add GeographicLib

This commit is contained in:
Sven Czarnian
2021-11-22 16:16:36 +01:00
parent b1b6b5c790
commit 09e29afe7b
46 changed files with 16958 additions and 0 deletions

View File

@@ -0,0 +1,549 @@
/**
* \file GravityModel.hpp
* \brief Header for GeographicLib::GravityModel class
*
* Copyright (c) Charles Karney (2011-2021) <charles@karney.com> and licensed
* under the MIT/X11 License. For more information, see
* https://geographiclib.sourceforge.io/
**********************************************************************/
#if !defined(GEOGRAPHICLIB_GRAVITYMODEL_HPP)
#define GEOGRAPHICLIB_GRAVITYMODEL_HPP 1
#include <GeographicLib/Constants.hpp>
#include <GeographicLib/NormalGravity.hpp>
#include <GeographicLib/SphericalHarmonic.hpp>
#include <GeographicLib/SphericalHarmonic1.hpp>
#if defined(_MSC_VER)
// Squelch warnings about dll vs vector
# pragma warning (push)
# pragma warning (disable: 4251)
#endif
namespace GeographicLib {
class GravityCircle;
/**
* \brief Model of the earth's gravity field
*
* Evaluate the earth's gravity field according to a model. The supported
* models treat only the gravitational field exterior to the mass of the
* earth. When computing the field at points near (but above) the surface of
* the earth a small correction can be applied to account for the mass of the
* atmosphere above the point in question; see \ref gravityatmos.
* Determining the height of the geoid above the ellipsoid entails correcting
* for the mass of the earth above the geoid. The egm96 and egm2008 include
* separate correction terms to account for this mass.
*
* Definitions and terminology (from Heiskanen and Moritz, Sec 2-13):
* - \e V = gravitational potential;
* - &Phi; = rotational potential;
* - \e W = \e V + &Phi; = \e T + \e U = total potential;
* - <i>V</i><sub>0</sub> = normal gravitation potential;
* - \e U = <i>V</i><sub>0</sub> + &Phi; = total normal potential;
* - \e T = \e W &minus; \e U = \e V &minus; <i>V</i><sub>0</sub> = anomalous
* or disturbing potential;
* - <b>g</b> = &nabla;\e W = <b>&gamma;</b> + <b>&delta;</b>;
* - <b>f</b> = &nabla;&Phi;;
* - <b>&Gamma;</b> = &nabla;<i>V</i><sub>0</sub>;
* - <b>&gamma;</b> = &nabla;\e U;
* - <b>&delta;</b> = &nabla;\e T = gravity disturbance vector
* = <b>g</b><sub><i>P</i></sub> &minus; <b>&gamma;</b><sub><i>P</i></sub>;
* - &delta;\e g = gravity disturbance = <i>g</i><sub><i>P</i></sub> &minus;
* &gamma;<sub><i>P</i></sub>;
* - &Delta;<b>g</b> = gravity anomaly vector = <b>g</b><sub><i>P</i></sub>
* &minus; <b>&gamma;</b><sub><i>Q</i></sub>; here the line \e PQ is
* perpendicular to ellipsoid and the potential at \e P equals the normal
* potential at \e Q;
* - &Delta;\e g = gravity anomaly = <i>g</i><sub><i>P</i></sub> &minus;
* &gamma;<sub><i>Q</i></sub>;
* - (&xi;, &eta;) deflection of the vertical, the difference in
* directions of <b>g</b><sub><i>P</i></sub> and
* <b>&gamma;</b><sub><i>Q</i></sub>, &xi; = NS, &eta; = EW.
* - \e X, \e Y, \e Z, geocentric coordinates;
* - \e x, \e y, \e z, local cartesian coordinates used to denote the east,
* north and up directions.
*
* See \ref gravity for details of how to install the gravity models and the
* data format.
*
* References:
* - W. A. Heiskanen and H. Moritz, Physical Geodesy (Freeman, San
* Francisco, 1967).
*
* Example of use:
* \include example-GravityModel.cpp
*
* <a href="Gravity.1.html">Gravity</a> is a command-line utility providing
* access to the functionality of GravityModel and GravityCircle.
