12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361 |
- // Protocol Buffers - Google's data interchange format
- // Copyright 2008 Google Inc. All rights reserved.
- // https://developers.google.com/protocol-buffers/
- //
- // Redistribution and use in source and binary forms, with or without
- // modification, are permitted provided that the following conditions are
- // met:
- //
- // * Redistributions of source code must retain the above copyright
- // notice, this list of conditions and the following disclaimer.
- // * Redistributions in binary form must reproduce the above
- // copyright notice, this list of conditions and the following disclaimer
- // in the documentation and/or other materials provided with the
- // distribution.
- // * Neither the name of Google Inc. nor the names of its
- // contributors may be used to endorse or promote products derived from
- // this software without specific prior written permission.
- //
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
- // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
- // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
- // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
- // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
- // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
- // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
- // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
- // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
- // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- // This file defines the map container and its helpers to support protobuf maps.
- //
- // The Map and MapIterator types are provided by this header file.
- // Please avoid using other types defined here, unless they are public
- // types within Map or MapIterator, such as Map::value_type.
- #ifndef GOOGLE_PROTOBUF_MAP_H__
- #define GOOGLE_PROTOBUF_MAP_H__
- #include <functional>
- #include <initializer_list>
- #include <iterator>
- #include <limits> // To support Visual Studio 2008
- #include <map>
- #include <string>
- #include <type_traits>
- #include <utility>
- #if defined(__cpp_lib_string_view)
- #include <string_view>
- #endif // defined(__cpp_lib_string_view)
- #include <google/protobuf/stubs/common.h>
- #include <google/protobuf/arena.h>
- #include <google/protobuf/generated_enum_util.h>
- #include <google/protobuf/map_type_handler.h>
- #include <google/protobuf/stubs/hash.h>
- #ifdef SWIG
- #error "You cannot SWIG proto headers"
- #endif
- #include <google/protobuf/port_def.inc>
- namespace google {
- namespace protobuf {
- template <typename Key, typename T>
- class Map;
- class MapIterator;
- template <typename Enum>
- struct is_proto_enum;
- namespace internal {
- template <typename Derived, typename Key, typename T,
- WireFormatLite::FieldType key_wire_type,
- WireFormatLite::FieldType value_wire_type>
- class MapFieldLite;
- template <typename Derived, typename Key, typename T,
- WireFormatLite::FieldType key_wire_type,
- WireFormatLite::FieldType value_wire_type>
- class MapField;
- template <typename Key, typename T>
- class TypeDefinedMapFieldBase;
- class DynamicMapField;
- class GeneratedMessageReflection;
- // re-implement std::allocator to use arena allocator for memory allocation.
- // Used for Map implementation. Users should not use this class
- // directly.
- template <typename U>
- class MapAllocator {
- public:
- using value_type = U;
- using pointer = value_type*;
- using const_pointer = const value_type*;
- using reference = value_type&;
- using const_reference = const value_type&;
- using size_type = size_t;
- using difference_type = ptrdiff_t;
- constexpr MapAllocator() : arena_(nullptr) {}
- explicit constexpr MapAllocator(Arena* arena) : arena_(arena) {}
- template <typename X>
- MapAllocator(const MapAllocator<X>& allocator) // NOLINT(runtime/explicit)
- : arena_(allocator.arena()) {}
- pointer allocate(size_type n, const void* /* hint */ = nullptr) {
- // If arena is not given, malloc needs to be called which doesn't
- // construct element object.
- if (arena_ == nullptr) {
- return static_cast<pointer>(::operator new(n * sizeof(value_type)));
- } else {
- return reinterpret_cast<pointer>(
- Arena::CreateArray<uint8_t>(arena_, n * sizeof(value_type)));
- }
- }
- void deallocate(pointer p, size_type n) {
- if (arena_ == nullptr) {
- #if defined(__GXX_DELETE_WITH_SIZE__) || defined(__cpp_sized_deallocation)
- ::operator delete(p, n * sizeof(value_type));
- #else
- (void)n;
- ::operator delete(p);
- #endif
- }
- }
- #if !defined(GOOGLE_PROTOBUF_OS_APPLE) && !defined(GOOGLE_PROTOBUF_OS_NACL) && \
- !defined(GOOGLE_PROTOBUF_OS_EMSCRIPTEN)
- template <class NodeType, class... Args>
- void construct(NodeType* p, Args&&... args) {
- // Clang 3.6 doesn't compile static casting to void* directly. (Issue
- // #1266) According C++ standard 5.2.9/1: "The static_cast operator shall
- // not cast away constness". So first the maybe const pointer is casted to
- // const void* and after the const void* is const casted.
- new (const_cast<void*>(static_cast<const void*>(p)))
- NodeType(std::forward<Args>(args)...);
- }
- template <class NodeType>
- void destroy(NodeType* p) {
- p->~NodeType();
- }
- #else
- void construct(pointer p, const_reference t) { new (p) value_type(t); }
- void destroy(pointer p) { p->~value_type(); }
- #endif
- template <typename X>
- struct rebind {
- using other = MapAllocator<X>;
- };
- template <typename X>
- bool operator==(const MapAllocator<X>& other) const {
- return arena_ == other.arena_;
- }
- template <typename X>
- bool operator!=(const MapAllocator<X>& other) const {
- return arena_ != other.arena_;
- }
- // To support Visual Studio 2008
- size_type max_size() const {
- // parentheses around (std::...:max) prevents macro warning of max()
- return (std::numeric_limits<size_type>::max)();
- }
- // To support gcc-4.4, which does not properly
- // support templated friend classes
- Arena* arena() const { return arena_; }
- private:
- using DestructorSkippable_ = void;
- Arena* arena_;
- };
- template <typename T>
- using KeyForTree =
- typename std::conditional<std::is_scalar<T>::value, T,
- std::reference_wrapper<const T>>::type;
- // Default case: Not transparent.
- // We use std::hash<key_type>/std::less<key_type> and all the lookup functions
- // only accept `key_type`.
