add GeographicLib
This commit is contained in:
		
							
								
								
									
										321
									
								
								external/include/GeographicLib/AlbersEqualArea.hpp
									
									
									
									
										vendored
									
									
										Normal file
									
								
							
							
						
						
									
										321
									
								
								external/include/GeographicLib/AlbersEqualArea.hpp
									
									
									
									
										vendored
									
									
										Normal file
									
								
							| @@ -0,0 +1,321 @@ | ||||
| /** | ||||
|  * \file AlbersEqualArea.hpp | ||||
|  * \brief Header for GeographicLib::AlbersEqualArea class | ||||
|  * | ||||
|  * Copyright (c) Charles Karney (2010-2021) <charles@karney.com> and licensed | ||||
|  * under the MIT/X11 License.  For more information, see | ||||
|  * https://geographiclib.sourceforge.io/ | ||||
|  **********************************************************************/ | ||||
|  | ||||
| #if !defined(GEOGRAPHICLIB_ALBERSEQUALAREA_HPP) | ||||
| #define GEOGRAPHICLIB_ALBERSEQUALAREA_HPP 1 | ||||
|  | ||||
| #include <GeographicLib/Constants.hpp> | ||||
|  | ||||
| namespace GeographicLib { | ||||
|  | ||||
|   /** | ||||
|    * \brief Albers equal area conic projection | ||||
|    * | ||||
|    * Implementation taken from the report, | ||||
|    * - J. P. Snyder, | ||||
|    *   <a href="http://pubs.er.usgs.gov/usgspubs/pp/pp1395"> Map Projections: A | ||||
|    *   Working Manual</a>, USGS Professional Paper 1395 (1987), | ||||
|    *   pp. 101--102. | ||||
|    * | ||||
|    * This is a implementation of the equations in Snyder except that divided | ||||
|    * differences will be [have been] used to transform the expressions into | ||||
|    * ones which may be evaluated accurately.  [In this implementation, the | ||||
|    * projection correctly becomes the cylindrical equal area or the azimuthal | ||||
|    * equal area projection when the standard latitude is the equator or a | ||||
|    * pole.] | ||||
|    * | ||||
|    * The ellipsoid parameters, the standard parallels, and the scale on the | ||||
|    * standard parallels are set in the constructor.  Internally, the case with | ||||
|    * two standard parallels is converted into a single standard parallel, the | ||||
|    * latitude of minimum azimuthal scale, with an azimuthal scale specified on | ||||
|    * this parallel.  This latitude is also used as the latitude of origin which | ||||
|    * is returned by AlbersEqualArea::OriginLatitude.  The azimuthal scale on | ||||
|    * the latitude of origin is given by AlbersEqualArea::CentralScale.  The | ||||
|    * case with two standard parallels at opposite poles is singular and is | ||||
|    * disallowed.  The central meridian (which is a trivial shift of the | ||||
|    * longitude) is specified as the \e lon0 argument of the | ||||
|    * AlbersEqualArea::Forward and AlbersEqualArea::Reverse functions. | ||||
|    * AlbersEqualArea::Forward and AlbersEqualArea::Reverse also return the | ||||
|    * meridian convergence, γ, and azimuthal scale, \e k.  A small square | ||||
|    * aligned with the cardinal directions is projected to a rectangle with | ||||
|    * dimensions \e k (in the E-W direction) and 1/\e k (in the N-S direction). | ||||
|    * The E-W sides of the rectangle are oriented γ degrees | ||||
|    * counter-clockwise from the \e x axis.  There is no provision in this class | ||||
|    * for specifying a false easting or false northing or a different latitude | ||||
|    * of origin. | ||||
|    * | ||||
|    * Example of use: | ||||
|    * \include example-AlbersEqualArea.cpp | ||||
|    * | ||||
|    * <a href="ConicProj.1.html">ConicProj</a> is a command-line utility | ||||
|    * providing access to the functionality of LambertConformalConic and | ||||
|    * AlbersEqualArea. | ||||
|    **********************************************************************/ | ||||
|   class GEOGRAPHICLIB_EXPORT AlbersEqualArea { | ||||
|   private: | ||||
|     typedef Math::real real; | ||||
|     real eps_, epsx_, epsx2_, tol_, tol0_; | ||||
|     real _a, _f, _fm, _e2, _e, _e2m, _qZ, _qx; | ||||
|     real _sign, _lat0, _k0; | ||||
|     real _n0, _m02, _nrho0, _k2, _txi0, _scxi0, _sxi0; | ||||
|     static const int numit_ = 5;   // Newton iterations in Reverse | ||||
|     static const int numit0_ = 20; // Newton iterations in Init | ||||
