123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500 |
- // This file is part of Eigen, a lightweight C++ template library
- // for linear algebra.
- //
- // Copyright (C) 2009 Jitse Niesen <jitse@maths.leeds.ac.uk>
- // Copyright (C) 2012 Chen-Pang He <jdh8@ms63.hinet.net>
- //
- // This Source Code Form is subject to the terms of the Mozilla
- // Public License v. 2.0. If a copy of the MPL was not distributed
- // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
- #ifndef EIGEN_MATRIX_FUNCTIONS
- #define EIGEN_MATRIX_FUNCTIONS
- #include <cfloat>
- #include <list>
- #include <Eigen/Core>
- #include <Eigen/LU>
- #include <Eigen/Eigenvalues>
- /**
- * \defgroup MatrixFunctions_Module Matrix functions module
- * \brief This module aims to provide various methods for the computation of
- * matrix functions.
- *
- * To use this module, add
- * \code
- * #include <unsupported/Eigen/MatrixFunctions>
- * \endcode
- * at the start of your source file.
- *
- * This module defines the following MatrixBase methods.
- * - \ref matrixbase_cos "MatrixBase::cos()", for computing the matrix cosine
- * - \ref matrixbase_cosh "MatrixBase::cosh()", for computing the matrix hyperbolic cosine
- * - \ref matrixbase_exp "MatrixBase::exp()", for computing the matrix exponential
- * - \ref matrixbase_log "MatrixBase::log()", for computing the matrix logarithm
- * - \ref matrixbase_pow "MatrixBase::pow()", for computing the matrix power
- * - \ref matrixbase_matrixfunction "MatrixBase::matrixFunction()", for computing general matrix functions
- * - \ref matrixbase_sin "MatrixBase::sin()", for computing the matrix sine
- * - \ref matrixbase_sinh "MatrixBase::sinh()", for computing the matrix hyperbolic sine
- * - \ref matrixbase_sqrt "MatrixBase::sqrt()", for computing the matrix square root
- *
- * These methods are the main entry points to this module.
- *
- * %Matrix functions are defined as follows. Suppose that \f$ f \f$
- * is an entire function (that is, a function on the complex plane
- * that is everywhere complex differentiable). Then its Taylor
- * series
- * \f[ f(0) + f'(0) x + \frac{f''(0)}{2} x^2 + \frac{f'''(0)}{3!} x^3 + \cdots \f]
- * converges to \f$ f(x) \f$. In this case, we can define the matrix
- * function by the same series:
- * \f[ f(M) = f(0) + f'(0) M + \frac{f''(0)}{2} M^2 + \frac{f'''(0)}{3!} M^3 + \cdots \f]
- *
- */
- #include "src/MatrixFunctions/MatrixExponential.h"
- #include "src/MatrixFunctions/MatrixFunction.h"
- #include "src/MatrixFunctions/MatrixSquareRoot.h"
- #include "src/MatrixFunctions/MatrixLogarithm.h"
- #include "src/MatrixFunctions/MatrixPower.h"
- /**
- \page matrixbaseextra_page
- \ingroup MatrixFunctions_Module
- \section matrixbaseextra MatrixBase methods defined in the MatrixFunctions module
- The remainder of the page documents the following MatrixBase methods
- which are defined in the MatrixFunctions module.
- \subsection matrixbase_cos MatrixBase::cos()
- Compute the matrix cosine.
- \code
- const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::cos() const
- \endcode
- \param[in] M a square matrix.
- \returns expression representing \f$ \cos(M) \f$.
- This function computes the matrix cosine. Use ArrayBase::cos() for computing the entry-wise cosine.
- The implementation calls \ref matrixbase_matrixfunction "matrixFunction()" with StdStemFunctions::cos().
- \sa \ref matrixbase_sin "sin()" for an example.
- \subsection matrixbase_cosh MatrixBase::cosh()
- Compute the matrix hyberbolic cosine.
- \code
- const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::cosh() const
- \endcode
- \param[in] M a square matrix.
- \returns expression representing \f$ \cosh(M) \f$
- This function calls \ref matrixbase_matrixfunction "matrixFunction()" with StdStemFunctions::cosh().
- \sa \ref matrixbase_sinh "sinh()" for an example.
- \subsection matrixbase_exp MatrixBase::exp()
- Compute the matrix exponential.
