123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193 |
- #!/usr/bin/env python
- import math
- import sys
- from datetime import datetime, timedelta
- from aman.config.AirportSequencing import AirportSequencing
- from aman.formats.SctEseFormat import SctEseFormat
- from aman.sys.WeatherModel import WeatherModel
- from aman.types.ArrivalData import ArrivalData
- from aman.types.ArrivalRoute import ArrivalRoute
- from aman.types.ArrivalWaypoint import ArrivalWaypoint
- from aman.types.Runway import Runway
- from aman.types.Inbound import Inbound
- from aman.types.Waypoint import Waypoint
- class Node:
- def findArrivalRoute(iaf : str, runway : Runway, navData : SctEseFormat):
- for arrivalRunway in navData.ArrivalRoutes:
- if arrivalRunway == runway.Name:
- stars = navData.ArrivalRoutes[arrivalRunway]
- for star in stars:
- if 0 != len(star.Route) and iaf == star.Iaf.Name:
- return star
- return None
- def arrivalEstimation(self, runway : Runway, star : ArrivalRoute, weather : WeatherModel):
- # calculate remaining trackmiles
- trackmiles = self.PredictedDistanceToIAF
- start = star.Route[0]
- turnIndices = [ -1, -1 ]
- constraints = []
- for i in range(0, len(star.Route)):
- # identified the base turn
- if True == star.Route[i].BaseTurn:
- turnIndices[0] = i
- # identified the final turn
- elif -1 != turnIndices[0] and True == star.Route[i].FinalTurn:
- turnIndices[1] = i
- # skip waypoints until the final turn point is found
- elif -1 != turnIndices[0] and -1 == turnIndices[1]:
- continue
- trackmiles += start.haversine(star.Route[i])
- # check if a new constraint is defined
- altitude = -1
- speed = -1
- if None != star.Route[i].Altitude:
- altitude = star.Route[i].Altitude
- if None != star.Route[i].Speed:
- speed = star.Route[i].Speed
- if -1 != altitude or -1 != speed:
- constraints.append([ trackmiles, altitude, speed ])
- start = star.Route[i]
- # add the remaining distance from the last waypoint to the runway threshold
- trackmiles += start.haversine(runway.Start)
- if turnIndices[0] > turnIndices[1] or (-1 == turnIndices[1] and -1 != turnIndices[0]):
- sys.stderr.write('Invalid constraint definition found for ' + star.Name)
- sys.exit(-1)
- # calculate descend profile
- currentHeading = Waypoint(latitude = self.Inbound.Report.position.latitude, longitude = self.Inbound.Report.position.longitude).bearing(star.Route[0])
- currentIAS = self.Inbound.PerformanceData.ias(self.Inbound.Report.dynamics.altitude, trackmiles)
- currentPosition = [ self.Inbound.Report.dynamics.altitude, self.Inbound.Report.dynamics.groundSpeed ]
- distanceToWaypoint = self.PredictedDistanceToIAF
- flightTimeSeconds = 0
- nextWaypointIndex = 0
- flownDistance = 0.0
- arrivalRoute = [ ArrivalWaypoint(waypoint = star.Route[0], trackmiles = distanceToWaypoint) ]
- while True:
- # check if a constraint cleanup is needed and if a speed-update is needed
- if 0 != len(constraints) and flownDistance >= constraints[0][0]:
- if -1 != constraints[0][2]:
- currentIAS = min(constraints[0][2], self.Inbound.PerformanceData.ias(self.Inbound.Report.dynamics.altitude, trackmiles - flownDistance))
- currentPosition[1] = min(weather.calculateGS(currentPosition[0], currentIAS, currentHeading), currentPosition[1])
- constraints.pop(0)
- # search next altitude constraint
- altitudeDistance = 0
- nextAltitude = 0
- for constraint in constraints:
- if -1 != constraint[1]:
- altitudeDistance = constraint[0]
- nextAltitude = constraint[1]
- break
- # check if update of altitude and speed is needed on 3° glide
- if currentPosition[0] > nextAltitude and ((currentPosition[0] - nextAltitude) / 1000 * 3) > (altitudeDistance - flownDistance):
- oldGroundspeed = currentPosition[1]
- descendRate = (currentPosition[1] / 60) / 3 * 1000 / 6
- newAltitude = currentPosition[0] - descendRate
- if 0 > newAltitude:
- newAltitude = 0
- currentPosition = [ newAltitude, min(weather.calculateGS(newAltitude, currentIAS, currentHeading), currentPosition[1]) ]
- distance = (currentPosition[1] + oldGroundspeed) / 2 / 60 / 6
- else:
- distance = currentPosition[1] / 60 / 6
- # update the statistics
- distanceToWaypoint -= distance
- flownDistance += distance
- newIAS = min(currentIAS, self.Inbound.PerformanceData.ias(currentPosition[0], trackmiles - flownDistance))
