use weights to find better sequence with TTG and TTL constraints

This commit is contained in:
Sven Czarnian
2021-11-10 22:45:30 +01:00
parent dd9e725fc2
commit 97a2f24f28
2 changed files with 39 additions and 16 deletions

View File

@@ -18,15 +18,24 @@ class Ant:
self.Configuration = configuration
self.RunwayManager = RunwayManager(self.Configuration)
self.InboundSelected = [ False ] * len(self.Configuration.Inbounds)
self.InboundScore = np.zeros([ len(self.Configuration.Inbounds), 1 ])
self.PheromoneMatrix = pheromoneTable
self.SequenceDelay = timedelta(seconds = 0)
self.Sequence = None
def qualifyDelay(delay, inbound, runway):
if 0.0 > delay.total_seconds():
delay = timedelta(seconds = 0)
# calculate the heuristic scaling to punish increased delays for single inbounds
scaledDelay = delay.total_seconds() / inbound.ArrivalCandidates[runway.Name].MaximumTimeToLose.total_seconds()
return max(1.0 / (99.0 * (scaledDelay ** 2) + 1), 0.01)
# Implements function (5), but adapted to the following logic:
# An adaption of the heuristic function is used:
# - Calculates the unused runway time (time between two consecutive landings)
# - Calculates a ratio between the inbound delay and the unused runway time
# - Adds the current overal sequence delay to the heuristic function
# - Weight the overall ratio based on maximum time to lose to punish high time to lose rates while other flights are gaining time
def heuristicInformation(self, preceeding : int, current : int):
rwy, eta, unusedRunwayTime = self.RunwayManager.selectArrivalRunway(self.Configuration.Inbounds[current], True, self.Configuration.EarliestArrivalTime)
inboundDelay = eta - self.Configuration.Inbounds[current].ArrivalCandidates[rwy.Name].InitialArrivalTime
@@ -39,7 +48,10 @@ class Ant:
fraction += self.SequenceDelay.total_seconds()
fraction /= 60.0
return self.PheromoneMatrix[preceeding, current] * ((1.0 / (fraction or 1)) ** self.Configuration.Beta)
# calculate the heuristic scaling to punish increased delays for single inbounds
weight = Ant.qualifyDelay(inboundDelay, self.Configuration.Inbounds[current], rwy)
return weight * self.PheromoneMatrix[preceeding, current] * ((1.0 / (fraction or 1)) ** self.Configuration.Beta)
# Implements functions (3), (6)
def selectNextLandingIndex(self, preceedingIndex : int):
@@ -57,13 +69,9 @@ class Ant:
if False == self.InboundSelected[i]:
pheromoneScale += self.heuristicInformation(preceedingIndex, i)
# fallback
if 0.0 >= pheromoneScale:
pheromoneScale = 1.0
for i in range(0, len(self.InboundSelected)):
if False == self.InboundSelected[i]:
weights.append(self.heuristicInformation(preceedingIndex, i) / pheromoneScale)
weights.append(self.heuristicInformation(preceedingIndex, i) / (pheromoneScale or 1))
total = sum(weights)
cumdist = list(itertools.accumulate(weights)) + [total]
@@ -91,17 +99,19 @@ class Ant:
delay = inbound.PlannedArrivalTime - inbound.InitialArrivalTime
if 0.0 < delay.total_seconds():
return delay
return delay, rwy
else:
return timedelta(seconds = 0)
return timedelta(seconds = 0), rwy
def findSolution(self, first : int):
self.Sequence = []
# select the first inbound
self.InboundSelected[first] = True
delay, rwy = self.associateInbound(self.Configuration.Inbounds[first], self.Configuration.EarliestArrivalTime)
self.InboundScore[0] = Ant.qualifyDelay(delay, self.Configuration.Inbounds[first], rwy)
self.Sequence.append(first)
self.SequenceDelay += self.associateInbound(self.Configuration.Inbounds[first], self.Configuration.EarliestArrivalTime)
self.SequenceDelay += delay
while 1:
index = self.selectNextLandingIndex(self.Sequence[-1])
@@ -109,7 +119,9 @@ class Ant:
break
self.InboundSelected[index] = True
self.SequenceDelay += self.associateInbound(self.Configuration.Inbounds[index], self.Configuration.EarliestArrivalTime)
delay, rwy = self.associateInbound(self.Configuration.Inbounds[index], self.Configuration.EarliestArrivalTime)
self.SequenceDelay += delay
self.InboundScore[len(self.Sequence)] = Ant.qualifyDelay(delay, self.Configuration.Inbounds[index], rwy)
self.Sequence.append(index)
# update the local pheromone
@@ -120,4 +132,7 @@ class Ant:
# validate that nothing went wrong
if len(self.Sequence) != len(self.Configuration.Inbounds):
self.SequenceDelay = None
self.SequenceScore = None
self.Sequence = None
else:
self.SequenceScore = np.median(self.InboundScore)