- \code
- const MatrixExponentialReturnValue<Derived> MatrixBase<Derived>::exp() const
- \endcode
- \param[in] M matrix whose exponential is to be computed.
- \returns expression representing the matrix exponential of \p M.
- The matrix exponential of \f$ M \f$ is defined by
- \f[ \exp(M) = \sum_{k=0}^\infty \frac{M^k}{k!}. \f]
- The matrix exponential can be used to solve linear ordinary
- differential equations: the solution of \f$ y' = My \f$ with the
- initial condition \f$ y(0) = y_0 \f$ is given by
- \f$ y(t) = \exp(M) y_0 \f$.
- The matrix exponential is different from applying the exp function to all the entries in the matrix.
- Use ArrayBase::exp() if you want to do the latter.
- The cost of the computation is approximately \f$ 20 n^3 \f$ for
- matrices of size \f$ n \f$. The number 20 depends weakly on the
- norm of the matrix.
- The matrix exponential is computed using the scaling-and-squaring
- method combined with Padé approximation. The matrix is first
- rescaled, then the exponential of the reduced matrix is computed
- approximant, and then the rescaling is undone by repeated
- squaring. The degree of the Padé approximant is chosen such
- that the approximation error is less than the round-off
- error. However, errors may accumulate during the squaring phase.
- Details of the algorithm can be found in: Nicholas J. Higham, "The
- scaling and squaring method for the matrix exponential revisited,"
- <em>SIAM J. %Matrix Anal. Applic.</em>, <b>26</b>:1179–1193,
- 2005.
- Example: The following program checks that
- \f[ \exp \left[ \begin{array}{ccc}
- 0 & \frac14\pi & 0 \\
- -\frac14\pi & 0 & 0 \\
- 0 & 0 & 0
- \end{array} \right] = \left[ \begin{array}{ccc}
- \frac12\sqrt2 & -\frac12\sqrt2 & 0 \\
- \frac12\sqrt2 & \frac12\sqrt2 & 0 \\
- 0 & 0 & 1
- \end{array} \right]. \f]
- This corresponds to a rotation of \f$ \frac14\pi \f$ radians around
- the z-axis.
- \include MatrixExponential.cpp
- Output: \verbinclude MatrixExponential.out
- \note \p M has to be a matrix of \c float, \c double, `long double`
- \c complex<float>, \c complex<double>, or `complex<long double>` .
- \subsection matrixbase_log MatrixBase::log()
- Compute the matrix logarithm.
- \code
- const MatrixLogarithmReturnValue<Derived> MatrixBase<Derived>::log() const
- \endcode
- \param[in] M invertible matrix whose logarithm is to be computed.
- \returns expression representing the matrix logarithm root of \p M.
- The matrix logarithm of \f$ M \f$ is a matrix \f$ X \f$ such that
- \f$ \exp(X) = M \f$ where exp denotes the matrix exponential. As for
- the scalar logarithm, the equation \f$ \exp(X) = M \f$ may have
- multiple solutions; this function returns a matrix whose eigenvalues
- have imaginary part in the interval \f$ (-\pi,\pi] \f$.
- The matrix logarithm is different from applying the log function to all the entries in the matrix.
- Use ArrayBase::log() if you want to do the latter.
- In the real case, the matrix \f$ M \f$ should be invertible and
- it should have no eigenvalues which are real and negative (pairs of
- complex conjugate eigenvalues are allowed). In the complex case, it
- only needs to be invertible.
- This function computes the matrix logarithm using the Schur-Parlett
- algorithm as implemented by MatrixBase::matrixFunction(). The
- logarithm of an atomic block is computed by MatrixLogarithmAtomic,
- which uses direct computation for 1-by-1 and 2-by-2 blocks and an
- inverse scaling-and-squaring algorithm for bigger blocks, with the
- square roots computed by MatrixBase::sqrt().
- Details of the algorithm can be found in Section 11.6.2 of:
- Nicholas J. Higham,
- <em>Functions of Matrices: Theory and Computation</em>,
- SIAM 2008. ISBN 978-0-898716-46-7.
- Example: The following program checks that
- \f[ \log \left[ \begin{array}{ccc}
- \frac12\sqrt2 & -\frac12\sqrt2 & 0 \\
- \frac12\sqrt2 & \frac12\sqrt2 & 0 \\
- 0 & 0 & 1
- \end{array} \right] = \left[ \begin{array}{ccc}
- 0 & \frac14\pi & 0 \\
- -\frac14\pi & 0 & 0 \\
- 0 & 0 & 0
- \end{array} \right]. \f]
- This corresponds to a rotation of \f$ \frac14\pi \f$ radians around
- the z-axis. This is the inverse of the example used in the
- documentation of \ref matrixbase_exp "exp()".
