123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145 |
- #!/usr/bin/env python
- from datetime import datetime as dt
- from datetime import datetime, timedelta
- import numpy as np
- import pytz
- import random
- import sys
- import time
- from aman.sys.aco.Ant import Ant
- from aman.sys.aco.Configuration import Configuration
- from aman.sys.aco.Node import Node
- from aman.sys.aco.RunwayManager import RunwayManager
- from aman.types.Inbound import Inbound
- # This class implements the ant colony of the following paper:
- # https://sci-hub.mksa.top/10.1109/cec.2019.8790135
- class Colony:
- def associateInbound(rwyManager : RunwayManager, node : Node, earliestArrivalTime : datetime, useITA : bool):
- rwy, eta, _ = rwyManager.selectArrivalRunway(node, useITA, earliestArrivalTime)
- eta = max(earliestArrivalTime, eta)
- node.Inbound.PlannedRunway = rwy
- node.Inbound.PlannedStar = node.ArrivalCandidates[rwy.Name].Star
- node.Inbound.PlannedArrivalRoute = node.ArrivalCandidates[rwy.Name].ArrivalRoute
- node.Inbound.PlannedArrivalTime = eta
- node.Inbound.InitialArrivalTime = node.ArrivalCandidates[rwy.Name].InitialArrivalTime
- node.Inbound.PlannedTrackmiles = node.ArrivalCandidates[rwy.Name].Trackmiles
- rwyManager.RunwayInbounds[rwy.Name] = node
- def calculateInitialCosts(rwyManager : RunwayManager, nodes, earliestArrivalTime : datetime):
- overallDelay = timedelta(seconds = 0)
- # assume that the nodes are sorted in FCFS order
- for node in nodes:
- Colony.associateInbound(rwyManager, node, earliestArrivalTime, False)
- overallDelay += node.Inbound.PlannedArrivalTime - node.Inbound.InitialArrivalTime
- return overallDelay
- def __init__(self, inbounds, configuration : Configuration):
- self.Configuration = configuration
- self.ResultDelay = None
- self.Result = None
- self.Nodes = []
- # create the new planning instances
- currentTime = dt.utcfromtimestamp(int(time.time())).replace(tzinfo = pytz.UTC)
- for inbound in inbounds:
- self.Nodes.append(Node(inbound, currentTime, self.Configuration.WeatherModel, self.Configuration.NavData, self.Configuration.RunwayConstraints))
- rwyManager = RunwayManager(self.Configuration)
- delay = Colony.calculateInitialCosts(rwyManager, self.Nodes, self.Configuration.EarliestArrivalTime)
- self.FcfsDelay = delay
- # run the optimization in every cycle to ensure optimal spacings based on TTG
- if 0.0 >= delay.total_seconds():
- delay = timedelta(seconds = 1.0)
- # initial value for the optimization
- self.Configuration.ThetaZero = 1.0 / (len(self.Nodes) * (delay.total_seconds() / 60.0))
- self.PheromoneMatrix = np.ones(( len(self.Nodes), len(self.Nodes) ), dtype=float) * self.Configuration.ThetaZero
- def optimize(self):
- # FCFS is the best solution
- if None != self.Result:
- return
- # define the tracking variables
- bestSequence = None
- # run the optimization loops
- for _ in range(0, self.Configuration.ExplorationRuns):
- # select the first inbound
- index = random.randint(1, len(self.Nodes)) - 1
- candidates = []
- for _ in range(0, self.Configuration.AntCount):
- # let the ant find a solution
- ant = Ant(self.PheromoneMatrix, self.Configuration, self.Nodes)
- ant.findSolution(index)
- # fallback to check if findSolution was successful
- if None == ant.SequenceDelay or None == ant.Sequence or None == ant.SequenceScore:
- sys.stderr.write('Invalid ANT run detected!')
- sys.exit(-1)
- candidates.append(
- [
- ant.SequenceDelay,
- ant.Sequence,
- ant.SequenceScore,
- ant.SequenceDelay.total_seconds() / ant.SequenceScore
- ]
- )
- # find the best solution in all candidates of this generation
- bestCandidate = None
- for candidate in candidates:
- if None == bestCandidate or candidate[3] < bestCandidate[3]:
- bestCandidate = candidate
- dTheta = 1.0 / ((candidate[0].total_seconds() / 60.0) or 1.0)
- for i in range(1, len(candidate[1])):
- update = (1.0 - self.Configuration.Epsilon) * self.PheromoneMatrix[candidate[1][i - 1], candidate[1][i]] + dTheta
- self.PheromoneMatrix[candidate[1][i - 1], candidate[1][i]] = max(update, self.Configuration.ThetaZero)
- # check if we find a new best candidate
- if None != bestCandidate:
- if None == bestSequence or bestCandidate[0] < bestSequence[0]:
- bestSequence = bestCandidate
- # create the final sequence
- if None != bestSequence:
- # create the resulting sequence
- self.ResultDelay = bestSequence[0]
- self.Result = []
- # finalize the sequence
- rwyManager = RunwayManager(self.Configuration)
- for i in range(0, len(bestSequence[1])):
- self.Result.append(self.Nodes[bestSequence[1][i]].Inbound)
- Colony.associateInbound(rwyManager, self.Nodes[bestSequence[1][i]], self.Configuration.EarliestArrivalTime, True)
- # the idea behind the TTL/TTG per waypoint is that the TTL and TTG needs to be achieved in the
- # first 2/3 of the estimated trackmiles and assign it with a linear function to the waypoints
- # calculate the TTL/TTG for all the waypoints (TTG is positive)
- reqTimeDelta = abs((self.Result[-1].InitialArrivalTime - self.Result[-1].PlannedArrivalTime).total_seconds())
- gainTime = self.Result[-1].InitialArrivalTime >= self.Result[-1].PlannedArrivalTime
- m = -3 * reqTimeDelta / (2 * self.Result[-1].PlannedTrackmiles)
- timeDelta = 0.0
- for waypoint in self.Result[-1].PlannedArrivalRoute:
- waypointDT = m * waypoint.Trackmiles + reqTimeDelta
- timeDelta += waypointDT
- if timeDelta > reqTimeDelta:
- waypointDT -= timeDelta - reqTimeDelta
- waypointDT = timedelta(seconds = (waypointDT if False == gainTime else -1.0 * waypointDT))
- waypoint.PTA = waypoint.ETA + waypointDT
- # reached the PTA at the waypoint
- if timeDelta >= reqTimeDelta:
- break
|