add GeographicLib

This commit is contained in:
Sven Czarnian
2021-11-22 16:16:36 +01:00
parent b1b6b5c790
commit 09e29afe7b
46 changed files with 16958 additions and 0 deletions

View File

@@ -0,0 +1,330 @@
/**
* \file LambertConformalConic.hpp
* \brief Header for GeographicLib::LambertConformalConic class
*
* Copyright (c) Charles Karney (2010-2020) <charles@karney.com> and licensed
* under the MIT/X11 License. For more information, see
* https://geographiclib.sourceforge.io/
**********************************************************************/
#if !defined(GEOGRAPHICLIB_LAMBERTCONFORMALCONIC_HPP)
#define GEOGRAPHICLIB_LAMBERTCONFORMALCONIC_HPP 1
#include <GeographicLib/Constants.hpp>
namespace GeographicLib {
/**
* \brief Lambert conformal conic projection
*
* Implementation taken from the report,
* - J. P. Snyder,
* <a href="http://pubs.er.usgs.gov/usgspubs/pp/pp1395"> Map Projections: A
* Working Manual</a>, USGS Professional Paper 1395 (1987),
* pp. 107--109.
*
* This is a implementation of the equations in Snyder except that divided
* differences have been used to transform the expressions into ones which
* may be evaluated accurately and that Newton's method is used to invert the
* projection. In this implementation, the projection correctly becomes the
* Mercator projection or the polar stereographic projection when the
* standard latitude is the equator or a pole. The accuracy of the
* projections is about 10 nm (10 nanometers).
*
* The ellipsoid parameters, the standard parallels, and the scale on the
* standard parallels are set in the constructor. Internally, the case with
* two standard parallels is converted into a single standard parallel, the
* latitude of tangency (also the latitude of minimum scale), with a scale
* specified on this parallel. This latitude is also used as the latitude of
* origin which is returned by LambertConformalConic::OriginLatitude. The
* scale on the latitude of origin is given by
* LambertConformalConic::CentralScale. The case with two distinct standard
* parallels where one is a pole is singular and is disallowed. The central
* meridian (which is a trivial shift of the longitude) is specified as the
* \e lon0 argument of the LambertConformalConic::Forward and
* LambertConformalConic::Reverse functions.
*
* This class also returns the meridian convergence \e gamma and scale \e k.
* The meridian convergence is the bearing of grid north (the \e y axis)
* measured clockwise from true north.
*
* There is no provision in this
* class for specifying a false easting or false northing or a different
* latitude of origin. However these are can be simply included by the
* calling function. For example the Pennsylvania South state coordinate
* system (<a href="https://www.spatialreference.org/ref/epsg/3364/">
* EPSG:3364</a>) is obtained by:
* \include example-LambertConformalConic.cpp
*
* <a href="ConicProj.1.html">ConicProj</a> is a command-line utility
* providing access to the functionality of LambertConformalConic and
* AlbersEqualArea.
**********************************************************************/
class GEOGRAPHICLIB_EXPORT LambertConformalConic {
private:
typedef Math::real real;
real eps_, epsx_, ahypover_;
real _a, _f, _fm, _e2, _es;
real _sign, _n, _nc, _t0nm1, _scale, _lat0, _k0;
real _scbet0, _tchi0, _scchi0, _psi0, _nrho0, _drhomax;
static const int numit_ = 5;
static real hyp(real x) {
using std::hypot;
return hypot(real(1), x);
}
// Divided differences
// Definition: Df(x,y) = (f(x)-f(y))/(x-y)
// See:
// W. M. Kahan and R. J. Fateman,
// Symbolic computation of divided differences,
// SIGSAM Bull. 33(3), 7-28 (1999)
// https://doi.org/10.1145/334714.334716
// http://www.cs.berkeley.edu/~fateman/papers/divdiff.pdf
//
// General rules
// h(x) = f(g(x)): Dh(x,y) = Df(g(x),g(y))*Dg(x,y)
// h(x) = f(x)*g(x):
// Dh(x,y) = Df(x,y)*g(x) + Dg(x,y)*f(y)
// = Df(x,y)*g(y) + Dg(x,y)*f(x)
// = Df(x,y)*(g(x)+g(y))/2 + Dg(x,y)*(f(x)+f(y))/2
//
// hyp(x) = sqrt(1+x^2): Dhyp(x,y) = (x+y)/(hyp(x)+hyp(y))
static real Dhyp(real x, real y, real hx, real hy)
// hx = hyp(x)
{ return (x + y) / (hx + hy); }