- \include MatrixLogarithm.cpp
- Output: \verbinclude MatrixLogarithm.out
- \note \p M has to be a matrix of \c float, \c double, `long
- double`, \c complex<float>, \c complex<double>, or `complex<long double>`.
- \sa MatrixBase::exp(), MatrixBase::matrixFunction(),
- class MatrixLogarithmAtomic, MatrixBase::sqrt().
- \subsection matrixbase_pow MatrixBase::pow()
- Compute the matrix raised to arbitrary real power.
- \code
- const MatrixPowerReturnValue<Derived> MatrixBase<Derived>::pow(RealScalar p) const
- \endcode
- \param[in] M base of the matrix power, should be a square matrix.
- \param[in] p exponent of the matrix power.
- The matrix power \f$ M^p \f$ is defined as \f$ \exp(p \log(M)) \f$,
- where exp denotes the matrix exponential, and log denotes the matrix
- logarithm. This is different from raising all the entries in the matrix
- to the p-th power. Use ArrayBase::pow() if you want to do the latter.
- If \p p is complex, the scalar type of \p M should be the type of \p
- p . \f$ M^p \f$ simply evaluates into \f$ \exp(p \log(M)) \f$.
- Therefore, the matrix \f$ M \f$ should meet the conditions to be an
- argument of matrix logarithm.
- If \p p is real, it is casted into the real scalar type of \p M. Then
- this function computes the matrix power using the Schur-Padé
- algorithm as implemented by class MatrixPower. The exponent is split
- into integral part and fractional part, where the fractional part is
- in the interval \f$ (-1, 1) \f$. The main diagonal and the first
- super-diagonal is directly computed.
- If \p M is singular with a semisimple zero eigenvalue and \p p is
- positive, the Schur factor \f$ T \f$ is reordered with Givens
- rotations, i.e.
- \f[ T = \left[ \begin{array}{cc}
- T_1 & T_2 \\
- 0 & 0
- \end{array} \right] \f]
- where \f$ T_1 \f$ is invertible. Then \f$ T^p \f$ is given by
- \f[ T^p = \left[ \begin{array}{cc}
- T_1^p & T_1^{-1} T_1^p T_2 \\
- 0 & 0
- \end{array}. \right] \f]
- \warning Fractional power of a matrix with a non-semisimple zero
- eigenvalue is not well-defined. We introduce an assertion failure
- against inaccurate result, e.g. \code
- #include <unsupported/Eigen/MatrixFunctions>
- #include <iostream>
- int main()
- {
- Eigen::Matrix4d A;
- A << 0, 0, 2, 3,
- 0, 0, 4, 5,
- 0, 0, 6, 7,
- 0, 0, 8, 9;
- std::cout << A.pow(0.37) << std::endl;
-
- // The 1 makes eigenvalue 0 non-semisimple.
- A.coeffRef(0, 1) = 1;
- // This fails if EIGEN_NO_DEBUG is undefined.
- std::cout << A.pow(0.37) << std::endl;
- return 0;
- }
- \endcode
- Details of the algorithm can be found in: Nicholas J. Higham and
- Lijing Lin, "A Schur-Padé algorithm for fractional powers of a
- matrix," <em>SIAM J. %Matrix Anal. Applic.</em>,
- <b>32(3)</b>:1056–1078, 2011.
- Example: The following program checks that
- \f[ \left[ \begin{array}{ccc}
- \cos1 & -\sin1 & 0 \\
- \sin1 & \cos1 & 0 \\
- 0 & 0 & 1
- \end{array} \right]^{\frac14\pi} = \left[ \begin{array}{ccc}
- \frac12\sqrt2 & -\frac12\sqrt2 & 0 \\
- \frac12\sqrt2 & \frac12\sqrt2 & 0 \\
- 0 & 0 & 1
- \end{array} \right]. \f]
- This corresponds to \f$ \frac14\pi \f$ rotations of 1 radian around
- the z-axis.
- \include MatrixPower.cpp
- Output: \verbinclude MatrixPower.out
- MatrixBase::pow() is user-friendly. However, there are some
- circumstances under which you should use class MatrixPower directly.
