123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118 |
- #!/usr/bin/env python
- from datetime import datetime, timedelta
- import numpy as np
- import random
- import sys
- import pytz
- from aman.sys.aco.Ant import Ant
- from aman.sys.aco.Configuration import Configuration
- from aman.sys.aco.RunwayManager import RunwayManager
- from aman.types.Inbound import Inbound
- # This class implements the ant colony of the following paper:
- # https://sci-hub.mksa.top/10.1109/cec.2019.8790135
- class Colony:
- def associateInbound(rwyManager : RunwayManager, inbound : Inbound, earliestArrivalTime : datetime, useITA : bool):
- rwy, eta, _ = rwyManager.selectArrivalRunway(inbound, useITA, earliestArrivalTime)
- eta = max(earliestArrivalTime, eta)
- inbound.PlannedRunway = rwy
- inbound.PlannedStar = inbound.ArrivalCandidates[rwy.Name].Star
- inbound.PlannedArrivalTime = eta
- inbound.InitialArrivalTime = inbound.ArrivalCandidates[rwy.Name].InitialArrivalTime
- rwyManager.RunwayInbounds[rwy.Name] = inbound
- def calculateInitialCosts(rwyManager : RunwayManager, inbounds, earliestArrivalTime : datetime):
- overallDelay = timedelta(seconds = 0)
- # assume that the inbounds are sorted in FCFS order
- print('FCFS-Sequence:')
- for inbound in inbounds:
- Colony.associateInbound(rwyManager, inbound, earliestArrivalTime, False)
- overallDelay += inbound.PlannedArrivalTime - inbound.InitialArrivalTime
- print(' ' + inbound.Callsign + ': ' + inbound.PlannedRunway.Name + ' @ ' + str(inbound.PlannedArrivalTime) +
- ' dt=' + str((inbound.PlannedArrivalTime - inbound.InitialArrivalTime).total_seconds()))
- return overallDelay
- def __init__(self, configuration : Configuration):
- self.Configuration = configuration
- self.ResultDelay = None
- self.Result = None
- rwyManager = RunwayManager(self.Configuration)
- delay = Colony.calculateInitialCosts(rwyManager, self.Configuration.Inbounds, self.Configuration.EarliestArrivalTime)
- self.FcfsDelay = delay
- # check if FCFS is the ideal solution
- if 0.0 >= delay.total_seconds():
- self.Result = self.Configuration.Inbounds
- self.ResultDelay = delay
- return
- # initial value for the optimization
- self.Configuration.ThetaZero = 1.0 / (len(self.Configuration.Inbounds) * (delay.total_seconds() / 60.0))
- self.PheromoneMatrix = np.ones(( len(self.Configuration.Inbounds), len(self.Configuration.Inbounds) ), dtype=float) * self.Configuration.ThetaZero
- def optimize(self):
- # FCFS is the best solution
- if None != self.Result:
- return
- # define the tracking variables
- bestSequence = None
- # run the optimization loops
- for _ in range(0, self.Configuration.ExplorationRuns):
- # select the first inbound
- index = random.randint(1, len(self.Configuration.Inbounds)) - 1
- candidates = []
- for _ in range(0, self.Configuration.AntCount):
- # let the ant find a solution
- ant = Ant(self.PheromoneMatrix, self.Configuration)
- ant.findSolution(index)
- # fallback to check if findSolution was successful
- if None == ant.SequenceDelay or None == ant.Sequence or None == ant.SequenceScore:
- sys.stderr.write('Invalid ANT run detected!')
- sys.exit(-1)
- candidates.append(
- [
- ant.SequenceDelay,
- ant.Sequence,
- ant.SequenceScore,
- ant.SequenceDelay.total_seconds() / ant.SequenceScore
- ]
- )
- # find the best solution in all candidates of this generation
- bestCandidate = None
- for candidate in candidates:
- if None == bestCandidate or candidate[3] < bestCandidate[3]:
- bestCandidate = candidate
- dTheta = 1.0 / ((candidate[0].total_seconds() / 60.0) or 1.0)
- for i in range(1, len(candidate[1])):
- update = (1.0 - self.Configuration.Epsilon) * self.PheromoneMatrix[candidate[1][i - 1], candidate[1][i]] + dTheta
- self.PheromoneMatrix[candidate[1][i - 1], candidate[1][i]] = max(update, self.Configuration.ThetaZero)
- # check if we find a new best candidate
- if None != bestCandidate:
- if None == bestSequence or bestCandidate[0] < bestSequence[0]:
- bestSequence = bestCandidate
- # create the final sequence
- if None != bestSequence:
- # create the resulting sequence
- self.ResultDelay = bestSequence[0]
- self.Result = []
- # finalize the sequence
- rwyManager = RunwayManager(self.Configuration)
- for i in range(0, len(bestSequence[1])):
- self.Result.append(self.Configuration.Inbounds[bestSequence[1][i]])
- Colony.associateInbound(rwyManager, self.Result[-1], self.Configuration.EarliestArrivalTime, True)
|