123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122 |
- #!/usr/bin/env python
- from datetime import datetime, timedelta
- import math
- import numpy as np
- import random
- import bisect
- import itertools
- from aman.sys.aco.Configuration import Configuration
- from aman.sys.aco.RunwayManager import RunwayManager
- from aman.sys.aco.Node import Node
- # This class implements a single ant of the following paper:
- # https://sci-hub.mksa.top/10.1109/cec.2019.8790135
- class Ant:
- def __init__(self, pheromoneTable : np.array, configuration : Configuration, nodes):
- self.Configuration = configuration
- self.Nodes = nodes
- self.RunwayManager = RunwayManager(self.Configuration)
- self.InboundSelected = [ False ] * len(self.Nodes)
- self.InboundScore = np.zeros([ len(self.Nodes), 1 ])
- self.PheromoneMatrix = pheromoneTable
- self.SequenceDelay = timedelta(seconds = 0)
- self.Sequence = None
- # Implements function (5)
- def heuristicInformation(self, current : int):
- _, _, _, eta, _ = self.RunwayManager.selectArrivalRunway(self.Nodes[current], self.Configuration.EarliestArrivalTime)
- if None == eta:
- return -1.0
- inboundDelay = eta - self.Nodes[current].Inbound.InitialArrivalTime
- # calculate the fraction with a mix of the unused runway time and the delay of single aircrafts
- heuristic = inboundDelay.total_seconds() / 60.0
- heuristic = (1.0 / (heuristic or 1)) ** self.Configuration.Beta
- return heuristic
- # Implements functions (3), (6)
- def selectNextLandingIndex(self):
- q = float(random.randint(0, 100)) / 100
- weights = []
- if q <= self.Configuration.PseudoRandomSelectionRate:
- for i in range(0, len(self.InboundSelected)):
- if False == self.InboundSelected[i]:
- weights.append(self.heuristicInformation(i))
- else:
- # roulette selection strategy
- pheromoneScale = 0.0
- for i in range(0, len(self.InboundSelected)):
- if False == self.InboundSelected[i]:
- pheromoneScale += self.heuristicInformation(i)
- for i in range(0, len(self.InboundSelected)):
- if False == self.InboundSelected[i]:
- weights.append(self.heuristicInformation(i) / (pheromoneScale or 1))
- # something was wrong in the runway selection
- if -1.0 in weights:
- return None
- total = sum(weights)
- cumdist = list(itertools.accumulate(weights)) + [total]
- candidateIndex = bisect.bisect(cumdist, random.random() * total)
- for i in range(0, len(self.InboundSelected)):
- if False == self.InboundSelected[i]:
- if 0 == candidateIndex:
- return i
- else:
- candidateIndex -= 1
- return None
- def associateInbound(self, node : Node, earliestArrivalTime : datetime):
- # prepare the statistics
- _, _, rwy, eta, _ = self.RunwayManager.selectArrivalRunway(node, self.Configuration.EarliestArrivalTime)
- eta = max(earliestArrivalTime, eta)
- node.Inbound.PlannedRunway = rwy
- node.Inbound.PlannedStar = node.ArrivalCandidates[rwy.Name].Star
- node.Inbound.PlannedArrivalTime = eta
- node.Inbound.PlannedArrivalRoute = node.ArrivalCandidates[rwy.Name].ArrivalRoute
- node.Inbound.InitialArrivalTime = node.ArrivalCandidates[rwy.Name].InitialArrivalTime
- self.RunwayManager.registerNode(node, rwy.Name)
- delay = node.Inbound.PlannedArrivalTime - node.Inbound.InitialArrivalTime
- if 0.0 < delay.total_seconds():
- return delay, rwy
- else:
- return timedelta(seconds = 0), rwy
- def findSolution(self, first : int):
- self.Sequence = []
- # select the first inbound
- self.InboundSelected[first] = True
- delay, _ = self.associateInbound(self.Nodes[first], self.Configuration.EarliestArrivalTime)
- self.Sequence.append(first)
- self.SequenceDelay += delay
- while 1:
- index = self.selectNextLandingIndex()
- if None == index:
- break
- self.InboundSelected[index] = True
- delay, _ = self.associateInbound(self.Nodes[index], self.Configuration.EarliestArrivalTime)
- self.SequenceDelay += delay
- self.Sequence.append(index)
- # update the local pheromone
- update = (1.0 - self.Configuration.PropagationRatio) * self.PheromoneMatrix[self.Sequence[-2], self.Sequence[-1]]
- update += self.Configuration.PropagationRatio * self.Configuration.ThetaZero
- self.PheromoneMatrix[self.Sequence[-2], self.Sequence[-1]] = max(self.Configuration.ThetaZero, update)
- # validate that nothing went wrong
- if len(self.Sequence) != len(self.Nodes):
- self.SequenceDelay = None
- self.Sequence = None
|