- template <typename key_type>
- struct TransparentSupport {
- using hash = std::hash<key_type>;
- using less = std::less<key_type>;
- static bool Equals(const key_type& a, const key_type& b) { return a == b; }
- template <typename K>
- using key_arg = key_type;
- };
- #if defined(__cpp_lib_string_view)
- // If std::string_view is available, we add transparent support for std::string
- // keys. We use std::hash<std::string_view> as it supports the input types we
- // care about. The lookup functions accept arbitrary `K`. This will include any
- // key type that is convertible to std::string_view.
- template <>
- struct TransparentSupport<std::string> {
- static std::string_view ImplicitConvert(std::string_view str) { return str; }
- // If the element is not convertible to std::string_view, try to convert to
- // std::string first.
- // The template makes this overload lose resolution when both have the same
- // rank otherwise.
- template <typename = void>
- static std::string_view ImplicitConvert(const std::string& str) {
- return str;
- }
- struct hash : private std::hash<std::string_view> {
- using is_transparent = void;
- template <typename T>
- size_t operator()(const T& str) const {
- return base()(ImplicitConvert(str));
- }
- private:
- const std::hash<std::string_view>& base() const { return *this; }
- };
- struct less {
- using is_transparent = void;
- template <typename T, typename U>
- bool operator()(const T& t, const U& u) const {
- return ImplicitConvert(t) < ImplicitConvert(u);
- }
- };
- template <typename T, typename U>
- static bool Equals(const T& t, const U& u) {
- return ImplicitConvert(t) == ImplicitConvert(u);
- }
- template <typename K>
- using key_arg = K;
- };
- #endif // defined(__cpp_lib_string_view)
- template <typename Key>
- using TreeForMap =
- std::map<KeyForTree<Key>, void*, typename TransparentSupport<Key>::less,
- MapAllocator<std::pair<const KeyForTree<Key>, void*>>>;
- inline bool TableEntryIsEmpty(void* const* table, size_t b) {
- return table[b] == nullptr;
- }
- inline bool TableEntryIsNonEmptyList(void* const* table, size_t b) {
- return table[b] != nullptr && table[b] != table[b ^ 1];
- }
- inline bool TableEntryIsTree(void* const* table, size_t b) {
- return !TableEntryIsEmpty(table, b) && !TableEntryIsNonEmptyList(table, b);
- }
- inline bool TableEntryIsList(void* const* table, size_t b) {
- return !TableEntryIsTree(table, b);
- }
- // This captures all numeric types.
- inline size_t MapValueSpaceUsedExcludingSelfLong(bool) { return 0; }
- inline size_t MapValueSpaceUsedExcludingSelfLong(const std::string& str) {
- return StringSpaceUsedExcludingSelfLong(str);
- }
- template <typename T,
- typename = decltype(std::declval<const T&>().SpaceUsedLong())>
- size_t MapValueSpaceUsedExcludingSelfLong(const T& message) {
- return message.SpaceUsedLong() - sizeof(T);
- }
- constexpr size_t kGlobalEmptyTableSize = 1;
- PROTOBUF_EXPORT extern void* const kGlobalEmptyTable[kGlobalEmptyTableSize];
- // Space used for the table, trees, and nodes.
- // Does not include the indirect space used. Eg the data of a std::string.
- template <typename Key>
- PROTOBUF_NOINLINE size_t SpaceUsedInTable(void** table, size_t num_buckets,
- size_t num_elements,
- size_t sizeof_node) {
- size_t size = 0;
- // The size of the table.
- size += sizeof(void*) * num_buckets;
- // All the nodes.
- size += sizeof_node * num_elements;
- // For each tree, count the overhead of the those nodes.
- // Two buckets at a time because we only care about trees.
- for (size_t b = 0; b < num_buckets; b += 2) {
- if (internal::TableEntryIsTree(table, b)) {
- using Tree = TreeForMap<Key>;
- Tree* tree = static_cast<Tree*>(table[b]);
- // Estimated cost of the red-black tree nodes, 3 pointers plus a
- // bool (plus alignment, so 4 pointers).
- size += tree->size() *
- (sizeof(typename Tree::value_type) + sizeof(void*) * 4);
- }
- }
- return size;
- }
- template <typename Map,
- typename = typename std::enable_if<
- !std::is_scalar<typename Map::key_type>::value ||
- !std::is_scalar<typename Map::mapped_type>::value>::type>
- size_t SpaceUsedInValues(const Map* map) {
- size_t size = 0;
- for (const auto& v : *map) {
- size += internal::MapValueSpaceUsedExcludingSelfLong(v.first) +
- internal::MapValueSpaceUsedExcludingSelfLong(v.second);
- }
- return size;
- }
- inline size_t SpaceUsedInValues(const void*) { return 0; }
- } // namespace internal
- // This is the class for Map's internal value_type. Instead of using
- // std::pair as value_type, we use this class which provides us more control of
- // its process of construction and destruction.
- template <typename Key, typename T>
- struct MapPair {
- using first_type = const Key;
- using second_type = T;
- MapPair(const Key& other_first, const T& other_second)
- : first(other_first), second(other_second) {}
- explicit MapPair(const Key& other_first) : first(other_first), second() {}
- explicit MapPair(Key&& other_first)
- : first(std::move(other_first)), second() {}
- MapPair(const MapPair& other) : first(other.first), second(other.second) {}
- ~MapPair() {}
- // Implicitly convertible to std::pair of compatible types.
- template <typename T1, typename T2>
- operator std::pair<T1, T2>() const { // NOLINT(runtime/explicit)
- return std::pair<T1, T2>(first, second);
- }
- const Key first;
- T second;
- private:
- friend class Arena;
- friend class Map<Key, T>;
- };
- // Map is an associative container type used to store protobuf map
- // fields. Each Map instance may or may not use a different hash function, a
- // different iteration order, and so on. E.g., please don't examine
- // implementation details to decide if the following would work:
- // Map<int, int> m0, m1;
- // m0[0] = m1[0] = m0[1] = m1[1] = 0;
- // assert(m0.begin()->first == m1.begin()->first); // Bug!
