add GeographicLib
This commit is contained in:
221
external/include/GeographicLib/Gnomonic.hpp
vendored
Normal file
221
external/include/GeographicLib/Gnomonic.hpp
vendored
Normal file
@@ -0,0 +1,221 @@
|
||||
/**
|
||||
* \file Gnomonic.hpp
|
||||
* \brief Header for GeographicLib::Gnomonic class
|
||||
*
|
||||
* Copyright (c) Charles Karney (2010-2020) <charles@karney.com> and licensed
|
||||
* under the MIT/X11 License. For more information, see
|
||||
* https://geographiclib.sourceforge.io/
|
||||
**********************************************************************/
|
||||
|
||||
#if !defined(GEOGRAPHICLIB_GNOMONIC_HPP)
|
||||
#define GEOGRAPHICLIB_GNOMONIC_HPP 1
|
||||
|
||||
#include <GeographicLib/Geodesic.hpp>
|
||||
#include <GeographicLib/GeodesicLine.hpp>
|
||||
#include <GeographicLib/Constants.hpp>
|
||||
|
||||
namespace GeographicLib {
|
||||
|
||||
/**
|
||||
* \brief %Gnomonic projection
|
||||
*
|
||||
* %Gnomonic projection centered at an arbitrary position \e C on the
|
||||
* ellipsoid. This projection is derived in Section 8 of
|
||||
* - C. F. F. Karney,
|
||||
* <a href="https://doi.org/10.1007/s00190-012-0578-z">
|
||||
* Algorithms for geodesics</a>,
|
||||
* J. Geodesy <b>87</b>, 43--55 (2013);
|
||||
* DOI: <a href="https://doi.org/10.1007/s00190-012-0578-z">
|
||||
* 10.1007/s00190-012-0578-z</a>;
|
||||
* addenda:
|
||||
* <a href="https://geographiclib.sourceforge.io/geod-addenda.html">
|
||||
* geod-addenda.html</a>.
|
||||
* .
|
||||
* The projection of \e P is defined as follows: compute the geodesic line
|
||||
* from \e C to \e P; compute the reduced length \e m12, geodesic scale \e
|
||||
* M12, and ρ = <i>m12</i>/\e M12; finally \e x = ρ sin \e azi1; \e
|
||||
* y = ρ cos \e azi1, where \e azi1 is the azimuth of the geodesic at \e
|
||||
* C. The Gnomonic::Forward and Gnomonic::Reverse methods also return the
|
||||
* azimuth \e azi of the geodesic at \e P and reciprocal scale \e rk in the
|
||||
* azimuthal direction. The scale in the radial direction if
|
||||
* 1/<i>rk</i><sup>2</sup>.
|
||||
*
|
||||
* For a sphere, ρ is reduces to \e a tan(<i>s12</i>/<i>a</i>), where \e
|
||||
* s12 is the length of the geodesic from \e C to \e P, and the gnomonic
|
||||
* projection has the property that all geodesics appear as straight lines.
|
||||
* For an ellipsoid, this property holds only for geodesics interesting the
|
||||
* centers. However geodesic segments close to the center are approximately
|
||||
* straight.
|
||||
*
|
||||
* Consider a geodesic segment of length \e l. Let \e T be the point on the
|
||||
* geodesic (extended if necessary) closest to \e C the center of the
|
||||
* projection and \e t be the distance \e CT. To lowest order, the maximum
|
||||
* deviation (as a true distance) of the corresponding gnomonic line segment
|
||||
* (i.e., with the same end points) from the geodesic is<br>
|
||||
* <br>
|
||||
* (<i>K</i>(<i>T</i>) - <i>K</i>(<i>C</i>))
|
||||
* <i>l</i><sup>2</sup> \e t / 32.<br>
|
||||
* <br>
|
||||
* where \e K is the Gaussian curvature.
|
||||
*
|
||||
* This result applies for any surface. For an ellipsoid of revolution,
|
||||
* consider all geodesics whose end points are within a distance \e r of \e
|
||||
* C. For a given \e r, the deviation is maximum when the latitude of \e C
|
||||
* is 45°, when endpoints are a distance \e r away, and when their
|
||||
* azimuths from the center are ± 45° or ± 135°.
