|
@@ -1,7 +1,111 @@
|
|
|
#!/usr/bin/env python
|
|
|
|
|
|
+import pytz
|
|
|
+
|
|
|
+from datetime import datetime, timedelta
|
|
|
+
|
|
|
from aman.com import AircraftReport_pb2
|
|
|
+from aman.config.AirportSequencing import AirportSequencing
|
|
|
+from aman.formats.SctEseFormat import SctEseFormat
|
|
|
+from aman.sys.WeatherModel import WeatherModel
|
|
|
+from aman.types.PerformanceData import PerformanceData
|
|
|
+from aman.types.Waypoint import Waypoint
|
|
|
|
|
|
class Inbound:
|
|
|
- def __init__(self, report : AircraftReport_pb2.AircraftReport):
|
|
|
- self.report = report
|
|
|
+ def __init__(self, report : AircraftReport_pb2.AircraftReport, sequencingConfig : AirportSequencing, navData : SctEseFormat,
|
|
|
+ performanceData : PerformanceData, weatherModel : WeatherModel):
|
|
|
+ self.Report = report
|
|
|
+ self.CurrentPosition = report.position
|
|
|
+ self.ReportTime = datetime.strptime(report.reportTime + '+0000', '%Y%m%d%H%M%S%z').replace(tzinfo = pytz.UTC)
|
|
|
+
|
|
|
+ # search performance data -> fallback to A320
|
|
|
+ if self.Report.aircraft.type in performanceData.Aircrafts:
|
|
|
+ self.PerformanceData = performanceData.Aircrafts[self.Report.aircraft.type]
|
|
|
+ if None == self.PerformanceData:
|
|
|
+ self.PerformanceData = performanceData.Aircrafts['A320']
|
|
|
+
|
|
|
+ self.findArrivalRunway(sequencingConfig)
|
|
|
+ self.findArrivalRoute(navData)
|
|
|
+
|
|
|
+ duration = self.secondsUntilTouchdown(weatherModel)
|
|
|
+ self.InitialArrivalTime = self.ReportTime + duration
|
|
|
+ self.EstimatedArrivalTime = self.InitialArrivalTime
|
|
|
+ self.EstimatedStarEntryTime = None
|
|
|
+
|
|
|
+ def findArrivalRunway(self, sequencingConfig : AirportSequencing):
|
|
|
+ self.PlannedRunway = None
|
|
|
+
|
|
|
+ # find the nearest runway for an initial guess
|
|
|
+ distance = 100000.0
|
|
|
+ currentPosition = Waypoint('', self.Report.position.latitude, self.Report.position.longitude)
|
|
|
+ for runway in sequencingConfig.ActiveArrivalRunways:
|
|
|
+ candidateDistance = runway.Runway.start.haversine(currentPosition)
|
|
|
+ if distance > candidateDistance:
|
|
|
+ self.PlannedRunway = runway
|
|
|
+ distance = candidateDistance
|
|
|
+
|
|
|
+ def findArrivalRoute(self, navData : SctEseFormat):
|
|
|
+ self.PlannedStar = None
|
|
|
+ if None == self.PlannedRunway:
|
|
|
+ return
|
|
|
+
|
|
|
+ for arrivalRunway in navData.arrivalRoutes:
|
|
|
+ if arrivalRunway == self.PlannedRunway.Runway.name:
|
|
|
+ stars = navData.arrivalRoutes[arrivalRunway]
|
|
|
+ for star in stars:
|
|
|
+ if 0 != len(star.route) and self.Report.initialApproachFix == star.iaf.name:
|
|
|
+ self.PlannedStar = star
|
|
|
+ return
|
|
|
+
|
|
|
+ def secondsUntilTouchdown(self, weather : WeatherModel):
|
|
|
+ if None == self.PlannedRunway or None == self.PlannedStar:
|
|
|
+ return timedelta(seconds = 0)
|
|
|
+
|
|
|
+ # calculate remaining trackmiles
|
|
|
+ remainingDistanceNM = self.Report.distanceToIAF
|
|
|
+ start = self.PlannedStar.route[0]
|
|
|
+ for i in range(1, len(self.PlannedStar.route)):
|
|
|
+ remainingDistanceNM += start.haversine(self.PlannedStar.route[i]) * 0.539957
|
|
|
+ start = self.PlannedStar.route[i]
|
|
|
+
|
|
|
+ # calculate descend profile
|
|
|
+ flightTimeSeconds = 0
|
|
|
+ currentHeading = Waypoint('', self.Report.position.latitude, self.Report.position.longitude).bearing(self.PlannedStar.route[0])
|
|
|
+ distanceToWaypoint = self.Report.distanceToIAF
|
|
|
+ nextWaypointIndex = 0
|
|
|
+ currentPosition = [ self.Report.dynamics.altitude, self.Report.dynamics.groundSpeed ]
|
|
|
+ while 0 < currentPosition[0]:
|
|
|
+ lastDistance = remainingDistanceNM
|
|
|
+
|
|
|
+ # TODO integrate speed and altitude constraints
|
|
|
+
|
|
|
+ # calculate the next position after 10 seconds
|
|
|
+ if (currentPosition[0] / 1000 * 3) > remainingDistanceNM:
|
|
|
+ oldGroundspeed = currentPosition[1]
|
|
|
+ descendRate = (currentPosition[1] / 60) / 3 * 1000 / 6
|
|
|
+ newAltitude = currentPosition[0] - descendRate
|
|
|
+ if 0 > newAltitude:
|
|
|
+ newAltitude = 0
|
|
|
+
|
|
|
+ # get the planned IAS and calculate the new altitude and GS out of the predicted information
|
|
|
+ # we assume that the aircraft only decelerates
|
|
|
+ ias = self.PerformanceData.ias(newAltitude, remainingDistanceNM)
|
|
|
+ currentPosition = [ newAltitude, min(weather.calculateGS(newAltitude, int(ias), currentHeading), currentPosition[1]) ]
|
|
|
+
|
|
|
+ # use the average between last and current speed to estimate the remaining distance
|
|
|
+ remainingDistanceNM -= (currentPosition[1] + oldGroundspeed) / 2 / 60 / 6
|
|
|
+ else:
|
|
|
+ remainingDistanceNM -= currentPosition[1] / 60 / 6
|
|
|
+
|
|
|
+ flightTimeSeconds += 10
|
|
|
+ if 0 > remainingDistanceNM:
|
|
|
+ break
|
|
|
+
|
|
|
+ # check if we follow a new waypoint pair
|
|
|
+ distanceToWaypoint -= abs(lastDistance - remainingDistanceNM)
|
|
|
+ if 0 >= distanceToWaypoint:
|
|
|
+ nextWaypointIndex += 1
|
|
|
+ if nextWaypointIndex < len(self.PlannedStar.route):
|
|
|
+ currentHeading = self.PlannedStar.route[nextWaypointIndex - 1].bearing(self.PlannedStar.route[nextWaypointIndex])
|
|
|
+
|
|
|
+ return timedelta(seconds = flightTimeSeconds)
|