.
 | |
|      * @param[in] cn = cosφ.
 | |
|      * @param[in] dn = sqrt(1 − <i>k</i><sup>2</sup>
 | |
|      *   sin<sup>2</sup>φ).
 | |
|      * @return the periodic function π \e E(φ, \e k) / (2 \e E(\e k)) -
 | |
|      *   φ.
 | |
|      **********************************************************************/
 | |
|     Math::real deltaE(real sn, real cn, real dn) const;
 | |
| 
 | |
|     /**
 | |
|      * The periodic inverse of the incomplete integral of the second kind.
 | |
|      *
 | |
|      * @param[in] stau = sinτ.
 | |
|      * @param[in] ctau = sinτ.
 | |
|      * @return the periodic function <i>E</i><sup>−1</sup>(τ (2 \e
 | |
|      *   E(\e k)/π), \e k) - τ.
 | |
|      **********************************************************************/
 | |
|     Math::real deltaEinv(real stau, real ctau) const;
 | |
| 
 | |
|     /**
 | |
|      * The periodic incomplete integral of the third kind.
 | |
|      *
 | |
|      * @param[in] sn = sinφ.
 | |
|      * @param[in] cn = cosφ.
 | |
|      * @param[in] dn = sqrt(1 − <i>k</i><sup>2</sup>
 | |
|      *   sin<sup>2</sup>φ).
 | |
|      * @return the periodic function π Π(φ, α<sup>2</sup>,
 | |
|      *   \e k) / (2 Π(α<sup>2</sup>, \e k)) - φ.
 | |
|      **********************************************************************/
 | |
|     Math::real deltaPi(real sn, real cn, real dn) const;
 | |
| 
 | |
|     /**
 | |
|      * The periodic Jahnke's incomplete elliptic integral.
 | |
|      *
 | |
|      * @param[in] sn = sinφ.
 | |
|      * @param[in] cn = cosφ.
 | |
|      * @param[in] dn = sqrt(1 − <i>k</i><sup>2</sup>
 | |
|      *   sin<sup>2</sup>φ).
 | |
|      * @return the periodic function π \e D(φ, \e k) / (2 \e D(\e k)) -
 | |
|      *   φ.
 | |
|      **********************************************************************/
 | |
|     Math::real deltaD(real sn, real cn, real dn) const;
 | |
| 
 | |
|     /**
 | |
|      * Legendre's periodic geodesic longitude integral.
 | |
|      *
 | |
|      * @param[in] sn = sinφ.
 | |
|      * @param[in] cn = cosφ.
 | |
|      * @param[in] dn = sqrt(1 − <i>k</i><sup>2</sup>
 | |
|      *   sin<sup>2</sup>φ).
 | |
|      * @return the periodic function π \e G(φ, \e k) / (2 \e G(\e k)) -
 | |
|      *   φ.
 | |
|      **********************************************************************/
 | |
|     Math::real deltaG(real sn, real cn, real dn) const;
 | |
| 
 | |
|     /**
 | |
|      * Cayley's periodic geodesic longitude difference integral.
 | |
|      *
 | |
|      * @param[in] sn = sinφ.
 | |
|      * @param[in] cn = cosφ.
 | |
|      * @param[in] dn = sqrt(1 − <i>k</i><sup>2</sup>
 | |
|      *   sin<sup>2</sup>φ).
 | |
|      * @return the periodic function π \e H(φ, \e k) / (2 \e H(\e k)) -
 | |
|      *   φ.
 | |
|      **********************************************************************/
 | |
|     Math::real deltaH(real sn, real cn, real dn) const;
 | |
|     ///@}
 | |
| 
 | |
|     /** \name Elliptic functions.
 | |
|      **********************************************************************/
 | |
|     ///@{
 | |
|     /**
 | |
|      * The Jacobi elliptic functions.
 | |
|      *
 | |
|      * @param[in] x the argument.
 | |
|      * @param[out] sn sn(\e x, \e k).
 | |
|      * @param[out] cn cn(\e x, \e k).
 | |
|      * @param[out] dn dn(\e x, \e k).
 | |
|      **********************************************************************/
 | |
|     void sncndn(real x, real& sn, real& cn, real& dn) const;
 | |
| 
 | |
|     /**
 | |
|      * The Δ amplitude function.
 | |
|      *
 | |
|      * @param[in] sn sinφ.
 | |
|      * @param[in] cn cosφ.
 | |
|      * @return Δ = sqrt(1 − <i>k</i><sup>2</sup>
 | |
|      *   sin<sup>2</sup>φ).
 | |
|      **********************************************************************/
 | |
|     Math::real Delta(real sn, real cn) const {
 | |
|       using std::sqrt;
 | |
|       return sqrt(_k2 < 0 ? 1 - _k2 * sn*sn : _kp2 + _k2 * cn*cn);
 | |
|     }
 | |
|     ///@}
 | |
| 
 | |
|     /** \name Symmetric elliptic integrals.
 | |
|      **********************************************************************/
 | |
|     ///@{
 | |
|     /**
 | |
|      * Symmetric integral of the first kind <i>R</i><sub><i>F</i></sub>.
 | |
|      *
 | |
|      * @param[in] x
 | |
|      * @param[in] y
 | |
|      * @param[in] z
 | |
|      * @return <i>R</i><sub><i>F</i></sub>(\e x, \e y, \e z).