|     static real hyp(real x) { | ||||
|       using std::hypot; | ||||
|       return hypot(real(1), x); | ||||
|     } | ||||
|     // atanh(      e   * x)/      e   if f > 0 | ||||
|     // atan (sqrt(-e2) * x)/sqrt(-e2) if f < 0 | ||||
|     // x                              if f = 0 | ||||
|     real atanhee(real x) const { | ||||
|       using std::atan; using std::abs; using std::atanh; | ||||
|       return _f > 0 ? atanh(_e * x)/_e : (_f < 0 ? (atan(_e * x)/_e) : x); | ||||
|     } | ||||
|     // return atanh(sqrt(x))/sqrt(x) - 1, accurate for small x | ||||
|     static real atanhxm1(real x); | ||||
|  | ||||
|     // Divided differences | ||||
|     // Definition: Df(x,y) = (f(x)-f(y))/(x-y) | ||||
|     // See: | ||||
|     //   W. M. Kahan and R. J. Fateman, | ||||
|     //   Symbolic computation of divided differences, | ||||
|     //   SIGSAM Bull. 33(3), 7-28 (1999) | ||||
|     //   https://doi.org/10.1145/334714.334716 | ||||
|     //   http://www.cs.berkeley.edu/~fateman/papers/divdiff.pdf | ||||
|     // | ||||
|     // General rules | ||||
|     // h(x) = f(g(x)): Dh(x,y) = Df(g(x),g(y))*Dg(x,y) | ||||
|     // h(x) = f(x)*g(x): | ||||
|     //        Dh(x,y) = Df(x,y)*g(x) + Dg(x,y)*f(y) | ||||
|     //                = Df(x,y)*g(y) + Dg(x,y)*f(x) | ||||
|     //                = Df(x,y)*(g(x)+g(y))/2 + Dg(x,y)*(f(x)+f(y))/2 | ||||
|     // | ||||
|     // sn(x) = x/sqrt(1+x^2): Dsn(x,y) = (x+y)/((sn(x)+sn(y))*(1+x^2)*(1+y^2)) | ||||
|     static real Dsn(real x, real y, real sx, real sy) { | ||||
|       // sx = x/hyp(x) | ||||
|       real t = x * y; | ||||
|       return t > 0 ? (x + y) * Math::sq( (sx * sy)/t ) / (sx + sy) : | ||||
|         (x - y != 0 ? (sx - sy) / (x - y) : 1); | ||||
|     } | ||||
|     // Datanhee(x,y) = (atanee(x)-atanee(y))/(x-y) | ||||
|     //               = atanhee((x-y)/(1-e^2*x*y))/(x-y) | ||||
|     real Datanhee(real x, real y) const { | ||||
|       real t = x - y,  d = 1 - _e2 * x * y; | ||||
|       return t == 0 ? 1 / d : | ||||
|         (x*y < 0 ? atanhee(x) - atanhee(y) : atanhee(t / d)) / t; | ||||
|     } | ||||
|     // DDatanhee(x,y) = (Datanhee(1,y) - Datanhee(1,x))/(y-x) | ||||
|     real DDatanhee(real x, real y) const; | ||||
|     real DDatanhee0(real x, real y) const; | ||||
|     real DDatanhee1(real x, real y) const; | ||||
|     real DDatanhee2(real x, real y) const; | ||||
|     void Init(real sphi1, real cphi1, real sphi2, real cphi2, real k1); | ||||
|     real txif(real tphi) const; | ||||
|     real tphif(real txi) const; | ||||
|  | ||||
|     friend class Ellipsoid;           // For access to txif, tphif, etc. | ||||
|   public: | ||||
|  | ||||
|     /** | ||||
|      * Constructor with a single standard parallel. | ||||
|      * | ||||
|      * @param[in] a equatorial radius of ellipsoid (meters). | ||||
|      * @param[in] f flattening of ellipsoid.  Setting \e f = 0 gives a sphere. | ||||
|      *   Negative \e f gives a prolate ellipsoid. | ||||
|      * @param[in] stdlat standard parallel (degrees), the circle of tangency. | ||||
|      * @param[in] k0 azimuthal scale on the standard parallel. | ||||
|      * @exception GeographicErr if \e a, (1 − \e f) \e a, or \e k0 is | ||||
|      *   not positive. | ||||
|      * @exception GeographicErr if \e stdlat is not in [−90°, | ||||
|      *   90°]. | ||||
|      **********************************************************************/ | ||||
|     AlbersEqualArea(real a, real f, real stdlat, real k0); | ||||
|  | ||||
|     /** | ||||
|      * Constructor with two standard parallels. | ||||
|      * | ||||
|      * @param[in] a equatorial radius of ellipsoid (meters). | ||||
|      * @param[in] f flattening of ellipsoid.  Setting \e f = 0 gives a sphere. | ||||
|      *   Negative \e f gives a prolate ellipsoid. | ||||
|      * @param[in] stdlat1 first standard parallel (degrees). | ||||
|      * @param[in] stdlat2 second standard parallel (degrees). | ||||
|      * @param[in] k1 azimuthal scale on the standard parallels. | ||||
|      * @exception GeographicErr if \e a, (1 − \e f) \e a, or \e k1 is | ||||
|      *   not positive. | ||||
|      * @exception GeographicErr if \e stdlat1 or \e stdlat2 is not in | ||||
|      *   [−90°, 90°], or if \e stdlat1 and \e stdlat2 are | ||||
|      *   opposite poles. | ||||
|      **********************************************************************/ | ||||