**********************************************************************/
class GEOGRAPHICLIB_EXPORT GravityModel {
private:
typedef Math::real real;
friend class GravityCircle;
static const int idlength_ = 8;
std::string _name, _dir, _description, _date, _filename, _id;
real _amodel, _GMmodel, _zeta0, _corrmult;
int _nmx, _mmx;
SphericalHarmonic::normalization _norm;
NormalGravity _earth;
std::vector<real> _Cx, _Sx, _CC, _CS, _zonal;
real _dzonal0; // A left over contribution to _zonal.
SphericalHarmonic _gravitational;
SphericalHarmonic1 _disturbing;
SphericalHarmonic _correction;
void ReadMetadata(const std::string& name);
Math::real InternalT(real X, real Y, real Z,
real& deltaX, real& deltaY, real& deltaZ,
bool gradp, bool correct) const;
GravityModel(const GravityModel&) = delete; // copy constructor not allowed
// nor copy assignment
GravityModel& operator=(const GravityModel&) = delete;
enum captype {
CAP_NONE = 0U,
CAP_G = 1U<<0, // implies potentials W and V
CAP_T = 1U<<1,
CAP_DELTA = 1U<<2 | CAP_T, // delta implies T?
CAP_C = 1U<<3,
CAP_GAMMA0 = 1U<<4,
CAP_GAMMA = 1U<<5,
CAP_ALL = 0x3FU,
};
public:
/**
* Bit masks for the capabilities to be given to the GravityCircle object
* produced by Circle.
**********************************************************************/
enum mask {
/**
* No capabilities.
* @hideinitializer
**********************************************************************/
NONE = 0U,
/**
* Allow calls to GravityCircle::Gravity, GravityCircle::W, and
* GravityCircle::V.
* @hideinitializer
**********************************************************************/
GRAVITY = CAP_G,
/**
* Allow calls to GravityCircle::Disturbance and GravityCircle::T.
* @hideinitializer
**********************************************************************/
DISTURBANCE = CAP_DELTA,
/**
* Allow calls to GravityCircle::T(real lon) (i.e., computing the
* disturbing potential and not the gravity disturbance vector).
* @hideinitializer
**********************************************************************/
DISTURBING_POTENTIAL = CAP_T,
/**
* Allow calls to GravityCircle::SphericalAnomaly.
* @hideinitializer
**********************************************************************/
SPHERICAL_ANOMALY = CAP_DELTA | CAP_GAMMA,
/**
* Allow calls to GravityCircle::GeoidHeight.
* @hideinitializer
**********************************************************************/
GEOID_HEIGHT = CAP_T | CAP_C | CAP_GAMMA0,
/**
* All capabilities.
* @hideinitializer
**********************************************************************/
ALL = CAP_ALL,
};
/** \name Setting up the gravity model
**********************************************************************/
///@{
/**
* Construct a gravity model.
*
* @param[in] name the name of the model.
* @param[in] path (optional) directory for data file.
* @param[in] Nmax (optional) if non-negative, truncate the degree of the
* model this value.
* @param[in] Mmax (optional) if non-negative, truncate the order of the
* model this value.
* @exception GeographicErr if the data file cannot be found, is
* unreadable, or is corrupt, or if \e Mmax > \e Nmax.
* @exception std::bad_alloc if the memory necessary for storing the model
* can't be allocated.
*
* A filename is formed by appending ".egm" (World Gravity Model) to the
* name. If \e path is specified (and is non-empty), then the file is
* loaded from directory, \e path. Otherwise the path is given by
* DefaultGravityPath().
*
* This file contains the metadata which specifies the properties of the
* model. The coefficients for the spherical harmonic sums are obtained
* from a file obtained by appending ".cof" to metadata file (so the
* filename ends in ".egm.cof").
*
* If \e Nmax &ge; 0 and \e Mmax < 0, then \e Mmax is set to \e Nmax.
* After the model is loaded, the maximum degree and order of the model can
* be found by the Degree() and Order() methods.
**********************************************************************/
explicit GravityModel(const std::string& name,
const std::string& path = "",
int Nmax = -1, int Mmax = -1);
///@}
/** \name Compute gravity in geodetic coordinates
**********************************************************************/
///@{
/**
* Evaluate the gravity at an arbitrary point above (or below) the
* ellipsoid.
*
* @param[in] lat the geographic latitude (degrees).
* @param[in] lon the geographic longitude (degrees).
* @param[in] h the height above the ellipsoid (meters).
* @param[out] gx the easterly component of the acceleration
* (m s<sup>&minus;2</sup>).
* @param[out] gy the northerly component of the acceleration
* (m s<sup>&minus;2</sup>).