- //
- // Map's interface is similar to std::unordered_map, except that Map is not
- // designed to play well with exceptions.
- template <typename Key, typename T>
- class Map {
- public:
- using key_type = Key;
- using mapped_type = T;
- using value_type = MapPair<Key, T>;
- using pointer = value_type*;
- using const_pointer = const value_type*;
- using reference = value_type&;
- using const_reference = const value_type&;
- using size_type = size_t;
- using hasher = typename internal::TransparentSupport<Key>::hash;
- constexpr Map() : elements_(nullptr) {}
- explicit Map(Arena* arena) : elements_(arena) {}
- Map(const Map& other) : Map() { insert(other.begin(), other.end()); }
- Map(Map&& other) noexcept : Map() {
- if (other.arena() != nullptr) {
- *this = other;
- } else {
- swap(other);
- }
- }
- Map& operator=(Map&& other) noexcept {
- if (this != &other) {
- if (arena() != other.arena()) {
- *this = other;
- } else {
- swap(other);
- }
- }
- return *this;
- }
- template <class InputIt>
- Map(const InputIt& first, const InputIt& last) : Map() {
- insert(first, last);
- }
- ~Map() {}
- private:
- using Allocator = internal::MapAllocator<void*>;
- // InnerMap is a generic hash-based map. It doesn't contain any
- // protocol-buffer-specific logic. It is a chaining hash map with the
- // additional feature that some buckets can be converted to use an ordered
- // container. This ensures O(lg n) bounds on find, insert, and erase, while
- // avoiding the overheads of ordered containers most of the time.
- //
- // The implementation doesn't need the full generality of unordered_map,
- // and it doesn't have it. More bells and whistles can be added as needed.
- // Some implementation details:
- // 1. The hash function has type hasher and the equality function
- // equal_to<Key>. We inherit from hasher to save space
- // (empty-base-class optimization).
- // 2. The number of buckets is a power of two.
- // 3. Buckets are converted to trees in pairs: if we convert bucket b then
- // buckets b and b^1 will share a tree. Invariant: buckets b and b^1 have
- // the same non-null value iff they are sharing a tree. (An alternative
- // implementation strategy would be to have a tag bit per bucket.)
- // 4. As is typical for hash_map and such, the Keys and Values are always
- // stored in linked list nodes. Pointers to elements are never invalidated
- // until the element is deleted.
- // 5. The trees' payload type is pointer to linked-list node. Tree-converting
- // a bucket doesn't copy Key-Value pairs.
- // 6. Once we've tree-converted a bucket, it is never converted back. However,
- // the items a tree contains may wind up assigned to trees or lists upon a
- // rehash.
- // 7. The code requires no C++ features from C++14 or later.
- // 8. Mutations to a map do not invalidate the map's iterators, pointers to
- // elements, or references to elements.
- // 9. Except for erase(iterator), any non-const method can reorder iterators.
- // 10. InnerMap uses KeyForTree<Key> when using the Tree representation, which
- // is either `Key`, if Key is a scalar, or `reference_wrapper<const Key>`
- // otherwise. This avoids unnecessary copies of string keys, for example.
- class InnerMap : private hasher {
- public:
- explicit constexpr InnerMap(Arena* arena)
- : hasher(),
- num_elements_(0),
- num_buckets_(internal::kGlobalEmptyTableSize),
- seed_(0),
- index_of_first_non_null_(internal::kGlobalEmptyTableSize),
- table_(const_cast<void**>(internal::kGlobalEmptyTable)),
- alloc_(arena) {}
- ~InnerMap() {
- if (alloc_.arena() == nullptr &&
- num_buckets_ != internal::kGlobalEmptyTableSize) {
- clear();
- Dealloc<void*>(table_, num_buckets_);
- }
- }
- private:
- enum { kMinTableSize = 8 };
- // Linked-list nodes, as one would expect for a chaining hash table.
- struct Node {
- value_type kv;
- Node* next;
- };
- // Trees. The payload type is a copy of Key, so that we can query the tree
- // with Keys that are not in any particular data structure.
- // The value is a void* pointing to Node. We use void* instead of Node* to
- // avoid code bloat. That way there is only one instantiation of the tree
- // class per key type.
- using Tree = internal::TreeForMap<Key>;
- using TreeIterator = typename Tree::iterator;
- static Node* NodeFromTreeIterator(TreeIterator it) {
- return static_cast<Node*>(it->second);
- }
- // iterator and const_iterator are instantiations of iterator_base.
- template <typename KeyValueType>
- class iterator_base {
- public:
- using reference = KeyValueType&;
- using pointer = KeyValueType*;
- // Invariants:
- // node_ is always correct. This is handy because the most common
- // operations are operator* and operator-> and they only use node_.
- // When node_ is set to a non-null value, all the other non-const fields
- // are updated to be correct also, but those fields can become stale
- // if the underlying map is modified. When those fields are needed they
- // are rechecked, and updated if necessary.
- iterator_base() : node_(nullptr), m_(nullptr), bucket_index_(0) {}
- explicit iterator_base(const InnerMap* m) : m_(m) {
- SearchFrom(m->index_of_first_non_null_);
- }
- // Any iterator_base can convert to any other. This is overkill, and we
- // rely on the enclosing class to use it wisely. The standard "iterator
- // can convert to const_iterator" is OK but the reverse direction is not.
- template <typename U>
- explicit iterator_base(const iterator_base<U>& it)
- : node_(it.node_), m_(it.m_), bucket_index_(it.bucket_index_) {}
- iterator_base(Node* n, const InnerMap* m, size_type index)
- : node_(n), m_(m), bucket_index_(index) {}
- iterator_base(TreeIterator tree_it, const InnerMap* m, size_type index)
- : node_(NodeFromTreeIterator(tree_it)), m_(m), bucket_index_(index) {
- // Invariant: iterators that use buckets with trees have an even
- // bucket_index_.