|     AlbersEqualArea(real a, real f, real stdlat1, real stdlat2, real k1); | ||||
|  | ||||
|     /** | ||||
|      * Constructor with two standard parallels specified by sines and cosines. | ||||
|      * | ||||
|      * @param[in] a equatorial radius of ellipsoid (meters). | ||||
|      * @param[in] f flattening of ellipsoid.  Setting \e f = 0 gives a sphere. | ||||
|      *   Negative \e f gives a prolate ellipsoid. | ||||
|      * @param[in] sinlat1 sine of first standard parallel. | ||||
|      * @param[in] coslat1 cosine of first standard parallel. | ||||
|      * @param[in] sinlat2 sine of second standard parallel. | ||||
|      * @param[in] coslat2 cosine of second standard parallel. | ||||
|      * @param[in] k1 azimuthal scale on the standard parallels. | ||||
|      * @exception GeographicErr if \e a, (1 − \e f) \e a, or \e k1 is | ||||
|      *   not positive. | ||||
|      * @exception GeographicErr if \e stdlat1 or \e stdlat2 is not in | ||||
|      *   [−90°, 90°], or if \e stdlat1 and \e stdlat2 are | ||||
|      *   opposite poles. | ||||
|      * | ||||
|      * This allows parallels close to the poles to be specified accurately. | ||||
|      * This routine computes the latitude of origin and the azimuthal scale at | ||||
|      * this latitude.  If \e dlat = abs(\e lat2 − \e lat1) ≤ 160°, | ||||
|      * then the error in the latitude of origin is less than 4.5 × | ||||
|      * 10<sup>−14</sup>d;. | ||||
|      **********************************************************************/ | ||||
|     AlbersEqualArea(real a, real f, | ||||
|                     real sinlat1, real coslat1, | ||||
|                     real sinlat2, real coslat2, | ||||
|                     real k1); | ||||
|  | ||||
|     /** | ||||
|      * Set the azimuthal scale for the projection. | ||||
|      * | ||||
|      * @param[in] lat (degrees). | ||||
|      * @param[in] k azimuthal scale at latitude \e lat (default 1). | ||||
|      * @exception GeographicErr \e k is not positive. | ||||
|      * @exception GeographicErr if \e lat is not in (−90°, | ||||
|      *   90°). | ||||
|      * | ||||
|      * This allows a "latitude of conformality" to be specified. | ||||
|      **********************************************************************/ | ||||
|     void SetScale(real lat, real k = real(1)); | ||||
|  | ||||
|     /** | ||||
|      * Forward projection, from geographic to Lambert conformal conic. | ||||
|      * | ||||
|      * @param[in] lon0 central meridian longitude (degrees). | ||||
|      * @param[in] lat latitude of point (degrees). | ||||
|      * @param[in] lon longitude of point (degrees). | ||||
|      * @param[out] x easting of point (meters). | ||||
|      * @param[out] y northing of point (meters). | ||||
|      * @param[out] gamma meridian convergence at point (degrees). | ||||
|      * @param[out] k azimuthal scale of projection at point; the radial | ||||
|      *   scale is the 1/\e k. | ||||
|      * | ||||
|      * The latitude origin is given by AlbersEqualArea::LatitudeOrigin().  No | ||||
|      * false easting or northing is added and \e lat should be in the range | ||||
|      * [−90°, 90°].  The values of \e x and \e y returned for | ||||
|      * points which project to infinity (i.e., one or both of the poles) will | ||||
|      * be large but finite. | ||||
|      **********************************************************************/ | ||||
|     void Forward(real lon0, real lat, real lon, | ||||
|                  real& x, real& y, real& gamma, real& k) const; | ||||
|  | ||||
|     /** | ||||
|      * Reverse projection, from Lambert conformal conic to geographic. | ||||
|      * | ||||
|      * @param[in] lon0 central meridian longitude (degrees). | ||||
|      * @param[in] x easting of point (meters). | ||||
|      * @param[in] y northing of point (meters). | ||||
|      * @param[out] lat latitude of point (degrees). | ||||
|      * @param[out] lon longitude of point (degrees). | ||||
|      * @param[out] gamma meridian convergence at point (degrees). | ||||
|      * @param[out] k azimuthal scale of projection at point; the radial | ||||
|      *   scale is the 1/\e k. | ||||
|      * | ||||
|      * The latitude origin is given by AlbersEqualArea::LatitudeOrigin().  No | ||||
|      * false easting or northing is added.  The value of \e lon returned is in | ||||
|      * the range [−180°, 180°].  The value of \e lat returned is | ||||
