RecedingHorizonControl.py 7.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182
  1. #!/usr/bin/env python
  2. import time
  3. from datetime import datetime as dt
  4. from datetime import timedelta
  5. import pytz
  6. from aman.config.RHC import RHC
  7. from aman.sys.RecedingHorizonWindow import RecedingHorizonWindow
  8. from aman.types.Inbound import Inbound
  9. class RecedingHorizonControl:
  10. def __init__(self, config : RHC):
  11. self.Windows = []
  12. # contains the current index and the missed update counter
  13. self.AssignedWindow = {}
  14. self.Configuration = config
  15. self.FreezedIndex = int(self.Configuration.FixedBeforeArrival.seconds / self.Configuration.WindowSize)
  16. def insertInWindow(self, inbound : Inbound, usePTA : bool):
  17. if False == usePTA:
  18. referenceTime = inbound.InitialArrivalTime
  19. else:
  20. referenceTime = inbound.PlannedArrivalTime
  21. inserted = False
  22. for i in range(0, len(self.Windows)):
  23. window = self.Windows[i]
  24. # find the correct window
  25. if window.StartTime <= referenceTime and window.EndTime > referenceTime:
  26. self.AssignedWindow[inbound.Callsign] = [ i, 0 ]
  27. inbound.FixedSequence = i < self.FreezedIndex
  28. if True == inbound.FixedSequence and None == inbound.PlannedArrivalTime:
  29. inbound.PlannedArrivalTime = inbound.InitialArrivalTime
  30. window.insert(inbound)
  31. inserted = True
  32. break
  33. # create the new window
  34. if False == inserted:
  35. if 0 != len(self.Windows):
  36. lastWindowTime = self.Windows[-1].EndTime
  37. else:
  38. lastWindowTime = dt.utcfromtimestamp(int(time.time())).replace(tzinfo = pytz.UTC)
  39. timestep = timedelta(seconds = self.Configuration.WindowSize)
  40. while True:
  41. self.Windows.append(RecedingHorizonWindow(lastWindowTime, lastWindowTime + timestep))
  42. if self.Windows[-1].EndTime > referenceTime:
  43. window = self.Windows[-1]
  44. window.insert(inbound)
  45. self.AssignedWindow[inbound.Callsign] = [ len(self.Windows) - 1, 0 ]
  46. inbound.FixedSequence = len(self.Windows) < self.FreezedIndex
  47. if True == inbound.FixedSequence and None == inbound.PlannedArrivalTime:
  48. inbound.PlannedArrivalTime = inbound.InitialArrivalTime
  49. break
  50. lastWindowTime = self.Windows[-1].EndTime
  51. window.Inbounds.sort(key = lambda x: x.PlannedArrivalTime if None != x.PlannedArrivalTime else x.InitialArrivalTime)
  52. def updateReport(self, inbound : Inbound):
  53. # check if we need to update
  54. if inbound.Callsign in self.AssignedWindow:
  55. index = self.AssignedWindow[inbound.Callsign][0]
  56. self.AssignedWindow[inbound.Callsign][1] = 0
  57. plannedInbound = self.Windows[index].inbound(inbound.Callsign)
  58. plannedInbound.Report = inbound.Report
  59. plannedInbound.ReportTime = inbound.ReportTime
  60. plannedInbound.CurrentPosition = inbound.CurrentPosition
  61. # ingore fixed updates
  62. if True == plannedInbound.FixedSequence or index < self.FreezedIndex:
  63. return
  64. plannedInbound.WTC = inbound.WTC
  65. # check if we need to update the inbound
  66. if None == plannedInbound.PlannedStar:
  67. reference = inbound.InitialArrivalTime
  68. if plannedInbound.InitialArrivalTime > reference:
  69. reference = plannedInbound.InitialArrivalTime
  70. if reference < self.Windows[index].StartTime or reference >= self.Windows[index].EndTime:
  71. self.Windows[index].remove(inbound.Callsign)
  72. self.AssignedWindow.pop(inbound.Callsign)