* @param[out] gz the upward component of the acceleration
* (m s<sup>&minus;2</sup>); this is usually negative.
* @return \e W the sum of the gravitational and centrifugal potentials
* (m<sup>2</sup> s<sup>&minus;2</sup>).
*
* The function includes the effects of the earth's rotation.
**********************************************************************/
Math::real Gravity(real lat, real lon, real h,
real& gx, real& gy, real& gz) const;
/**
* Evaluate the gravity disturbance vector at an arbitrary point above (or
* below) the ellipsoid.
*
* @param[in] lat the geographic latitude (degrees).
* @param[in] lon the geographic longitude (degrees).
* @param[in] h the height above the ellipsoid (meters).
* @param[out] deltax the easterly component of the disturbance vector
* (m s<sup>&minus;2</sup>).
* @param[out] deltay the northerly component of the disturbance vector
* (m s<sup>&minus;2</sup>).
* @param[out] deltaz the upward component of the disturbance vector
* (m s<sup>&minus;2</sup>).
* @return \e T the corresponding disturbing potential
* (m<sup>2</sup> s<sup>&minus;2</sup>).
**********************************************************************/
Math::real Disturbance(real lat, real lon, real h,
real& deltax, real& deltay, real& deltaz)
const;
/**
* Evaluate the geoid height.
*
* @param[in] lat the geographic latitude (degrees).
* @param[in] lon the geographic longitude (degrees).
* @return \e N the height of the geoid above the ReferenceEllipsoid()
* (meters).
*
* This calls NormalGravity::U for ReferenceEllipsoid(). Some
* approximations are made in computing the geoid height so that the
* results of the NGA codes are reproduced accurately. Details are given
* in \ref gravitygeoid.
**********************************************************************/
Math::real GeoidHeight(real lat, real lon) const;
/**
* Evaluate the components of the gravity anomaly vector using the
* spherical approximation.
*
* @param[in] lat the geographic latitude (degrees).
* @param[in] lon the geographic longitude (degrees).
* @param[in] h the height above the ellipsoid (meters).
* @param[out] Dg01 the gravity anomaly (m s<sup>&minus;2</sup>).
* @param[out] xi the northerly component of the deflection of the vertical
* (degrees).
* @param[out] eta the easterly component of the deflection of the vertical
* (degrees).
*
* The spherical approximation (see Heiskanen and Moritz, Sec 2-14) is used
* so that the results of the NGA codes are reproduced accurately.
* approximations used here. Details are given in \ref gravitygeoid.
**********************************************************************/
void SphericalAnomaly(real lat, real lon, real h,
real& Dg01, real& xi, real& eta) const;
///@}
/** \name Compute gravity in geocentric coordinates
**********************************************************************/
///@{
/**
* Evaluate the components of the acceleration due to gravity and the
* centrifugal acceleration in geocentric coordinates.
*
* @param[in] X geocentric coordinate of point (meters).
* @param[in] Y geocentric coordinate of point (meters).
* @param[in] Z geocentric coordinate of point (meters).
* @param[out] gX the \e X component of the acceleration
* (m s<sup>&minus;2</sup>).
* @param[out] gY the \e Y component of the acceleration
* (m s<sup>&minus;2</sup>).
* @param[out] gZ the \e Z component of the acceleration
* (m s<sup>&minus;2</sup>).
* @return \e W = \e V + &Phi; the sum of the gravitational and
* centrifugal potentials (m<sup>2</sup> s<sup>&minus;2</sup>).
*
* This calls NormalGravity::U for ReferenceEllipsoid().
**********************************************************************/
Math::real W(real X, real Y, real Z,
real& gX, real& gY, real& gZ) const;
/**
* Evaluate the components of the acceleration due to gravity in geocentric
* coordinates.
*
* @param[in] X geocentric coordinate of point (meters).
* @param[in] Y geocentric coordinate of point (meters).
* @param[in] Z geocentric coordinate of point (meters).
* @param[out] GX the \e X component of the acceleration
* (m s<sup>&minus;2</sup>).
* @param[out] GY the \e Y component of the acceleration
* (m s<sup>&minus;2</sup>).
* @param[out] GZ the \e Z component of the acceleration
* (m s<sup>&minus;2</sup>).
* @return \e V = \e W - &Phi; the gravitational potential
* (m<sup>2</sup> s<sup>&minus;2</sup>).
