116 lines
5.1 KiB
Python
116 lines
5.1 KiB
Python
#!/usr/bin/env python
|
|
|
|
from datetime import datetime, timedelta
|
|
import numpy as np
|
|
import random
|
|
import sys
|
|
import pytz
|
|
|
|
from aman.sys.aco.Ant import Ant
|
|
from aman.sys.aco.Configuration import Configuration
|
|
from aman.sys.aco.RunwayManager import RunwayManager
|
|
from aman.types.Inbound import Inbound
|
|
|
|
# This class implements the ant colony of the following paper:
|
|
# https://sci-hub.mksa.top/10.1109/cec.2019.8790135
|
|
class Colony:
|
|
def associateInbound(rwyManager : RunwayManager, inbound : Inbound, earliestArrivalTime : datetime, useITA : bool):
|
|
rwy, eta, _ = rwyManager.selectArrivalRunway(inbound, useITA, earliestArrivalTime)
|
|
eta = max(earliestArrivalTime, eta)
|
|
|
|
inbound.PlannedRunway = rwy
|
|
inbound.PlannedStar = inbound.ArrivalCandidates[rwy.Name].Star
|
|
inbound.PlannedArrivalRoute = inbound.ArrivalCandidates[rwy.Name].ArrivalRoute
|
|
inbound.PlannedArrivalTime = eta
|
|
inbound.InitialArrivalTime = inbound.ArrivalCandidates[rwy.Name].InitialArrivalTime
|
|
inbound.PlannedTrackmiles = inbound.ArrivalCandidates[rwy.Name].Trackmiles
|
|
rwyManager.RunwayInbounds[rwy.Name] = inbound
|
|
|
|
def calculateInitialCosts(rwyManager : RunwayManager, inbounds, earliestArrivalTime : datetime):
|
|
overallDelay = timedelta(seconds = 0)
|
|
|
|
# assume that the inbounds are sorted in FCFS order
|
|
for inbound in inbounds:
|
|
Colony.associateInbound(rwyManager, inbound, earliestArrivalTime, False)
|
|
overallDelay += inbound.PlannedArrivalTime - inbound.InitialArrivalTime
|
|
|
|
return overallDelay
|
|
|
|
def __init__(self, configuration : Configuration):
|
|
self.Configuration = configuration
|
|
self.ResultDelay = None
|
|
self.Result = None
|
|
|
|
rwyManager = RunwayManager(self.Configuration)
|
|
delay = Colony.calculateInitialCosts(rwyManager, self.Configuration.Inbounds, self.Configuration.EarliestArrivalTime)
|
|
self.FcfsDelay = delay
|
|
|
|
# run the optimization in every cycle to ensure optimal spacings based on TTG
|
|
if 0.0 >= delay.total_seconds():
|
|
delay = timedelta(seconds = 1.0)
|
|
|
|
# initial value for the optimization
|
|
self.Configuration.ThetaZero = 1.0 / (len(self.Configuration.Inbounds) * (delay.total_seconds() / 60.0))
|
|
self.PheromoneMatrix = np.ones(( len(self.Configuration.Inbounds), len(self.Configuration.Inbounds) ), dtype=float) * self.Configuration.ThetaZero
|
|
|
|
def optimize(self):
|
|
# FCFS is the best solution
|
|
if None != self.Result:
|
|
return
|
|
|
|
# define the tracking variables
|
|
bestSequence = None
|
|
|
|
# run the optimization loops
|
|
for _ in range(0, self.Configuration.ExplorationRuns):
|
|
# select the first inbound
|
|
index = random.randint(1, len(self.Configuration.Inbounds)) - 1
|
|
candidates = []
|
|
|
|
for _ in range(0, self.Configuration.AntCount):
|
|
# let the ant find a solution
|
|
ant = Ant(self.PheromoneMatrix, self.Configuration)
|
|
ant.findSolution(index)
|
|
|
|
# fallback to check if findSolution was successful
|
|
if None == ant.SequenceDelay or None == ant.Sequence or None == ant.SequenceScore:
|
|
sys.stderr.write('Invalid ANT run detected!')
|
|
sys.exit(-1)
|
|
|
|
candidates.append(
|
|
[
|
|
ant.SequenceDelay,
|
|
ant.Sequence,
|
|
ant.SequenceScore,
|
|
ant.SequenceDelay.total_seconds() / ant.SequenceScore
|
|
]
|
|
)
|
|
|
|
# find the best solution in all candidates of this generation
|
|
bestCandidate = None
|
|
for candidate in candidates:
|
|
if None == bestCandidate or candidate[3] < bestCandidate[3]:
|
|
bestCandidate = candidate
|
|
|
|
dTheta = 1.0 / ((candidate[0].total_seconds() / 60.0) or 1.0)
|
|
for i in range(1, len(candidate[1])):
|
|
update = (1.0 - self.Configuration.Epsilon) * self.PheromoneMatrix[candidate[1][i - 1], candidate[1][i]] + dTheta
|
|
self.PheromoneMatrix[candidate[1][i - 1], candidate[1][i]] = max(update, self.Configuration.ThetaZero)
|
|
|
|
# check if we find a new best candidate
|
|
if None != bestCandidate:
|
|
if None == bestSequence or bestCandidate[0] < bestSequence[0]:
|
|
bestSequence = bestCandidate
|
|
|
|
# create the final sequence
|
|
if None != bestSequence:
|
|
# create the resulting sequence
|
|
self.ResultDelay = bestSequence[0]
|
|
self.Result = []
|
|
|
|
# finalize the sequence
|
|
rwyManager = RunwayManager(self.Configuration)
|
|
for i in range(0, len(bestSequence[1])):
|
|
self.Result.append(self.Configuration.Inbounds[bestSequence[1][i]])
|
|
Colony.associateInbound(rwyManager, self.Result[-1], self.Configuration.EarliestArrivalTime, True)
|