  73. inbound.InitialArrivalTime = reference
  74. self.updateReport(inbound)
  75. else:
  76. plannedInbound.InitialArrivalTime = reference
  77. self.Windows[index].Inbounds.sort(key = lambda x: x.PlannedArrivalTime if None != x.PlannedArrivalTime else x.InitialArrivalTime)
  78. else:
  79. self.insertInWindow(inbound, False)
  80. def resequenceInbound(self, inbound : Inbound):
  81. index = self.AssignedWindow[inbound.Callsign][0]
  82. if inbound.PlannedArrivalTime < self.Windows[index].StartTime or inbound.PlannedArrivalTime >= self.Windows[index].EndTime:
  83. self.Windows[index].remove(inbound.Callsign)
  84. self.AssignedWindow.pop(inbound.Callsign)
  85. self.insertInWindow(inbound, True)
  86. else:
  87. inbound.FixedSequence = index < self.FreezedIndex
  88. self.Windows[index].Inbounds.sort(key = lambda x: x.PlannedArrivalTime if None != x.PlannedArrivalTime else x.InitialArrivalTime)
  89. def lastFixedInboundOnRunway(self, runway : str):
  90. # no inbounds available
  91. if 0 == len(self.Windows):
  92. return None
  93. # search from the back to the front to find the last inbound
  94. for i in range(min(self.FreezedIndex, len(self.Windows)), -1, -1):
  95. for inbound in self.Windows[i].Inbounds:
  96. if runway == inbound.PlannedRunway.Name:
  97. return inbound
  98. # no inbound found
  99. return None
  100. def optimizationRelevantInbounds(self):
  101. # no new inbounds
  102. if len(self.Windows) <= self.FreezedIndex:
  103. return None, None
  104. inbounds = []
  105. earliestArrivalTime = self.Windows[self.FreezedIndex].StartTime
  106. # check the overlapping windows
  107. for i in range(self.FreezedIndex + 1, len(self.Windows)):
  108. for inbound in self.Windows[i].Inbounds:
  109. inbounds.append(inbound)
  110. if 20 <= len(inbounds):
  111. break
  112. # check if we found relevant inbounds
  113. if 0 != len(inbounds):
  114. inbounds.sort(key = lambda x: x.PlannedArrivalTime if None != x.PlannedArrivalTime else x.InitialArrivalTime)
  115. return inbounds, earliestArrivalTime
  116. else:
  117. return None, None
  118. def sequence(self):
  119. inbounds = []
  120. for i in range(0, len(self.Windows)):
  121. for inbound in self.Windows[i].Inbounds:
  122. inbounds.append(inbound)
  123. return inbounds
  124. def cleanupWindows(self):
  125. currentUtc = dt.utcfromtimestamp(int(time.time())).replace(tzinfo = pytz.UTC)
  126. offsetCorrection = 0
  127. # delete the non-required windows
  128. while 0 != len(self.Windows) and currentUtc > self.Windows[0].EndTime:
  129. # cleanup the association table
  130. for inbound in self.Windows[0].Inbounds:
  131. self.AssignedWindow.pop(inbound.Callsign)
  132. offsetCorrection += 1
  133. self.Windows.pop(0)
  134. # correct the association table
  135. if 0 != offsetCorrection:
  136. for callsign in self.AssignedWindow:
  137. self.AssignedWindow[callsign][0] -= offsetCorrection
  138. if self.AssignedWindow[callsign][0] < self.FreezedIndex:
  139. self.Windows[self.AssignedWindow[callsign][0]].inbound(callsign).FixedSequence = True
  140. # delete the non-updated aircrafts and increase the missed-counter for later runs
  141. callsigns = []
  142. for callsign in self.AssignedWindow:
  143. if 2 < self.AssignedWindow[callsign][1]:
  144. self.Windows[self.AssignedWindow[callsign][0]].remove(callsign)
  145. callsigns.append(callsign)
  146. self.AssignedWindow[callsign][1] += 1
  147. for callsign in callsigns:
  148. self.AssignedWindow.pop(callsign)