34 lines
		
	
	
		
			1.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			34 lines
		
	
	
		
			1.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| #!/usr/bin/env python
 | |
| 
 | |
| from sklearn.metrics.pairwise import haversine_distances
 | |
| import numpy as np
 | |
| 
 | |
| class Waypoint:
 | |
|     def dms2dd(coordinate : str):
 | |
|         split = coordinate.split('.')
 | |
|         if 4 != len(split):
 | |
|             return 0.0
 | |
| 
 | |
|         direction = split[0][1]
 | |
|         degrees = float(split[0][1:])
 | |
|         minutes = float(split[1])
 | |
|         seconds = float(split[2]) * (float(split[3]) / 1000.0)
 | |
| 
 | |
|         dd = degrees + minutes / 60.0 + seconds / (60 * 60)
 | |
|         if 'E' == direction or 'S' == direction:
 | |
|             dd *= -1.0
 | |
| 
 | |
|         return dd
 | |
| 
 | |
|     def __init__(self, name : str, latitude : float, longitude : float):
 | |
|         self.name = name
 | |
|         self.coordinate = np.array([ latitude, longitude ])
 | |
| 
 | |
|     def __str__(self):
 | |
|         return 'Name: ' + self.name + ', Lat: ' + str(self.coordinate[0]) + ', Lon: ' + str(self.coordinate[1])
 | |
| 
 | |
|     def haversine(self, other):
 | |
|         self_radians = [np.radians(_) for _ in self.coordinate]
 | |
|         other_radians = [np.radians(_) for _ in other.coordinate]
 | |
|         return 6371.0 * haversine_distances([self_radians, other_radians])[0][1]
 |