|
@@ -10,14 +10,33 @@ from aman.config.AirportSequencing import AirportSequencing
|
|
|
from aman.formats.SctEseFormat import SctEseFormat
|
|
|
from aman.sys.WeatherModel import WeatherModel
|
|
|
from aman.types.PerformanceData import PerformanceData
|
|
|
+from aman.types.ArrivalRoute import ArrivalRoute
|
|
|
+from aman.types.ArrivalTime import ArrivalTime
|
|
|
+from aman.types.Runway import Runway
|
|
|
from aman.types.Waypoint import Waypoint
|
|
|
|
|
|
class Inbound:
|
|
|
+ def findArrivalRoute(self, runway : Runway, navData : SctEseFormat):
|
|
|
+ for arrivalRunway in navData.ArrivalRoutes:
|
|
|
+ if arrivalRunway == runway.Name:
|
|
|
+ stars = navData.ArrivalRoutes[arrivalRunway]
|
|
|
+ for star in stars:
|
|
|
+ if 0 != len(star.Route) and self.Report.initialApproachFix == star.Iaf.Name:
|
|
|
+ return star
|
|
|
+ return None
|
|
|
+
|
|
|
def __init__(self, report : AircraftReport_pb2.AircraftReport, sequencingConfig : AirportSequencing, navData : SctEseFormat,
|
|
|
performanceData : PerformanceData, weatherModel : WeatherModel):
|
|
|
self.Report = report
|
|
|
self.CurrentPosition = report.position
|
|
|
self.ReportTime = datetime.strptime(report.reportTime + '+0000', '%Y%m%d%H%M%S%z').replace(tzinfo = pytz.UTC)
|
|
|
+ self.InitialArrivalTime = None
|
|
|
+ self.EarliestArrivalTime = None
|
|
|
+ self.EstimatedArrivalTime = None
|
|
|
+ self.EstimatedStarEntryTime = None
|
|
|
+ self.PlannedRunway = None
|
|
|
+ self.PlannedStar = None
|
|
|
+ self.ArrivalCandidates = {}
|
|
|
|
|
|
# search performance data -> fallback to A320
|
|
|
if self.Report.aircraft.type in performanceData.Aircrafts:
|
|
@@ -25,89 +44,76 @@ class Inbound:
|
|
|
if None == self.PerformanceData:
|
|
|
self.PerformanceData = performanceData.Aircrafts['A320']
|
|
|
|
|
|
- self.findArrivalRunway(sequencingConfig)
|
|
|
- self.findArrivalRoute(navData)
|
|
|
+ # calculate the timings for the different arrival runways
|
|
|
+ for identifier in sequencingConfig.ActiveArrivalRunways:
|
|
|
+ star = self.findArrivalRoute(identifier.Runway, navData)
|
|
|
|
|
|
- flightTime, flightTimeUntilIaf, trackmiles = self.secondsUntilTouchdown(weatherModel)
|
|
|
+ if None != star:
|
|
|
+ flightTime, flightTimeUntilIaf, trackmiles = self.arrivalEstimation(identifier.Runway, star, weatherModel)
|
|
|
|
|
|
- # calculate the maximum time to gain (assumption: 10% speed increase by acceleration and shortcuts)
|
|
|
- avgSpeed = trackmiles / (float(flightTime.seconds) / 3600.0)
|
|
|
- self.MaximumTimeToGain = flightTime - timedelta(minutes = (trackmiles / (avgSpeed * 1.1)) * 60)
|
|
|
+ avgSpeed = trackmiles / (float(flightTime.seconds) / 3600.0)
|
|
|
+ ttg = flightTime - timedelta(minutes = (trackmiles / (avgSpeed * 1.1)) * 60)
|
|
|
+ ita = self.ReportTime + flightTime
|
|
|
+ earliest = ita - ttg
|
|
|
|
|
|
- # calculate the different arrival times
|
|
|
- self.InitialArrivalTime = self.ReportTime + flightTime
|
|
|
- self.EarliestArrivalTime = self.InitialArrivalTime - self.MaximumTimeToGain
|