- GOOGLE_DCHECK_EQ(bucket_index_ % 2, 0u);
- }
- // Advance through buckets, looking for the first that isn't empty.
- // If nothing non-empty is found then leave node_ == nullptr.
- void SearchFrom(size_type start_bucket) {
- GOOGLE_DCHECK(m_->index_of_first_non_null_ == m_->num_buckets_ ||
- m_->table_[m_->index_of_first_non_null_] != nullptr);
- node_ = nullptr;
- for (bucket_index_ = start_bucket; bucket_index_ < m_->num_buckets_;
- bucket_index_++) {
- if (m_->TableEntryIsNonEmptyList(bucket_index_)) {
- node_ = static_cast<Node*>(m_->table_[bucket_index_]);
- break;
- } else if (m_->TableEntryIsTree(bucket_index_)) {
- Tree* tree = static_cast<Tree*>(m_->table_[bucket_index_]);
- GOOGLE_DCHECK(!tree->empty());
- node_ = NodeFromTreeIterator(tree->begin());
- break;
- }
- }
- }
- reference operator*() const { return node_->kv; }
- pointer operator->() const { return &(operator*()); }
- friend bool operator==(const iterator_base& a, const iterator_base& b) {
- return a.node_ == b.node_;
- }
- friend bool operator!=(const iterator_base& a, const iterator_base& b) {
- return a.node_ != b.node_;
- }
- iterator_base& operator++() {
- if (node_->next == nullptr) {
- TreeIterator tree_it;
- const bool is_list = revalidate_if_necessary(&tree_it);
- if (is_list) {
- SearchFrom(bucket_index_ + 1);
- } else {
- GOOGLE_DCHECK_EQ(bucket_index_ & 1, 0u);
- Tree* tree = static_cast<Tree*>(m_->table_[bucket_index_]);
- if (++tree_it == tree->end()) {
- SearchFrom(bucket_index_ + 2);
- } else {
- node_ = NodeFromTreeIterator(tree_it);
- }
- }
- } else {
- node_ = node_->next;
- }
- return *this;
- }
- iterator_base operator++(int /* unused */) {
- iterator_base tmp = *this;
- ++*this;
- return tmp;
- }
- // Assumes node_ and m_ are correct and non-null, but other fields may be
- // stale. Fix them as needed. Then return true iff node_ points to a
- // Node in a list. If false is returned then *it is modified to be
- // a valid iterator for node_.
- bool revalidate_if_necessary(TreeIterator* it) {
- GOOGLE_DCHECK(node_ != nullptr && m_ != nullptr);
- // Force bucket_index_ to be in range.
- bucket_index_ &= (m_->num_buckets_ - 1);
- // Common case: the bucket we think is relevant points to node_.
- if (m_->table_[bucket_index_] == static_cast<void*>(node_)) return true;
- // Less common: the bucket is a linked list with node_ somewhere in it,
- // but not at the head.
- if (m_->TableEntryIsNonEmptyList(bucket_index_)) {
- Node* l = static_cast<Node*>(m_->table_[bucket_index_]);
- while ((l = l->next) != nullptr) {
- if (l == node_) {
- return true;
- }
- }
- }
- // Well, bucket_index_ still might be correct, but probably
- // not. Revalidate just to be sure. This case is rare enough that we
- // don't worry about potential optimizations, such as having a custom
- // find-like method that compares Node* instead of the key.
- iterator_base i(m_->find(node_->kv.first, it));
- bucket_index_ = i.bucket_index_;
- return m_->TableEntryIsList(bucket_index_);
- }
- Node* node_;
- const InnerMap* m_;
- size_type bucket_index_;
- };
- public:
- using iterator = iterator_base<value_type>;
- using const_iterator = iterator_base<const value_type>;
- Arena* arena() const { return alloc_.arena(); }
- void Swap(InnerMap* other) {
- std::swap(num_elements_, other->num_elements_);
- std::swap(num_buckets_, other->num_buckets_);
- std::swap(seed_, other->seed_);
- std::swap(index_of_first_non_null_, other->index_of_first_non_null_);
- std::swap(table_, other->table_);
- std::swap(alloc_, other->alloc_);
- }
- iterator begin() { return iterator(this); }
- iterator end() { return iterator(); }
- const_iterator begin() const { return const_iterator(this); }
- const_iterator end() const { return const_iterator(); }
- void clear() {
- for (size_type b = 0; b < num_buckets_; b++) {
- if (TableEntryIsNonEmptyList(b)) {
- Node* node = static_cast<Node*>(table_[b]);
- table_[b] = nullptr;
- do {
- Node* next = node->next;
- DestroyNode(node);
- node = next;
- } while (node != nullptr);
- } else if (TableEntryIsTree(b)) {
- Tree* tree = static_cast<Tree*>(table_[b]);
- GOOGLE_DCHECK(table_[b] == table_[b + 1] && (b & 1) == 0);
- table_[b] = table_[b + 1] = nullptr;
- typename Tree::iterator tree_it = tree->begin();
- do {
- Node* node = NodeFromTreeIterator(tree_it);
- typename Tree::iterator next = tree_it;
- ++next;
- tree->erase(tree_it);
- DestroyNode(node);
- tree_it = next;
- } while (tree_it != tree->end());
- DestroyTree(tree);
- b++;
- }
- }
- num_elements_ = 0;
- index_of_first_non_null_ = num_buckets_;
- }
- const hasher& hash_function() const { return *this; }
- static size_type max_size() {
- return static_cast<size_type>(1) << (sizeof(void**) >= 8 ? 60 : 28);
- }
- size_type size() const { return num_elements_; }
- bool empty() const { return size() == 0; }
- template <typename K>
- iterator find(const K& k) {
- return iterator(FindHelper(k).first);
- }
- template <typename K>
- const_iterator find(const K& k) const {
- return FindHelper(k).first;
- }
- // Insert the key into the map, if not present. In that case, the value will
- // be value initialized.