**********************************************************************/
Math::real V(real X, real Y, real Z,
real& GX, real& GY, real& GZ) const;
/**
* Evaluate the components of the gravity disturbance in geocentric
* coordinates.
*
* @param[in] X geocentric coordinate of point (meters).
* @param[in] Y geocentric coordinate of point (meters).
* @param[in] Z geocentric coordinate of point (meters).
* @param[out] deltaX the \e X component of the gravity disturbance
* (m s<sup>&minus;2</sup>).
* @param[out] deltaY the \e Y component of the gravity disturbance
* (m s<sup>&minus;2</sup>).
* @param[out] deltaZ the \e Z component of the gravity disturbance
* (m s<sup>&minus;2</sup>).
* @return \e T = \e W - \e U the disturbing potential (also called the
* anomalous potential) (m<sup>2</sup> s<sup>&minus;2</sup>).
**********************************************************************/
Math::real T(real X, real Y, real Z,
real& deltaX, real& deltaY, real& deltaZ) const
{ return InternalT(X, Y, Z, deltaX, deltaY, deltaZ, true, true); }
/**
* Evaluate disturbing potential in geocentric coordinates.
*
* @param[in] X geocentric coordinate of point (meters).
* @param[in] Y geocentric coordinate of point (meters).
* @param[in] Z geocentric coordinate of point (meters).
* @return \e T = \e W - \e U the disturbing potential (also called the
* anomalous potential) (m<sup>2</sup> s<sup>&minus;2</sup>).
**********************************************************************/
Math::real T(real X, real Y, real Z) const {
real dummy;
return InternalT(X, Y, Z, dummy, dummy, dummy, false, true);
}
/**
* Evaluate the components of the acceleration due to normal gravity and
* the centrifugal acceleration in geocentric coordinates.
*
* @param[in] X geocentric coordinate of point (meters).
* @param[in] Y geocentric coordinate of point (meters).
* @param[in] Z geocentric coordinate of point (meters).
* @param[out] gammaX the \e X component of the normal acceleration
* (m s<sup>&minus;2</sup>).
* @param[out] gammaY the \e Y component of the normal acceleration
* (m s<sup>&minus;2</sup>).
* @param[out] gammaZ the \e Z component of the normal acceleration
* (m s<sup>&minus;2</sup>).
* @return \e U = <i>V</i><sub>0</sub> + &Phi; the sum of the
* normal gravitational and centrifugal potentials
* (m<sup>2</sup> s<sup>&minus;2</sup>).
*
* This calls NormalGravity::U for ReferenceEllipsoid().
**********************************************************************/
Math::real U(real X, real Y, real Z,
real& gammaX, real& gammaY, real& gammaZ) const
{ return _earth.U(X, Y, Z, gammaX, gammaY, gammaZ); }
/**
* Evaluate the centrifugal acceleration in geocentric coordinates.
*
* @param[in] X geocentric coordinate of point (meters).
* @param[in] Y geocentric coordinate of point (meters).
* @param[out] fX the \e X component of the centrifugal acceleration
* (m s<sup>&minus;2</sup>).
* @param[out] fY the \e Y component of the centrifugal acceleration
* (m s<sup>&minus;2</sup>).
* @return &Phi; the centrifugal potential (m<sup>2</sup>
* s<sup>&minus;2</sup>).
*
* This calls NormalGravity::Phi for ReferenceEllipsoid().
**********************************************************************/
Math::real Phi(real X, real Y, real& fX, real& fY) const
{ return _earth.Phi(X, Y, fX, fY); }
///@}
/** \name Compute gravity on a circle of constant latitude
**********************************************************************/
///@{
/**
* Create a GravityCircle object to allow the gravity field at many points
* with constant \e lat and \e h and varying \e lon to be computed
* efficiently.
*
* @param[in] lat latitude of the point (degrees).
* @param[in] h the height of the point above the ellipsoid (meters).
* @param[in] caps bitor'ed combination of GravityModel::mask values
* specifying the capabilities of the resulting GravityCircle object.
* @exception std::bad_alloc if the memory necessary for creating a
* GravityCircle can't be allocated.
* @return a GravityCircle object whose member functions computes the
* gravitational field at a particular values of \e lon.
*
* The GravityModel::mask values are
* - \e caps |= GravityModel::GRAVITY
* - \e caps |= GravityModel::DISTURBANCE
* - \e caps |= GravityModel::DISTURBING_POTENTIAL
* - \e caps |= GravityModel::SPHERICAL_ANOMALY
* - \e caps |= GravityModel::GEOID_HEIGHT
* .