|      * in the range [−90°, 90°].  If the input point is outside | ||||
|      * the legal projected space the nearest pole is returned. | ||||
|      **********************************************************************/ | ||||
|     void Reverse(real lon0, real x, real y, | ||||
|                  real& lat, real& lon, real& gamma, real& k) const; | ||||
|  | ||||
|     /** | ||||
|      * AlbersEqualArea::Forward without returning the convergence and | ||||
|      * scale. | ||||
|      **********************************************************************/ | ||||
|     void Forward(real lon0, real lat, real lon, | ||||
|                  real& x, real& y) const { | ||||
|       real gamma, k; | ||||
|       Forward(lon0, lat, lon, x, y, gamma, k); | ||||
|     } | ||||
|  | ||||
|     /** | ||||
|      * AlbersEqualArea::Reverse without returning the convergence and | ||||
|      * scale. | ||||
|      **********************************************************************/ | ||||
|     void Reverse(real lon0, real x, real y, | ||||
|                  real& lat, real& lon) const { | ||||
|       real gamma, k; | ||||
|       Reverse(lon0, x, y, lat, lon, gamma, k); | ||||
|     } | ||||
|  | ||||
|     /** \name Inspector functions | ||||
|      **********************************************************************/ | ||||
|     ///@{ | ||||
|     /** | ||||
|      * @return \e a the equatorial radius of the ellipsoid (meters).  This is | ||||
|      *   the value used in the constructor. | ||||
|      **********************************************************************/ | ||||
|     Math::real EquatorialRadius() const { return _a; } | ||||
|  | ||||
|     /** | ||||
|      * @return \e f the flattening of the ellipsoid.  This is the value used in | ||||
|      *   the constructor. | ||||
|      **********************************************************************/ | ||||
|     Math::real Flattening() const { return _f; } | ||||
|  | ||||
|     /** | ||||
|      * @return latitude of the origin for the projection (degrees). | ||||
|      * | ||||
|      * This is the latitude of minimum azimuthal scale and equals the \e stdlat | ||||
|      * in the 1-parallel constructor and lies between \e stdlat1 and \e stdlat2 | ||||
|      * in the 2-parallel constructors. | ||||
|      **********************************************************************/ | ||||
|     Math::real OriginLatitude() const { return _lat0; } | ||||
|  | ||||
|     /** | ||||
|      * @return central scale for the projection.  This is the azimuthal scale | ||||
|      *   on the latitude of origin. | ||||
|      **********************************************************************/ | ||||
|     Math::real CentralScale() const { return _k0; } | ||||
|  | ||||
|     /** | ||||
|      * \deprecated An old name for EquatorialRadius(). | ||||
|      **********************************************************************/ | ||||
|     GEOGRAPHICLIB_DEPRECATED("Use EquatorialRadius()") | ||||
|     Math::real MajorRadius() const { return EquatorialRadius(); } | ||||
|     ///@} | ||||
|  | ||||
|     /** | ||||
|      * A global instantiation of AlbersEqualArea with the WGS84 ellipsoid, \e | ||||
|      * stdlat = 0, and \e k0 = 1.  This degenerates to the cylindrical equal | ||||
|      * area projection. | ||||
|      **********************************************************************/ | ||||
|     static const AlbersEqualArea& CylindricalEqualArea(); | ||||
|  | ||||
|     /** | ||||
|      * A global instantiation of AlbersEqualArea with the WGS84 ellipsoid, \e | ||||
|      * stdlat = 90°, and \e k0 = 1.  This degenerates to the | ||||
|      * Lambert azimuthal equal area projection. | ||||
|      **********************************************************************/ | ||||
|     static const AlbersEqualArea& AzimuthalEqualAreaNorth(); | ||||
|  | ||||
|     /** | ||||
|      * A global instantiation of AlbersEqualArea with the WGS84 ellipsoid, \e | ||||
|      * stdlat = −90°, and \e k0 = 1.  This degenerates to the | ||||
|      * Lambert azimuthal equal area projection. | ||||
|      **********************************************************************/ | ||||
|     static const AlbersEqualArea& AzimuthalEqualAreaSouth(); | ||||
|   }; | ||||
|  | ||||
| } // namespace GeographicLib | ||||
|  | ||||
| #endif  // GEOGRAPHICLIB_ALBERSEQUALAREA_HPP | ||||
		Reference in New Issue
	
	Block a user