- template <typename K>
- std::pair<iterator, bool> insert(K&& k) {
- std::pair<const_iterator, size_type> p = FindHelper(k);
- // Case 1: key was already present.
- if (p.first.node_ != nullptr)
- return std::make_pair(iterator(p.first), false);
- // Case 2: insert.
- if (ResizeIfLoadIsOutOfRange(num_elements_ + 1)) {
- p = FindHelper(k);
- }
- const size_type b = p.second; // bucket number
- // If K is not key_type, make the conversion to key_type explicit.
- using TypeToInit = typename std::conditional<
- std::is_same<typename std::decay<K>::type, key_type>::value, K&&,
- key_type>::type;
- Node* node = Alloc<Node>(1);
- // Even when arena is nullptr, CreateInArenaStorage is still used to
- // ensure the arena of submessage will be consistent. Otherwise,
- // submessage may have its own arena when message-owned arena is enabled.
- Arena::CreateInArenaStorage(const_cast<Key*>(&node->kv.first),
- alloc_.arena(),
- static_cast<TypeToInit>(std::forward<K>(k)));
- Arena::CreateInArenaStorage(&node->kv.second, alloc_.arena());
- iterator result = InsertUnique(b, node);
- ++num_elements_;
- return std::make_pair(result, true);
- }
- template <typename K>
- value_type& operator[](K&& k) {
- return *insert(std::forward<K>(k)).first;
- }
- void erase(iterator it) {
- GOOGLE_DCHECK_EQ(it.m_, this);
- typename Tree::iterator tree_it;
- const bool is_list = it.revalidate_if_necessary(&tree_it);
- size_type b = it.bucket_index_;
- Node* const item = it.node_;
- if (is_list) {
- GOOGLE_DCHECK(TableEntryIsNonEmptyList(b));
- Node* head = static_cast<Node*>(table_[b]);
- head = EraseFromLinkedList(item, head);
- table_[b] = static_cast<void*>(head);
- } else {
- GOOGLE_DCHECK(TableEntryIsTree(b));
- Tree* tree = static_cast<Tree*>(table_[b]);
- tree->erase(tree_it);
- if (tree->empty()) {
- // Force b to be the minimum of b and b ^ 1. This is important
- // only because we want index_of_first_non_null_ to be correct.
- b &= ~static_cast<size_type>(1);
- DestroyTree(tree);
- table_[b] = table_[b + 1] = nullptr;
- }
- }
- DestroyNode(item);
- --num_elements_;
- if (PROTOBUF_PREDICT_FALSE(b == index_of_first_non_null_)) {
- while (index_of_first_non_null_ < num_buckets_ &&
- table_[index_of_first_non_null_] == nullptr) {
- ++index_of_first_non_null_;
- }
- }
- }
- size_t SpaceUsedInternal() const {
- return internal::SpaceUsedInTable<Key>(table_, num_buckets_,
- num_elements_, sizeof(Node));
- }
- private:
- const_iterator find(const Key& k, TreeIterator* it) const {
- return FindHelper(k, it).first;
- }
- template <typename K>
- std::pair<const_iterator, size_type> FindHelper(const K& k) const {
- return FindHelper(k, nullptr);
- }
- template <typename K>
- std::pair<const_iterator, size_type> FindHelper(const K& k,
- TreeIterator* it) const {
- size_type b = BucketNumber(k);
- if (TableEntryIsNonEmptyList(b)) {
- Node* node = static_cast<Node*>(table_[b]);
- do {
- if (internal::TransparentSupport<Key>::Equals(node->kv.first, k)) {
- return std::make_pair(const_iterator(node, this, b), b);
- } else {
- node = node->next;
- }
- } while (node != nullptr);
- } else if (TableEntryIsTree(b)) {
- GOOGLE_DCHECK_EQ(table_[b], table_[b ^ 1]);
- b &= ~static_cast<size_t>(1);
- Tree* tree = static_cast<Tree*>(table_[b]);
- auto tree_it = tree->find(k);
- if (tree_it != tree->end()) {
- if (it != nullptr) *it = tree_it;
- return std::make_pair(const_iterator(tree_it, this, b), b);
- }
- }
- return std::make_pair(end(), b);
- }
- // Insert the given Node in bucket b. If that would make bucket b too big,
- // and bucket b is not a tree, create a tree for buckets b and b^1 to share.
- // Requires count(*KeyPtrFromNodePtr(node)) == 0 and that b is the correct
- // bucket. num_elements_ is not modified.
- iterator InsertUnique(size_type b, Node* node) {
- GOOGLE_DCHECK(index_of_first_non_null_ == num_buckets_ ||
- table_[index_of_first_non_null_] != nullptr);
- // In practice, the code that led to this point may have already
- // determined whether we are inserting into an empty list, a short list,
- // or whatever. But it's probably cheap enough to recompute that here;
- // it's likely that we're inserting into an empty or short list.
- iterator result;
- GOOGLE_DCHECK(find(node->kv.first) == end());
- if (TableEntryIsEmpty(b)) {
- result = InsertUniqueInList(b, node);
- } else if (TableEntryIsNonEmptyList(b)) {
- if (PROTOBUF_PREDICT_FALSE(TableEntryIsTooLong(b))) {
- TreeConvert(b);
- result = InsertUniqueInTree(b, node);
- GOOGLE_DCHECK_EQ(result.bucket_index_, b & ~static_cast<size_type>(1));
- } else {
- // Insert into a pre-existing list. This case cannot modify
- // index_of_first_non_null_, so we skip the code to update it.
- return InsertUniqueInList(b, node);
- }
- } else {
- // Insert into a pre-existing tree. This case cannot modify
- // index_of_first_non_null_, so we skip the code to update it.
- return InsertUniqueInTree(b, node);
- }
- // parentheses around (std::min) prevents macro expansion of min(...)