* The default value of \e caps is GravityModel::ALL which turns on all the
* capabilities. If an unsupported function is invoked, it will return
* NaNs. Note that GravityModel::GEOID_HEIGHT will only be honored if \e h
* = 0.
*
* If the field at several points on a circle of latitude need to be
* calculated then creating a GravityCircle object and using its member
* functions will be substantially faster, especially for high-degree
* models. See \ref gravityparallel for an example of using GravityCircle
* (together with OpenMP) to speed up the computation of geoid heights.
**********************************************************************/
GravityCircle Circle(real lat, real h, unsigned caps = ALL) const;
///@}
/** \name Inspector functions
**********************************************************************/
///@{
/**
* @return the NormalGravity object for the reference ellipsoid.
**********************************************************************/
const NormalGravity& ReferenceEllipsoid() const { return _earth; }
/**
* @return the description of the gravity model, if available, in the data
* file; if absent, return "NONE".
**********************************************************************/
const std::string& Description() const { return _description; }
/**
* @return date of the model; if absent, return "UNKNOWN".
**********************************************************************/
const std::string& DateTime() const { return _date; }
/**
* @return full file name used to load the gravity model.
**********************************************************************/
const std::string& GravityFile() const { return _filename; }
/**
* @return "name" used to load the gravity model (from the first argument
* of the constructor, but this may be overridden by the model file).
**********************************************************************/
const std::string& GravityModelName() const { return _name; }
/**
* @return directory used to load the gravity model.
**********************************************************************/
const std::string& GravityModelDirectory() const { return _dir; }
/**
* @return \e a the equatorial radius of the ellipsoid (meters).
**********************************************************************/
Math::real EquatorialRadius() const { return _earth.EquatorialRadius(); }
/**
* @return \e GM the mass constant of the model (m<sup>3</sup>
* s<sup>&minus;2</sup>); this is the product of \e G the gravitational
* constant and \e M the mass of the earth (usually including the mass of
* the earth's atmosphere).
**********************************************************************/
Math::real MassConstant() const { return _GMmodel; }
/**
* @return \e GM the mass constant of the ReferenceEllipsoid()
* (m<sup>3</sup> s<sup>&minus;2</sup>).
**********************************************************************/
Math::real ReferenceMassConstant() const
{ return _earth.MassConstant(); }
/**
* @return &omega; the angular velocity of the model and the
* ReferenceEllipsoid() (rad s<sup>&minus;1</sup>).
**********************************************************************/
Math::real AngularVelocity() const
{ return _earth.AngularVelocity(); }
/**
* @return \e f the flattening of the ellipsoid.
**********************************************************************/
Math::real Flattening() const { return _earth.Flattening(); }
/**
* @return \e Nmax the maximum degree of the components of the model.
**********************************************************************/
int Degree() const { return _nmx; }
/**
* @return \e Mmax the maximum order of the components of the model.
**********************************************************************/
int Order() const { return _mmx; }
/**
* \deprecated An old name for EquatorialRadius().
**********************************************************************/
GEOGRAPHICLIB_DEPRECATED("Use EquatorialRadius()")
Math::real MajorRadius() const { return EquatorialRadius(); }
///@}
/**
* @return the default path for gravity model data files.
*
* This is the value of the environment variable
* GEOGRAPHICLIB_GRAVITY_PATH, if set; otherwise, it is
* $GEOGRAPHICLIB_DATA/gravity if the environment variable
* GEOGRAPHICLIB_DATA is set; otherwise, it is a compile-time default
* (/usr/local/share/GeographicLib/gravity on non-Windows systems and
* C:/ProgramData/GeographicLib/gravity on Windows systems).
**********************************************************************/
static std::string DefaultGravityPath();
/**
* @return the default name for the gravity model.
*
* This is the value of the environment variable
* GEOGRAPHICLIB_GRAVITY_NAME, if set; otherwise, it is "egm96". The
* GravityModel class does not use this function; it is just provided as a
* convenience for a calling program when constructing a GravityModel
* object.
**********************************************************************/
static std::string DefaultGravityName();
};
} // namespace GeographicLib
#if defined(_MSC_VER)
# pragma warning (pop)
#endif
#endif // GEOGRAPHICLIB_GRAVITYMODEL_HPP