|
||||
* To lowest order in \e r and the flattening \e f, the deviation is \e f
|
||||
* (<i>r</i>/2<i>a</i>)<sup>3</sup> \e r.
|
||||
*
|
||||
* The conversions all take place using a Geodesic object (by default
|
||||
* Geodesic::WGS84()). For more information on geodesics see \ref geodesic.
|
||||
*
|
||||
* \warning The definition of this projection for a sphere is
|
||||
* standard. However, there is no standard for how it should be extended to
|
||||
* an ellipsoid. The choices are:
|
||||
* - Declare that the projection is undefined for an ellipsoid.
|
||||
* - Project to a tangent plane from the center of the ellipsoid. This
|
||||
* causes great ellipses to appear as straight lines in the projection;
|
||||
* i.e., it generalizes the spherical great circle to a great ellipse.
|
||||
* This was proposed by independently by Bowring and Williams in 1997.
|
||||
* - Project to the conformal sphere with the constant of integration chosen
|
||||
* so that the values of the latitude match for the center point and
|
||||
* perform a central projection onto the plane tangent to the conformal
|
||||
* sphere at the center point. This causes normal sections through the
|
||||
* center point to appear as straight lines in the projection; i.e., it
|
||||
* generalizes the spherical great circle to a normal section. This was
|
||||
* proposed by I. G. Letoval'tsev, Generalization of the gnomonic
|
||||
* projection for a spheroid and the principal geodetic problems involved
|
||||
* in the alignment of surface routes, Geodesy and Aerophotography (5),
|
||||
* 271--274 (1963).
|
||||
* - The projection given here. This causes geodesics close to the center
|
||||
* point to appear as straight lines in the projection; i.e., it
|
||||
* generalizes the spherical great circle to a geodesic.
|
||||
*
|
||||
* Example of use:
|
||||
* \include example-Gnomonic.cpp
|
||||
*
|
||||
* <a href="GeodesicProj.1.html">GeodesicProj</a> is a command-line utility
|
||||
* providing access to the functionality of AzimuthalEquidistant, Gnomonic,
|
||||
* and CassiniSoldner.
|
||||
**********************************************************************/
|
||||
|
||||
class GEOGRAPHICLIB_EXPORT Gnomonic {
|
||||
private:
|
||||
typedef Math::real real;
|
||||
real eps0_, eps_;
|
||||
Geodesic _earth;
|
||||
real _a, _f;
|
||||
// numit_ increased from 10 to 20 to fix convergence failure with high
|
||||
// precision (e.g., GEOGRAPHICLIB_DIGITS=2000) calculations. Reverse uses
|
||||
// Newton's method which converges quadratically and so numit_ = 10 would
|
||||
// normally be big enough. However, since the Geodesic class is based on a
|
||||
// series it is of limited accuracy; in particular, the derivative rules
|
||||
// used by Reverse only hold approximately. Consequently, after a few
|
||||
// iterations, the convergence in the Reverse falls back to improvements in
|
||||
// each step by a constant (albeit small) factor.
|
||||
static const int numit_ = 20;
|
||||
public:
|
||||
|
||||
/**
|
||||
* Constructor for Gnomonic.
|
||||
*
|
||||
* @param[in] earth the Geodesic object to use for geodesic calculations.
|
||||
* By default this uses the WGS84 ellipsoid.
|
||||
**********************************************************************/
|
||||
explicit Gnomonic(const Geodesic& earth = Geodesic::WGS84());
|
||||
|
||||
/**
|
||||
* Forward projection, from geographic to gnomonic.
|
||||
*
|
||||
* @param[in] lat0 latitude of center point of projection (degrees).
|
||||
* @param[in] lon0 longitude of center point of projection (degrees).
|
||||
* @param[in] lat latitude of point (degrees).
|
||||
* @param[in] lon longitude of point (degrees).
|
||||
* @param[out] x easting of point (meters).
|
||||
* @param[out] y northing of point (meters).
|
||||
* @param[out] azi azimuth of geodesic at point (degrees).
|
||||
* @param[out] rk reciprocal of azimuthal scale at point.
|
||||
*
|
||||
* \e lat0 and \e lat should be in the range [−90°, 90°].