- index_of_first_non_null_ =
- (std::min)(index_of_first_non_null_, result.bucket_index_);
- return result;
- }
- // Returns whether we should insert after the head of the list. For
- // non-optimized builds, we randomly decide whether to insert right at the
- // head of the list or just after the head. This helps add a little bit of
- // non-determinism to the map ordering.
- bool ShouldInsertAfterHead(void* node) {
- #ifdef NDEBUG
- (void)node;
- return false;
- #else
- // Doing modulo with a prime mixes the bits more.
- return (reinterpret_cast<uintptr_t>(node) ^ seed_) % 13 > 6;
- #endif
- }
- // Helper for InsertUnique. Handles the case where bucket b is a
- // not-too-long linked list.
- iterator InsertUniqueInList(size_type b, Node* node) {
- if (table_[b] != nullptr && ShouldInsertAfterHead(node)) {
- Node* first = static_cast<Node*>(table_[b]);
- node->next = first->next;
- first->next = node;
- return iterator(node, this, b);
- }
- node->next = static_cast<Node*>(table_[b]);
- table_[b] = static_cast<void*>(node);
- return iterator(node, this, b);
- }
- // Helper for InsertUnique. Handles the case where bucket b points to a
- // Tree.
- iterator InsertUniqueInTree(size_type b, Node* node) {
- GOOGLE_DCHECK_EQ(table_[b], table_[b ^ 1]);
- // Maintain the invariant that node->next is null for all Nodes in Trees.
- node->next = nullptr;
- return iterator(
- static_cast<Tree*>(table_[b])->insert({node->kv.first, node}).first,
- this, b & ~static_cast<size_t>(1));
- }
- // Returns whether it did resize. Currently this is only used when
- // num_elements_ increases, though it could be used in other situations.
- // It checks for load too low as well as load too high: because any number
- // of erases can occur between inserts, the load could be as low as 0 here.
- // Resizing to a lower size is not always helpful, but failing to do so can
- // destroy the expected big-O bounds for some operations. By having the
- // policy that sometimes we resize down as well as up, clients can easily
- // keep O(size()) = O(number of buckets) if they want that.
- bool ResizeIfLoadIsOutOfRange(size_type new_size) {
- const size_type kMaxMapLoadTimes16 = 12; // controls RAM vs CPU tradeoff
- const size_type hi_cutoff = num_buckets_ * kMaxMapLoadTimes16 / 16;
- const size_type lo_cutoff = hi_cutoff / 4;
- // We don't care how many elements are in trees. If a lot are,
- // we may resize even though there are many empty buckets. In
- // practice, this seems fine.
- if (PROTOBUF_PREDICT_FALSE(new_size >= hi_cutoff)) {
- if (num_buckets_ <= max_size() / 2) {
- Resize(num_buckets_ * 2);
- return true;
- }
- } else if (PROTOBUF_PREDICT_FALSE(new_size <= lo_cutoff &&
- num_buckets_ > kMinTableSize)) {
- size_type lg2_of_size_reduction_factor = 1;
- // It's possible we want to shrink a lot here... size() could even be 0.
- // So, estimate how much to shrink by making sure we don't shrink so
- // much that we would need to grow the table after a few inserts.
- const size_type hypothetical_size = new_size * 5 / 4 + 1;
- while ((hypothetical_size << lg2_of_size_reduction_factor) <
- hi_cutoff) {
- ++lg2_of_size_reduction_factor;
- }
- size_type new_num_buckets = std::max<size_type>(
- kMinTableSize, num_buckets_ >> lg2_of_size_reduction_factor);
- if (new_num_buckets != num_buckets_) {
- Resize(new_num_buckets);
- return true;
- }
- }
- return false;
- }
- // Resize to the given number of buckets.
- void Resize(size_t new_num_buckets) {
- if (num_buckets_ == internal::kGlobalEmptyTableSize) {
- // This is the global empty array.
- // Just overwrite with a new one. No need to transfer or free anything.
- num_buckets_ = index_of_first_non_null_ = kMinTableSize;
- table_ = CreateEmptyTable(num_buckets_);
- seed_ = Seed();
- return;
- }
- GOOGLE_DCHECK_GE(new_num_buckets, kMinTableSize);
- void** const old_table = table_;
- const size_type old_table_size = num_buckets_;
- num_buckets_ = new_num_buckets;
- table_ = CreateEmptyTable(num_buckets_);
- const size_type start = index_of_first_non_null_;
- index_of_first_non_null_ = num_buckets_;
- for (size_type i = start; i < old_table_size; i++) {
- if (internal::TableEntryIsNonEmptyList(old_table, i)) {
- TransferList(old_table, i);
- } else if (internal::TableEntryIsTree(old_table, i)) {
- TransferTree(old_table, i++);
- }
- }
- Dealloc<void*>(old_table, old_table_size);
- }
- void TransferList(void* const* table, size_type index) {
- Node* node = static_cast<Node*>(table[index]);
- do {
- Node* next = node->next;
- InsertUnique(BucketNumber(node->kv.first), node);
- node = next;
- } while (node != nullptr);
- }
- void TransferTree(void* const* table, size_type index) {
- Tree* tree = static_cast<Tree*>(table[index]);
- typename Tree::iterator tree_it = tree->begin();
- do {
- InsertUnique(BucketNumber(std::cref(tree_it->first).get()),
- NodeFromTreeIterator(tree_it));
- } while (++tree_it != tree->end());
- DestroyTree(tree);
- }
- Node* EraseFromLinkedList(Node* item, Node* head) {
- if (head == item) {
- return head->next;
- } else {
- head->next = EraseFromLinkedList(item, head->next);
- return head;
- }
- }
- bool TableEntryIsEmpty(size_type b) const {
- return internal::TableEntryIsEmpty(table_, b);
- }
- bool TableEntryIsNonEmptyList(size_type b) const {
- return internal::TableEntryIsNonEmptyList(table_, b);
- }
- bool TableEntryIsTree(size_type b) const {
- return internal::TableEntryIsTree(table_, b);
- }
- bool TableEntryIsList(size_type b) const {
- return internal::TableEntryIsList(table_, b);
- }
- void TreeConvert(size_type b) {
- GOOGLE_DCHECK(!TableEntryIsTree(b) && !TableEntryIsTree(b ^ 1));
- Tree* tree =
- Arena::Create<Tree>(alloc_.arena(), typename Tree::key_compare(),
- typename Tree::allocator_type(alloc_));
- size_type count = CopyListToTree(b, tree) + CopyListToTree(b ^ 1, tree);
- GOOGLE_DCHECK_EQ(count, tree->size());
- table_[b] = table_[b ^ 1] = static_cast<void*>(tree);
- }
- // Copy a linked list in the given bucket to a tree.