|
|
- self.EstimatedArrivalTime = self.InitialArrivalTime
|
|
|
- self.EstimatedStarEntryTime = None
|
|
|
+ self.ArrivalCandidates[identifier.Runway.Name] = ArrivalTime(ttg = ttg, star = star, ita = ita, earliest = earliest,
|
|
|
+ entry = flightTimeUntilIaf, touchdown = flightTime)
|
|
|
|
|
|
- def findArrivalRunway(self, sequencingConfig : AirportSequencing):
|
|
|
- self.PlannedRunway = None
|
|
|
+ # calculate the first values for later plannings
|
|
|
+ for candidate in self.ArrivalCandidates:
|
|
|
+ if None == self.EarliestArrivalTime or self.ArrivalCandidates[candidate].EarliestArrivalTime < self.EarliestArrivalTime:
|
|
|
+ self.InitialArrivalTime = self.ArrivalCandidates[candidate].InitialArrivalTime
|
|
|
+ self.EarliestArrivalTime = self.ArrivalCandidates[candidate].EarliestArrivalTime
|
|
|
+ self.EstimatedStarEntryTime = self.ReportTime + self.ArrivalCandidates[candidate].FlightTimeUntilIaf
|
|
|
+ self.PlannedStar = self.ArrivalCandidates[candidate].Star
|
|
|
|
|
|
- # find the nearest runway for an initial guess
|
|
|
- distance = 100000.0
|
|
|
- currentPosition = Waypoint(latitude = self.Report.position.latitude, longitude = self.Report.position.longitude)
|
|
|
- for runway in sequencingConfig.ActiveArrivalRunways:
|
|
|
- candidateDistance = runway.Runway.Start.haversine(currentPosition)
|
|
|
- if distance > candidateDistance:
|
|
|
- self.PlannedRunway = runway
|
|
|
- distance = candidateDistance
|
|
|
-
|
|
|
- def findArrivalRoute(self, navData : SctEseFormat):
|
|
|
- self.PlannedStar = None
|
|
|
- if None == self.PlannedRunway:
|
|
|
- return
|
|
|
-
|
|
|
- for arrivalRunway in navData.ArrivalRoutes:
|
|
|
- if arrivalRunway == self.PlannedRunway.Runway.Name:
|
|
|
- stars = navData.ArrivalRoutes[arrivalRunway]
|
|
|
- for star in stars:
|
|
|
- if 0 != len(star.Route) and self.Report.initialApproachFix == star.Iaf.Name:
|
|
|
- self.PlannedStar = star
|
|
|
- return
|
|
|
-
|
|
|
- def secondsUntilTouchdown(self, weather : WeatherModel):
|
|
|
- if None == self.PlannedRunway or None == self.PlannedStar:
|
|
|
- return timedelta(seconds = 0)
|
|
|
+ self.EstimatedArrivalTime = self.InitialArrivalTime
|
|
|
+ if None != self.PlannedStar:
|
|
|
+ for runway in navData.Runways[self.Report.destination]:
|
|
|
+ if runway.Name == self.PlannedStar.Runway:
|
|
|
+ self.PlannedRunway = runway
|
|
|
+ break
|
|
|
|
|
|
+ def arrivalEstimation(self, runway : Runway, star : ArrivalRoute, weather : WeatherModel):
|
|
|
# calculate remaining trackmiles
|
|
|
trackmiles = self.Report.distanceToIAF
|
|
|
- start = self.PlannedStar.Route[0]
|
|
|
+ start = star.Route[0]
|
|
|
turnIndices = [ -1, -1 ]
|
|
|
constraints = []
|
|
|
- for i in range(0, len(self.PlannedStar.Route)):
|
|
|
+ for i in range(0, len(star.Route)):
|
|
|
# identified the base turn
|
|
|
- if True == self.PlannedStar.Route[i].BaseTurn:
|
|
|
+ if True == star.Route[i].BaseTurn:
|
|
|
turnIndices[0] = i
|
|
|
# identified the final turn
|
|
|
- elif -1 != turnIndices[0] and True == self.PlannedStar.Route[i].FinalTurn:
|
|
|
+ elif -1 != turnIndices[0] and True == star.Route[i].FinalTurn:
|
|
|
turnIndices[1] = i
|
|
|
# skip waypoints until the final turn point is found
|
|
|
elif -1 != turnIndices[0] and -1 == turnIndices[1]:
|
|
|
continue
|
|
|
|
|
|
- trackmiles += start.haversine(self.PlannedStar.Route[i]) * 0.539957
|
|
|
+ trackmiles += start.haversine(star.Route[i]) * 0.539957
|
|
|
|
|
|
# check if a new constraint is defined
|
|
|
altitude = -1
|
|
|
speed = -1
|
|
|
- if None != self.PlannedStar.Route[i].Altitude:
|
|
|
- altitude = self.PlannedStar.Route[i].Altitude
|
|
|
- if None != self.PlannedStar.Route[i].Speed:
|
|
|
- speed = self.PlannedStar.Route[i].Speed
|
|
|
+ if None != star.Route[i].Altitude:
|
|
|
+ altitude = star.Route[i].Altitude
|
|
|
+ if None != star.Route[i].Speed:
|
|
|
+ speed = star.Route[i].Speed
|
|
|
if -1 != altitude or -1 != speed:
|
|
|
constraints.append([ trackmiles, altitude, speed ])
|
|
|
|
|
|
- start = self.PlannedStar.Route[i]
|
|
|
+ start = star.Route[i]
|
|
|
|
|
|
# add the remaining distance from the last waypoint to the runway threshold
|
|
|
- trackmiles += start.haversine(self.PlannedRunway.Runway.Start)
|
|
|
+ trackmiles += start.haversine(runway.Start)
|
|
|
|
|
|
if turnIndices[0] > turnIndices[1] or (-1 == turnIndices[1] and -1 != turnIndices[0]):
|
|
|
- sys.stderr.write('Invalid constraint definition found for ' + self.PlannedStar.Name)
|
|
|
+ sys.stderr.write('Invalid constraint definition found for ' + star.Name)
|
|
|
sys.exit(-1)
|
|
|
|
|
|
# calculate descend profile
|
|
|
- currentHeading = Waypoint(latitude = self.Report.position.latitude, longitude = self.Report.position.longitude).bearing(self.PlannedStar.Route[0])
|
|
|
+ currentHeading = Waypoint(latitude = self.Report.position.latitude, longitude = self.Report.position.longitude).bearing(star.Route[0])
|
|
|
currentIAS = self.PerformanceData.ias(self.Report.dynamics.altitude, trackmiles)
|
|
|
currentPosition = [ self.Report.dynamics.altitude, self.Report.dynamics.groundSpeed ]
|
|
|
distanceToWaypoint = self.Report.distanceToIAF
|
|
@@ -170,9 +176,9 @@ class Inbound:
|
|
|
nextWaypointIndex = turnIndices[1]
|
|
|
|
|
|
# update the statistics
|
|
|
- if nextWaypointIndex < len(self.PlannedStar.Route):
|
|
|
- distanceToWaypoint = self.PlannedStar.Route[lastWaypointIndex].haversine(self.PlannedStar.Route[nextWaypointIndex]) * 0.539957
|
|
|
- currentHeading = self.PlannedStar.Route[lastWaypointIndex].bearing(self.PlannedStar.Route[nextWaypointIndex])
|
|
|
+ if nextWaypointIndex < len(star.Route):
|
|
|
+ distanceToWaypoint = star.Route[lastWaypointIndex].haversine(star.Route[nextWaypointIndex]) * 0.539957
|
|
|
+ currentHeading = star.Route[lastWaypointIndex].bearing(star.Route[nextWaypointIndex])
|
|
|
currentPosition[1] = min(weather.calculateGS(newAltitude, currentIAS, currentHeading), currentPosition[1])
|
|
|
|
|
|
return timedelta(seconds = flightTimeSeconds), timedelta(seconds = flightTimeUntilIafSeconds), trackmiles
|