 | |
|      *
 | |
|      * <i>R</i><sub><i>F</i></sub> is defined in https://dlmf.nist.gov/19.16.E1
 | |
|      * \f[ R_F(x, y, z) = \frac12
 | |
|      *       \int_0^\infty\frac1{\sqrt{(t + x) (t + y) (t + z)}}\, dt \f]
 | |
|      * If one of the arguments is zero, it is more efficient to call the
 | |
|      * two-argument version of this function with the non-zero arguments.
 | |
|      **********************************************************************/
 | |
|     static real RF(real x, real y, real z);
 | |
| 
 | |
|     /**
 | |
|      * Complete symmetric integral of the first kind,
 | |
|      * <i>R</i><sub><i>F</i></sub> with one argument zero.
 | |
|      *
 | |
|      * @param[in] x
 | |
|      * @param[in] y
 | |
|      * @return <i>R</i><sub><i>F</i></sub>(\e x, \e y, 0).
 | |
|      **********************************************************************/
 | |
|     static real RF(real x, real y);
 | |
| 
 | |
|     /**
 | |
|      * Degenerate symmetric integral of the first kind
 | |
|      * <i>R</i><sub><i>C</i></sub>.
 | |
|      *
 | |
|      * @param[in] x
 | |
|      * @param[in] y
 | |
|      * @return <i>R</i><sub><i>C</i></sub>(\e x, \e y) =
 | |
|      *   <i>R</i><sub><i>F</i></sub>(\e x, \e y, \e y).
 | |
|      *
 | |
|      * <i>R</i><sub><i>C</i></sub> is defined in https://dlmf.nist.gov/19.2.E17
 | |
|      * \f[ R_C(x, y) = \frac12
 | |
|      *       \int_0^\infty\frac1{\sqrt{t + x}(t + y)}\,dt \f]
 | |
|      **********************************************************************/
 | |
|     static real RC(real x, real y);
 | |
| 
 | |
|     /**
 | |
|      * Symmetric integral of the second kind <i>R</i><sub><i>G</i></sub>.
 | |
|      *
 | |
|      * @param[in] x
 | |
|      * @param[in] y
 | |
|      * @param[in] z
 | |
|      * @return <i>R</i><sub><i>G</i></sub>(\e x, \e y, \e z).
 | |
|      *
 | |
|      * <i>R</i><sub><i>G</i></sub> is defined in Carlson, eq 1.5
 | |
|      * \f[ R_G(x, y, z) = \frac14
 | |
|      *       \int_0^\infty[(t + x) (t + y) (t + z)]^{-1/2}
 | |
|      *        \biggl(
 | |
|      *             \frac x{t + x} + \frac y{t + y} + \frac z{t + z}
 | |
|      *        \biggr)t\,dt \f]
 | |
|      * See also https://dlmf.nist.gov/19.16.E3.
 | |
|      * If one of the arguments is zero, it is more efficient to call the
 | |
|      * two-argument version of this function with the non-zero arguments.
 | |
|      **********************************************************************/
 | |
|     static real RG(real x, real y, real z);
 | |
| 
 | |
|     /**
 | |
|      * Complete symmetric integral of the second kind,
 | |
|      * <i>R</i><sub><i>G</i></sub> with one argument zero.
 | |
|      *
 | |
|      * @param[in] x
 | |
|      * @param[in] y
 | |
|      * @return <i>R</i><sub><i>G</i></sub>(\e x, \e y, 0).
 | |
|      **********************************************************************/
 | |
|     static real RG(real x, real y);
 | |
| 
 | |
|     /**
 | |
|      * Symmetric integral of the third kind <i>R</i><sub><i>J</i></sub>.
 | |
|      *
 | |
|      * @param[in] x
 | |
|      * @param[in] y
 | |
|      * @param[in] z
 | |
|      * @param[in] p
 | |
|      * @return <i>R</i><sub><i>J</i></sub>(\e x, \e y, \e z, \e p).
 | |
|      *
 | |
|      * <i>R</i><sub><i>J</i></sub> is defined in https://dlmf.nist.gov/19.16.E2
 | |
|      * \f[ R_J(x, y, z, p) = \frac32
 | |
|      *       \int_0^\infty
 | |
|      *       [(t + x) (t + y) (t + z)]^{-1/2} (t + p)^{-1}\, dt \f]
 | |
|      **********************************************************************/
 | |
|     static real RJ(real x, real y, real z, real p);
 | |
| 
 | |
|     /**
 | |
|      * Degenerate symmetric integral of the third kind
 | |
|      * <i>R</i><sub><i>D</i></sub>.
 | |
|      *
 | |
|      * @param[in] x
 | |
|      * @param[in] y
 | |
|      * @param[in] z
 | |
|      * @return <i>R</i><sub><i>D</i></sub>(\e x, \e y, \e z) =
 | |
|      *   <i>R</i><sub><i>J</i></sub>(\e x, \e y, \e z, \e z).
 | |
|      *
 | |
|      * <i>R</i><sub><i>D</i></sub> is defined in https://dlmf.nist.gov/19.16.E5
 | |
|      * \f[ R_D(x, y, z) = \frac32
 | |
|      *       \int_0^\infty[(t + x) (t + y)]^{-1/2} (t + z)^{-3/2}\, dt \f]
 | |
|      **********************************************************************/
 | |
|     static real RD(real x, real y, real z);
 | |
|     ///@}
 | |
| 
 | |
|   };
 | |
| 
 | |
| } // namespace GeographicLib
 | |
| 
 | |
| #endif  // GEOGRAPHICLIB_ELLIPTICFUNCTION_HPP
 |