// sn(x) = x/sqrt(1+x^2): Dsn(x,y) = (x+y)/((sn(x)+sn(y))*(1+x^2)*(1+y^2))
static real Dsn(real x, real y, real sx, real sy) {
// sx = x/hyp(x)
real t = x * y;
return t > 0 ? (x + y) * Math::sq( (sx * sy)/t ) / (sx + sy) :
(x - y != 0 ? (sx - sy) / (x - y) : 1);
}
// Dlog1p(x,y) = log1p((x-y)/(1+y))/(x-y)
static real Dlog1p(real x, real y) {
using std::log1p;
real t = x - y; if (t < 0) { t = -t; y = x; }
return t != 0 ? log1p(t / (1 + y)) / t : 1 / (1 + x);
}
// Dexp(x,y) = exp((x+y)/2) * 2*sinh((x-y)/2)/(x-y)
static real Dexp(real x, real y) {
using std::sinh; using std::exp;
real t = (x - y)/2;
return (t != 0 ? sinh(t)/t : 1) * exp((x + y)/2);
}
// Dsinh(x,y) = 2*sinh((x-y)/2)/(x-y) * cosh((x+y)/2)
// cosh((x+y)/2) = (c+sinh(x)*sinh(y)/c)/2
// c=sqrt((1+cosh(x))*(1+cosh(y)))
// cosh((x+y)/2) = sqrt( (sinh(x)*sinh(y) + cosh(x)*cosh(y) + 1)/2 )
static real Dsinh(real x, real y, real sx, real sy, real cx, real cy)
// sx = sinh(x), cx = cosh(x)
{
// real t = (x - y)/2, c = sqrt((1 + cx) * (1 + cy));
// return (t ? sinh(t)/t : real(1)) * (c + sx * sy / c) /2;
using std::sinh; using std::sqrt;
real t = (x - y)/2;
return (t != 0 ? sinh(t)/t : 1) * sqrt((sx * sy + cx * cy + 1) /2);
}
// Dasinh(x,y) = asinh((x-y)*(x+y)/(x*sqrt(1+y^2)+y*sqrt(1+x^2)))/(x-y)
// = asinh((x*sqrt(1+y^2)-y*sqrt(1+x^2)))/(x-y)
static real Dasinh(real x, real y, real hx, real hy) {
// hx = hyp(x)
using std::asinh;
real t = x - y;
return t != 0 ?
asinh(x*y > 0 ? t * (x + y) / (x*hy + y*hx) : x*hy - y*hx) / t :
1 / hx;
}
// Deatanhe(x,y) = eatanhe((x-y)/(1-e^2*x*y))/(x-y)
real Deatanhe(real x, real y) const {
real t = x - y, d = 1 - _e2 * x * y;
return t != 0 ? Math::eatanhe(t / d, _es) / t : _e2 / d;
}
void Init(real sphi1, real cphi1, real sphi2, real cphi2, real k1);
public:
/**
* Constructor with a single standard parallel.
*
* @param[in] a equatorial radius of ellipsoid (meters).
* @param[in] f flattening of ellipsoid. Setting \e f = 0 gives a sphere.
* Negative \e f gives a prolate ellipsoid.
* @param[in] stdlat standard parallel (degrees), the circle of tangency.
* @param[in] k0 scale on the standard parallel.
* @exception GeographicErr if \e a, (1 &minus; \e f) \e a, or \e k0 is
* not positive.
* @exception GeographicErr if \e stdlat is not in [&minus;90&deg;,
* 90&deg;].
**********************************************************************/
LambertConformalConic(real a, real f, real stdlat, real k0);
/**
* Constructor with two standard parallels.
*
* @param[in] a equatorial radius of ellipsoid (meters).
* @param[in] f flattening of ellipsoid. Setting \e f = 0 gives a sphere.
* Negative \e f gives a prolate ellipsoid.
* @param[in] stdlat1 first standard parallel (degrees).
* @param[in] stdlat2 second standard parallel (degrees).
* @param[in] k1 scale on the standard parallels.
* @exception GeographicErr if \e a, (1 &minus; \e f) \e a, or \e k1 is
* not positive.
* @exception GeographicErr if \e stdlat1 or \e stdlat2 is not in
* [&minus;90&deg;, 90&deg;], or if either \e stdlat1 or \e
* stdlat2 is a pole and \e stdlat1 is not equal \e stdlat2.
**********************************************************************/
LambertConformalConic(real a, real f, real stdlat1, real stdlat2, real k1);
/**
* Constructor with two standard parallels specified by sines and cosines.
*
* @param[in] a equatorial radius of ellipsoid (meters).
* @param[in] f flattening of ellipsoid. Setting \e f = 0 gives a sphere.
* Negative \e f gives a prolate ellipsoid.
* @param[in] sinlat1 sine of first standard parallel.
* @param[in] coslat1 cosine of first standard parallel.
* @param[in] sinlat2 sine of second standard parallel.
* @param[in] coslat2 cosine of second standard parallel.
* @param[in] k1 scale on the standard parallels.
* @exception GeographicErr if \e a, (1 &minus; \e f) \e a, or \e k1 is
* not positive.
* @exception GeographicErr if \e stdlat1 or \e stdlat2 is not in
* [&minus;90&deg;, 90&deg;], or if either \e stdlat1 or \e
* stdlat2 is a pole and \e stdlat1 is not equal \e stdlat2.
*
* This allows parallels close to the poles to be specified accurately.