- // Returns the number of things it copied.
- size_type CopyListToTree(size_type b, Tree* tree) {
- size_type count = 0;
- Node* node = static_cast<Node*>(table_[b]);
- while (node != nullptr) {
- tree->insert({node->kv.first, node});
- ++count;
- Node* next = node->next;
- node->next = nullptr;
- node = next;
- }
- return count;
- }
- // Return whether table_[b] is a linked list that seems awfully long.
- // Requires table_[b] to point to a non-empty linked list.
- bool TableEntryIsTooLong(size_type b) {
- const size_type kMaxLength = 8;
- size_type count = 0;
- Node* node = static_cast<Node*>(table_[b]);
- do {
- ++count;
- node = node->next;
- } while (node != nullptr);
- // Invariant: no linked list ever is more than kMaxLength in length.
- GOOGLE_DCHECK_LE(count, kMaxLength);
- return count >= kMaxLength;
- }
- template <typename K>
- size_type BucketNumber(const K& k) const {
- // We xor the hash value against the random seed so that we effectively
- // have a random hash function.
- uint64_t h = hash_function()(k) ^ seed_;
- // We use the multiplication method to determine the bucket number from
- // the hash value. The constant kPhi (suggested by Knuth) is roughly
- // (sqrt(5) - 1) / 2 * 2^64.
- constexpr uint64_t kPhi = uint64_t{0x9e3779b97f4a7c15};
- return ((kPhi * h) >> 32) & (num_buckets_ - 1);
- }
- // Return a power of two no less than max(kMinTableSize, n).
- // Assumes either n < kMinTableSize or n is a power of two.
- size_type TableSize(size_type n) {
- return n < static_cast<size_type>(kMinTableSize)
- ? static_cast<size_type>(kMinTableSize)
- : n;
- }
- // Use alloc_ to allocate an array of n objects of type U.
- template <typename U>
- U* Alloc(size_type n) {
- using alloc_type = typename Allocator::template rebind<U>::other;
- return alloc_type(alloc_).allocate(n);
- }
- // Use alloc_ to deallocate an array of n objects of type U.
- template <typename U>
- void Dealloc(U* t, size_type n) {
- using alloc_type = typename Allocator::template rebind<U>::other;
- alloc_type(alloc_).deallocate(t, n);
- }
- void DestroyNode(Node* node) {
- if (alloc_.arena() == nullptr) {
- delete node;
- }
- }
- void DestroyTree(Tree* tree) {
- if (alloc_.arena() == nullptr) {
- delete tree;
- }
- }
- void** CreateEmptyTable(size_type n) {
- GOOGLE_DCHECK(n >= kMinTableSize);
- GOOGLE_DCHECK_EQ(n & (n - 1), 0u);
- void** result = Alloc<void*>(n);
- memset(result, 0, n * sizeof(result[0]));
- return result;
- }
- // Return a randomish value.
- size_type Seed() const {
- // We get a little bit of randomness from the address of the map. The
- // lower bits are not very random, due to alignment, so we discard them
- // and shift the higher bits into their place.
- size_type s = reinterpret_cast<uintptr_t>(this) >> 4;
- #if defined(__x86_64__) && defined(__GNUC__) && \
- !defined(GOOGLE_PROTOBUF_NO_RDTSC)
- uint32_t hi, lo;
- asm volatile("rdtsc" : "=a"(lo), "=d"(hi));
- s += ((static_cast<uint64_t>(hi) << 32) | lo);
- #endif
- return s;
- }
- friend class Arena;
- using InternalArenaConstructable_ = void;
- using DestructorSkippable_ = void;
- size_type num_elements_;
- size_type num_buckets_;
- size_type seed_;
- size_type index_of_first_non_null_;
- void** table_; // an array with num_buckets_ entries
- Allocator alloc_;
- GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(InnerMap);
- }; // end of class InnerMap
- template <typename LookupKey>
- using key_arg = typename internal::TransparentSupport<
- key_type>::template key_arg<LookupKey>;
- public:
- // Iterators
- class const_iterator {
- using InnerIt = typename InnerMap::const_iterator;
- public:
- using iterator_category = std::forward_iterator_tag;
- using value_type = typename Map::value_type;
- using difference_type = ptrdiff_t;
- using pointer = const value_type*;
- using reference = const value_type&;
- const_iterator() {}
- explicit const_iterator(const InnerIt& it) : it_(it) {}
- const_reference operator*() const { return *it_; }
- const_pointer operator->() const { return &(operator*()); }
- const_iterator& operator++() {
- ++it_;
- return *this;
- }
- const_iterator operator++(int) { return const_iterator(it_++); }
- friend bool operator==(const const_iterator& a, const const_iterator& b) {
- return a.it_ == b.it_;
- }
- friend bool operator!=(const const_iterator& a, const const_iterator& b) {
- return !(a == b);
- }
- private:
- InnerIt it_;
- };
- class iterator {
- using InnerIt = typename InnerMap::iterator;
- public:
- using iterator_category = std::forward_iterator_tag;
- using value_type = typename Map::value_type;
- using difference_type = ptrdiff_t;
- using pointer = value_type*;
- using reference = value_type&;
- iterator() {}
- explicit iterator(const InnerIt& it) : it_(it) {}
- reference operator*() const { return *it_; }
- pointer operator->() const { return &(operator*()); }
- iterator& operator++() {
- ++it_;
- return *this;
- }
- iterator operator++(int) { return iterator(it_++); }
- // Allow implicit conversion to const_iterator.