|
||||
* The scale of the projection is 1/<i>rk</i><sup>2</sup> in the "radial"
|
||||
* direction, \e azi clockwise from true north, and is 1/\e rk in the
|
||||
* direction perpendicular to this. If the point lies "over the horizon",
|
||||
* i.e., if \e rk ≤ 0, then NaNs are returned for \e x and \e y (the
|
||||
* correct values are returned for \e azi and \e rk). A call to Forward
|
||||
* followed by a call to Reverse will return the original (\e lat, \e lon)
|
||||
* (to within roundoff) provided the point in not over the horizon.
|
||||
**********************************************************************/
|
||||
void Forward(real lat0, real lon0, real lat, real lon,
|
||||
real& x, real& y, real& azi, real& rk) const;
|
||||
|
||||
/**
|
||||
* Reverse projection, from gnomonic to geographic.
|
||||
*
|
||||
* @param[in] lat0 latitude of center point of projection (degrees).
|
||||
* @param[in] lon0 longitude of center point of projection (degrees).
|
||||
* @param[in] x easting of point (meters).
|
||||
* @param[in] y northing of point (meters).
|
||||
* @param[out] lat latitude of point (degrees).
|
||||
* @param[out] lon longitude of point (degrees).
|
||||
* @param[out] azi azimuth of geodesic at point (degrees).
|
||||
* @param[out] rk reciprocal of azimuthal scale at point.
|
||||
*
|
||||
* \e lat0 should be in the range [−90°, 90°]. \e lat will
|
||||
* be in the range [−90°, 90°] and \e lon will be in the
|
||||
* range [−180°, 180°]. The scale of the projection is
|
||||
* 1/<i>rk</i><sup>2</sup> in the "radial" direction, \e azi clockwise from
|
||||
* true north, and is 1/\e rk in the direction perpendicular to this. Even
|
||||
* though all inputs should return a valid \e lat and \e lon, it's possible
|
||||
* that the procedure fails to converge for very large \e x or \e y; in
|
||||
* this case NaNs are returned for all the output arguments. A call to
|
||||
* Reverse followed by a call to Forward will return the original (\e x, \e
|
||||
* y) (to roundoff).
|
||||
**********************************************************************/
|
||||
void Reverse(real lat0, real lon0, real x, real y,
|
||||
real& lat, real& lon, real& azi, real& rk) const;
|
||||
|
||||
/**
|
||||
* Gnomonic::Forward without returning the azimuth and scale.
|
||||
**********************************************************************/
|
||||
void Forward(real lat0, real lon0, real lat, real lon,
|
||||
real& x, real& y) const {
|
||||
real azi, rk;
|
||||
Forward(lat0, lon0, lat, lon, x, y, azi, rk);
|
||||
}
|
||||
|
||||
/**
|
||||
* Gnomonic::Reverse without returning the azimuth and scale.
|
||||
**********************************************************************/
|
||||
void Reverse(real lat0, real lon0, real x, real y,
|
||||
real& lat, real& lon) const {
|
||||
real azi, rk;
|
||||
Reverse(lat0, lon0, x, y, lat, lon, azi, rk);
|
||||
}
|
||||
|
||||
/** \name Inspector functions
|
||||
**********************************************************************/
|
||||
///@{
|
||||
/**
|
||||
* @return \e a the equatorial radius of the ellipsoid (meters). This is
|
||||
* the value inherited from the Geodesic object used in the constructor.
|
||||
**********************************************************************/
|
||||
Math::real EquatorialRadius() const { return _earth.EquatorialRadius(); }
|
||||
|
||||
/**
|
||||
* @return \e f the flattening of the ellipsoid. This is the value
|
||||
* inherited from the Geodesic object used in the constructor.
|
||||
**********************************************************************/
|
||||
Math::real Flattening() const { return _earth.Flattening(); }
|
||||
|
||||
/**
|
||||
* \deprecated An old name for EquatorialRadius().
|
||||
**********************************************************************/
|
||||
GEOGRAPHICLIB_DEPRECATED("Use EquatorialRadius()")
|
||||
Math::real MajorRadius() const { return EquatorialRadius(); }
|
||||
///@}
|
||||
|
||||
};
|
||||
|
||||
} // namespace GeographicLib
|
||||
|
||||
#endif // GEOGRAPHICLIB_GNOMONIC_HPP
|
||||
Reference in New Issue
Block a user