123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138 |
- // This file is part of Eigen, a lightweight C++ template library
- // for linear algebra.
- //
- //
- // This Source Code Form is subject to the terms of the Mozilla
- // Public License v. 2.0. If a copy of the MPL was not distributed
- // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
- #ifndef EIGEN_POLYNOMIALS_MODULE_H
- #define EIGEN_POLYNOMIALS_MODULE_H
- #include <Eigen/Core>
- #include <Eigen/src/Core/util/DisableStupidWarnings.h>
- #include <Eigen/Eigenvalues>
- // Note that EIGEN_HIDE_HEAVY_CODE has to be defined per module
- #if (defined EIGEN_EXTERN_INSTANTIATIONS) && (EIGEN_EXTERN_INSTANTIATIONS>=2)
- #ifndef EIGEN_HIDE_HEAVY_CODE
- #define EIGEN_HIDE_HEAVY_CODE
- #endif
- #elif defined EIGEN_HIDE_HEAVY_CODE
- #undef EIGEN_HIDE_HEAVY_CODE
- #endif
- /**
- * \defgroup Polynomials_Module Polynomials module
- * \brief This module provides a QR based polynomial solver.
- *
- * To use this module, add
- * \code
- * #include <unsupported/Eigen/Polynomials>
- * \endcode
- * at the start of your source file.
- */
- #include "src/Polynomials/PolynomialUtils.h"
- #include "src/Polynomials/Companion.h"
- #include "src/Polynomials/PolynomialSolver.h"
- /**
- \page polynomials Polynomials defines functions for dealing with polynomials
- and a QR based polynomial solver.
- \ingroup Polynomials_Module
- The remainder of the page documents first the functions for evaluating, computing
- polynomials, computing estimates about polynomials and next the QR based polynomial
- solver.
- \section polynomialUtils convenient functions to deal with polynomials
- \subsection roots_to_monicPolynomial
- The function
- \code
- void roots_to_monicPolynomial( const RootVector& rv, Polynomial& poly )
- \endcode
- computes the coefficients \f$ a_i \f$ of
- \f$ p(x) = a_0 + a_{1}x + ... + a_{n-1}x^{n-1} + x^n \f$
- where \f$ p \f$ is known through its roots i.e. \f$ p(x) = (x-r_1)(x-r_2)...(x-r_n) \f$.
- \subsection poly_eval
- The function
- \code
- T poly_eval( const Polynomials& poly, const T& x )
- \endcode
- evaluates a polynomial at a given point using stabilized Hörner method.
- The following code: first computes the coefficients in the monomial basis of the monic polynomial that has the provided roots;
- then, it evaluates the computed polynomial, using a stabilized Hörner method.
- \include PolynomialUtils1.cpp
- Output: \verbinclude PolynomialUtils1.out
- \subsection Cauchy bounds
- The function
- \code
- Real cauchy_max_bound( const Polynomial& poly )
- \endcode
- provides a maximum bound (the Cauchy one: \f$C(p)\f$) for the absolute value of a root of the given polynomial i.e.
- \f$ \forall r_i \f$ root of \f$ p(x) = \sum_{k=0}^d a_k x^k \f$,
- \f$ |r_i| \le C(p) = \sum_{k=0}^{d} \left | \frac{a_k}{a_d} \right | \f$
- The leading coefficient \f$ p \f$: should be non zero \f$a_d \neq 0\f$.
- The function
- \code
- Real cauchy_min_bound( const Polynomial& poly )
- \endcode
- provides a minimum bound (the Cauchy one: \f$c(p)\f$) for the absolute value of a non zero root of the given polynomial i.e.
- \f$ \forall r_i \neq 0 \f$ root of \f$ p(x) = \sum_{k=0}^d a_k x^k \f$,
- \f$ |r_i| \ge c(p) = \left( \sum_{k=0}^{d} \left | \frac{a_k}{a_0} \right | \right)^{-1} \f$
- \section QR polynomial solver class
- Computes the complex roots of a polynomial by computing the eigenvalues of the associated companion matrix with the QR algorithm.
-
- The roots of \f$ p(x) = a_0 + a_1 x + a_2 x^2 + a_{3} x^3 + x^4 \f$ are the eigenvalues of
- \f$
- \left [
- \begin{array}{cccc}
- 0 & 0 & 0 & a_0 \\
- 1 & 0 & 0 & a_1 \\
- 0 & 1 & 0 & a_2 \\
- 0 & 0 & 1 & a_3
- \end{array} \right ]
- \f$
- However, the QR algorithm is not guaranteed to converge when there are several eigenvalues with same modulus.
- Therefore the current polynomial solver is guaranteed to provide a correct result only when the complex roots \f$r_1,r_2,...,r_d\f$ have distinct moduli i.e.
-
- \f$ \forall i,j \in [1;d],~ \| r_i \| \neq \| r_j \| \f$.
- With 32bit (float) floating types this problem shows up frequently.
- However, almost always, correct accuracy is reached even in these cases for 64bit
- (double) floating types and small polynomial degree (<20).
- \include PolynomialSolver1.cpp
-
- In the above example:
-
- -# a simple use of the polynomial solver is shown;
- -# the accuracy problem with the QR algorithm is presented: a polynomial with almost conjugate roots is provided to the solver.
- Those roots have almost same module therefore the QR algorithm failed to converge: the accuracy
- of the last root is bad;
- -# a simple way to circumvent the problem is shown: use doubles instead of floats.
- Output: \verbinclude PolynomialSolver1.out
- */
- #include <Eigen/src/Core/util/ReenableStupidWarnings.h>
- #endif // EIGEN_POLYNOMIALS_MODULE_H
- /* vim: set filetype=cpp et sw=2 ts=2 ai: */
|