- operator const_iterator() const { // NOLINT(runtime/explicit)
- return const_iterator(typename InnerMap::const_iterator(it_));
- }
- friend bool operator==(const iterator& a, const iterator& b) {
- return a.it_ == b.it_;
- }
- friend bool operator!=(const iterator& a, const iterator& b) {
- return !(a == b);
- }
- private:
- friend class Map;
- InnerIt it_;
- };
- iterator begin() { return iterator(elements_.begin()); }
- iterator end() { return iterator(elements_.end()); }
- const_iterator begin() const { return const_iterator(elements_.begin()); }
- const_iterator end() const { return const_iterator(elements_.end()); }
- const_iterator cbegin() const { return begin(); }
- const_iterator cend() const { return end(); }
- // Capacity
- size_type size() const { return elements_.size(); }
- bool empty() const { return size() == 0; }
- // Element access
- template <typename K = key_type>
- T& operator[](const key_arg<K>& key) {
- return elements_[key].second;
- }
- template <
- typename K = key_type,
- // Disable for integral types to reduce code bloat.
- typename = typename std::enable_if<!std::is_integral<K>::value>::type>
- T& operator[](key_arg<K>&& key) {
- return elements_[std::forward<K>(key)].second;
- }
- template <typename K = key_type>
- const T& at(const key_arg<K>& key) const {
- const_iterator it = find(key);
- GOOGLE_CHECK(it != end()) << "key not found: " << static_cast<Key>(key);
- return it->second;
- }
- template <typename K = key_type>
- T& at(const key_arg<K>& key) {
- iterator it = find(key);
- GOOGLE_CHECK(it != end()) << "key not found: " << static_cast<Key>(key);
- return it->second;
- }
- // Lookup
- template <typename K = key_type>
- size_type count(const key_arg<K>& key) const {
- return find(key) == end() ? 0 : 1;
- }
- template <typename K = key_type>
- const_iterator find(const key_arg<K>& key) const {
- return const_iterator(elements_.find(key));
- }
- template <typename K = key_type>
- iterator find(const key_arg<K>& key) {
- return iterator(elements_.find(key));
- }
- template <typename K = key_type>
- bool contains(const key_arg<K>& key) const {
- return find(key) != end();
- }
- template <typename K = key_type>
- std::pair<const_iterator, const_iterator> equal_range(
- const key_arg<K>& key) const {
- const_iterator it = find(key);
- if (it == end()) {
- return std::pair<const_iterator, const_iterator>(it, it);
- } else {
- const_iterator begin = it++;
- return std::pair<const_iterator, const_iterator>(begin, it);
- }
- }
- template <typename K = key_type>
- std::pair<iterator, iterator> equal_range(const key_arg<K>& key) {
- iterator it = find(key);
- if (it == end()) {
- return std::pair<iterator, iterator>(it, it);
- } else {
- iterator begin = it++;
- return std::pair<iterator, iterator>(begin, it);
- }
- }
- // insert
- std::pair<iterator, bool> insert(const value_type& value) {
- std::pair<typename InnerMap::iterator, bool> p =
- elements_.insert(value.first);
- if (p.second) {
- p.first->second = value.second;
- }
- return std::pair<iterator, bool>(iterator(p.first), p.second);
- }
- template <class InputIt>
- void insert(InputIt first, InputIt last) {
- for (InputIt it = first; it != last; ++it) {
- iterator exist_it = find(it->first);
- if (exist_it == end()) {
- operator[](it->first) = it->second;
- }
- }
- }
- void insert(std::initializer_list<value_type> values) {
- insert(values.begin(), values.end());
- }
- // Erase and clear
- template <typename K = key_type>
- size_type erase(const key_arg<K>& key) {
- iterator it = find(key);
- if (it == end()) {
- return 0;
- } else {
- erase(it);
- return 1;
- }
- }
- iterator erase(iterator pos) {
- iterator i = pos++;
- elements_.erase(i.it_);
- return pos;
- }
- void erase(iterator first, iterator last) {
- while (first != last) {
- first = erase(first);
- }
- }
- void clear() { elements_.clear(); }
- // Assign
- Map& operator=(const Map& other) {
- if (this != &other) {
- clear();
- insert(other.begin(), other.end());
- }
- return *this;
- }
- void swap(Map& other) {
- if (arena() == other.arena()) {
- InternalSwap(other);
- } else {
- // TODO(zuguang): optimize this. The temporary copy can be allocated
- // in the same arena as the other message, and the "other = copy" can
- // be replaced with the fast-path swap above.
- Map copy = *this;
- *this = other;
- other = copy;
- }
- }
- void InternalSwap(Map& other) { elements_.Swap(&other.elements_); }
- // Access to hasher. Currently this returns a copy, but it may
- // be modified to return a const reference in the future.
- hasher hash_function() const { return elements_.hash_function(); }
- size_t SpaceUsedExcludingSelfLong() const {
- if (empty()) return 0;
- return elements_.SpaceUsedInternal() + internal::SpaceUsedInValues(this);
- }
- private:
- Arena* arena() const { return elements_.arena(); }
- InnerMap elements_;
- friend class Arena;
- using InternalArenaConstructable_ = void;
- using DestructorSkippable_ = void;
- template <typename Derived, typename K, typename V,
- internal::WireFormatLite::FieldType key_wire_type,
- internal::WireFormatLite::FieldType value_wire_type>
- friend class internal::MapFieldLite;
- };
- } // namespace protobuf
- } // namespace google
- #include <google/protobuf/port_undef.inc>
- #endif // GOOGLE_PROTOBUF_MAP_H__
|