- if newIAS < currentIAS:
- currentPosition[1] = min(weather.calculateGS(currentPosition[0], newIAS, currentHeading), currentPosition[1])
- currentIAS = newIAS
- flightTimeSeconds += 10
- if flownDistance >= trackmiles:
- break
- # check if we follow a new waypoint pair
- if 0 >= distanceToWaypoint:
- lastWaypointIndex = nextWaypointIndex
- nextWaypointIndex += 1
- arrivalRoute[-1].FlightTime = timedelta(seconds = flightTimeSeconds)
- arrivalRoute[-1].ETA = self.Inbound.ReportTime + arrivalRoute[-1].FlightTime
- arrivalRoute[-1].PTA = arrivalRoute[-1].ETA
- arrivalRoute[-1].Altitude = currentPosition[0]
- arrivalRoute[-1].IndicatedAirspeed = currentIAS
- arrivalRoute[-1].GroundSpeed = currentPosition[1]
- # check if a skip from base to final turn waypoints is needed
- if -1 != turnIndices[0] and nextWaypointIndex > turnIndices[0] and nextWaypointIndex < turnIndices[1]:
- nextWaypointIndex = turnIndices[1]
- # update the statistics
- if nextWaypointIndex < len(star.Route):
- distanceToWaypoint = star.Route[lastWaypointIndex].haversine(star.Route[nextWaypointIndex])
- currentHeading = star.Route[lastWaypointIndex].bearing(star.Route[nextWaypointIndex])
- currentPosition[1] = min(weather.calculateGS(currentPosition[0], currentIAS, currentHeading), currentPosition[1])
- arrivalRoute.append(ArrivalWaypoint(waypoint = star.Route[nextWaypointIndex], trackmiles = arrivalRoute[-1].Trackmiles + distanceToWaypoint))
- return timedelta(seconds = flightTimeSeconds), trackmiles, arrivalRoute
- def __init__(self, inbound : Inbound, referenceTime : datetime, weatherModel : WeatherModel,
- navData : SctEseFormat, sequencingConfig : AirportSequencing):
- self.PredictedDistanceToIAF = inbound.Report.distanceToIAF
- self.ArrivalCandidates = {}
- self.Inbound = inbound
- # predict the distance to IAF
- timePrediction = (referenceTime - inbound.ReportTime).total_seconds()
- if 0 != timePrediction and 0 != len(sequencingConfig.ActiveArrivalRunways):
- # calculate current motion information
- course = weatherModel.estimateCourse(inbound.Report.dynamics.altitude, inbound.Report.dynamics.groundSpeed, inbound.Report.dynamics.heading)
- tempWaypoint = Waypoint(longitude = inbound.CurrentPosition.longitude, latitude = inbound.CurrentPosition.latitude)
- gs = inbound.Report.dynamics.groundSpeed * 0.514444 # ground speed in m/s
- distance = gs * timePrediction * 0.000539957 # distance back to nm
- # calculate the bearing between the current position and the IAF
- star = Node.findArrivalRoute(inbound.Report.initialApproachFix, sequencingConfig.ActiveArrivalRunways[0].Runway, navData)
- if None != star:
- bearing = tempWaypoint.bearing(star.Route[0])
- else:
- bearing = inbound.Report.dynamics.heading
- # calculate the distance based on the flown distance and update the predicted distance
- self.PredictedDistanceToIAF -= math.cos(math.radians(bearing - course)) * distance
- if 0.0 > self.PredictedDistanceToIAF:
- self.PredictedDistanceToIAF = 0.0
- # calculate the timings for the different arrival runways
- for identifier in sequencingConfig.ActiveArrivalRunways:
- star = Node.findArrivalRoute(self.Inbound.Report.initialApproachFix, identifier.Runway, navData)
- if None != star:
- flightTime, trackmiles, arrivalRoute = self.arrivalEstimation(identifier.Runway, star, weatherModel)
- avgSpeed = trackmiles / (float(flightTime.seconds) / 3600.0)
- # the closer we get to the IAF the less time delta can be achieved by short cuts, delay vectors or speeds
- ratio = min(2.0, max(0.0, self.PredictedDistanceToIAF / (trackmiles - self.PredictedDistanceToIAF)))
- possibleTimeDelta = (trackmiles / (avgSpeed * 0.9)) * 60
- ttg = timedelta(minutes = (possibleTimeDelta - flightTime.total_seconds() / 60) * ratio)
- ttl = timedelta(minutes = (possibleTimeDelta - flightTime.total_seconds() / 60))
- ita = self.Inbound.ReportTime + flightTime
- earliest = ita - ttg
- latest = ita + ttl
- self.ArrivalCandidates[identifier.Runway.Name] = ArrivalData(ttg = ttg, star = star, ita = ita, earliest = earliest,
- ttl = ttl, latest = latest, route = arrivalRoute,
- trackmiles = trackmiles)
- if None == self.Inbound.InitialArrivalTime:
- self.Inbound.InitialArrivalTime = self.ArrivalCandidates[identifier.Runway.Name].InitialArrivalTime
|