#!/usr/bin/env python from sklearn.metrics.pairwise import haversine_distances import numpy as np class Waypoint: def dms2dd(coordinate : str): split = coordinate.split('.') if 4 != len(split): return 0.0 direction = split[0][1] degrees = float(split[0][1:]) minutes = float(split[1]) seconds = float(split[2]) * (float(split[3]) / 1000.0) dd = degrees + minutes / 60.0 + seconds / (60 * 60) if 'E' == direction or 'S' == direction: dd *= -1.0 return dd def __init__(self, name : str, latitude : float, longitude : float): self.name = name self.coordinate = np.array([ latitude, longitude ]) def __str__(self): return 'Name: ' + self.name + ', Lat: ' + str(self.coordinate[0]) + ', Lon: ' + str(self.coordinate[1]) def haversine(self, other): self_radians = [np.radians(_) for _ in self.coordinate] other_radians = [np.radians(_) for _ in other.coordinate] return 6371.0 * haversine_distances([self_radians, other_radians])[0][1]