* This routine computes the latitude of origin and the scale at this
* latitude. In the case where \e lat1 and \e lat2 are different, the
* errors in this routines are as follows: if \e dlat = abs(\e lat2 &minus;
* \e lat1) &le; 160&deg; and max(abs(\e lat1), abs(\e lat2)) &le; 90
* &minus; min(0.0002, 2.2 &times; 10<sup>&minus;6</sup>(180 &minus; \e
* dlat), 6 &times 10<sup>&minus;8</sup> <i>dlat</i><sup>2</sup>) (in
* degrees), then the error in the latitude of origin is less than 4.5
* &times; 10<sup>&minus;14</sup>d and the relative error in the scale is
* less than 7 &times; 10<sup>&minus;15</sup>.
**********************************************************************/
LambertConformalConic(real a, real f,
real sinlat1, real coslat1,
real sinlat2, real coslat2,
real k1);
/**
* Set the scale for the projection.
*
* @param[in] lat (degrees).
* @param[in] k scale at latitude \e lat (default 1).
* @exception GeographicErr \e k is not positive.
* @exception GeographicErr if \e lat is not in [&minus;90&deg;,
* 90&deg;].
**********************************************************************/
void SetScale(real lat, real k = real(1));
/**
* Forward projection, from geographic to Lambert conformal conic.
*
* @param[in] lon0 central meridian longitude (degrees).
* @param[in] lat latitude of point (degrees).
* @param[in] lon longitude of point (degrees).
* @param[out] x easting of point (meters).
* @param[out] y northing of point (meters).
* @param[out] gamma meridian convergence at point (degrees).
* @param[out] k scale of projection at point.
*
* The latitude origin is given by LambertConformalConic::LatitudeOrigin().
* No false easting or northing is added and \e lat should be in the range
* [&minus;90&deg;, 90&deg;]. The error in the projection is less than
* about 10 nm (10 nanometers), true distance, and the errors in the
* meridian convergence and scale are consistent with this. The values of
* \e x and \e y returned for points which project to infinity (i.e., one
* or both of the poles) will be large but finite.
**********************************************************************/
void Forward(real lon0, real lat, real lon,
real& x, real& y, real& gamma, real& k) const;
/**
* Reverse projection, from Lambert conformal conic to geographic.
*
* @param[in] lon0 central meridian longitude (degrees).
* @param[in] x easting of point (meters).
* @param[in] y northing of point (meters).
* @param[out] lat latitude of point (degrees).
* @param[out] lon longitude of point (degrees).
* @param[out] gamma meridian convergence at point (degrees).
* @param[out] k scale of projection at point.
*
* The latitude origin is given by LambertConformalConic::LatitudeOrigin().
* No false easting or northing is added. The value of \e lon returned is
* in the range [&minus;180&deg;, 180&deg;]. The error in the projection
* is less than about 10 nm (10 nanometers), true distance, and the errors
* in the meridian convergence and scale are consistent with this.
**********************************************************************/
void Reverse(real lon0, real x, real y,
real& lat, real& lon, real& gamma, real& k) const;
/**
* LambertConformalConic::Forward without returning the convergence and
* scale.
**********************************************************************/
void Forward(real lon0, real lat, real lon,
real& x, real& y) const {
real gamma, k;
Forward(lon0, lat, lon, x, y, gamma, k);
}
/**
* LambertConformalConic::Reverse without returning the convergence and
* scale.
**********************************************************************/
void Reverse(real lon0, real x, real y,
real& lat, real& lon) const {
real gamma, k;
Reverse(lon0, x, y, lat, lon, gamma, k);
}
/** \name Inspector functions
**********************************************************************/
///@{
/**
* @return \e a the equatorial radius of the ellipsoid (meters). This is
* the value used in the constructor.
**********************************************************************/
Math::real EquatorialRadius() const { return _a; }
/**
* @return \e f the flattening of the ellipsoid. This is the
* value used in the constructor.
**********************************************************************/
Math::real Flattening() const { return _f; }
/**
* @return latitude of the origin for the projection (degrees).
*
* This is the latitude of minimum scale and equals the \e stdlat in the
* 1-parallel constructor and lies between \e stdlat1 and \e stdlat2 in the
* 2-parallel constructors.
**********************************************************************/
Math::real OriginLatitude() const { return _lat0; }
/**
* @return central scale for the projection. This is the scale on the
* latitude of origin.
**********************************************************************/
Math::real CentralScale() const { return _k0; }
/**
* \deprecated An old name for EquatorialRadius().
**********************************************************************/
GEOGRAPHICLIB_DEPRECATED("Use EquatorialRadius()")
Math::real MajorRadius() const { return EquatorialRadius(); }
///@}
/**
* A global instantiation of LambertConformalConic with the WGS84
* ellipsoid, \e stdlat = 0, and \e k0 = 1. This degenerates to the
* Mercator projection.
**********************************************************************/
static const LambertConformalConic& Mercator();
};
} // namespace GeographicLib
#endif // GEOGRAPHICLIB_LAMBERTCONFORMALCONIC_HPP