- MatrixPower can save the result of Schur decomposition, so it's
- better for computing various powers for the same matrix.
- Example:
- \include MatrixPower_optimal.cpp
- Output: \verbinclude MatrixPower_optimal.out
- \note \p M has to be a matrix of \c float, \c double, `long
- double`, \c complex<float>, \c complex<double>, or
- \c complex<long double> .
- \sa MatrixBase::exp(), MatrixBase::log(), class MatrixPower.
- \subsection matrixbase_matrixfunction MatrixBase::matrixFunction()
- Compute a matrix function.
- \code
- const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::matrixFunction(typename internal::stem_function<typename internal::traits<Derived>::Scalar>::type f) const
- \endcode
- \param[in] M argument of matrix function, should be a square matrix.
- \param[in] f an entire function; \c f(x,n) should compute the n-th
- derivative of f at x.
- \returns expression representing \p f applied to \p M.
- Suppose that \p M is a matrix whose entries have type \c Scalar.
- Then, the second argument, \p f, should be a function with prototype
- \code
- ComplexScalar f(ComplexScalar, int)
- \endcode
- where \c ComplexScalar = \c std::complex<Scalar> if \c Scalar is
- real (e.g., \c float or \c double) and \c ComplexScalar =
- \c Scalar if \c Scalar is complex. The return value of \c f(x,n)
- should be \f$ f^{(n)}(x) \f$, the n-th derivative of f at x.
- This routine uses the algorithm described in:
- Philip Davies and Nicholas J. Higham,
- "A Schur-Parlett algorithm for computing matrix functions",
- <em>SIAM J. %Matrix Anal. Applic.</em>, <b>25</b>:464–485, 2003.
- The actual work is done by the MatrixFunction class.
- Example: The following program checks that
- \f[ \exp \left[ \begin{array}{ccc}
- 0 & \frac14\pi & 0 \\
- -\frac14\pi & 0 & 0 \\
- 0 & 0 & 0
- \end{array} \right] = \left[ \begin{array}{ccc}
- \frac12\sqrt2 & -\frac12\sqrt2 & 0 \\
- \frac12\sqrt2 & \frac12\sqrt2 & 0 \\
- 0 & 0 & 1
- \end{array} \right]. \f]
- This corresponds to a rotation of \f$ \frac14\pi \f$ radians around
- the z-axis. This is the same example as used in the documentation
- of \ref matrixbase_exp "exp()".
- \include MatrixFunction.cpp
- Output: \verbinclude MatrixFunction.out
- Note that the function \c expfn is defined for complex numbers
- \c x, even though the matrix \c A is over the reals. Instead of
- \c expfn, we could also have used StdStemFunctions::exp:
- \code
- A.matrixFunction(StdStemFunctions<std::complex<double> >::exp, &B);
- \endcode
- \subsection matrixbase_sin MatrixBase::sin()
- Compute the matrix sine.
- \code
- const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::sin() const
- \endcode
- \param[in] M a square matrix.
- \returns expression representing \f$ \sin(M) \f$.
- This function computes the matrix sine. Use ArrayBase::sin() for computing the entry-wise sine.
- The implementation calls \ref matrixbase_matrixfunction "matrixFunction()" with StdStemFunctions::sin().
- Example: \include MatrixSine.cpp
- Output: \verbinclude MatrixSine.out
- \subsection matrixbase_sinh MatrixBase::sinh()
- Compute the matrix hyperbolic sine.
- \code
- MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::sinh() const
- \endcode
- \param[in] M a square matrix.
- \returns expression representing \f$ \sinh(M) \f$
- This function calls \ref matrixbase_matrixfunction "matrixFunction()" with StdStemFunctions::sinh().
- Example: \include MatrixSinh.cpp
- Output: \verbinclude MatrixSinh.out
- \subsection matrixbase_sqrt MatrixBase::sqrt()
- Compute the matrix square root.
- \code
- const MatrixSquareRootReturnValue<Derived> MatrixBase<Derived>::sqrt() const
- \endcode
- \param[in] M invertible matrix whose square root is to be computed.
- \returns expression representing the matrix square root of \p M.
- The matrix square root of \f$ M \f$ is the matrix \f$ M^{1/2} \f$
- whose square is the original matrix; so if \f$ S = M^{1/2} \f$ then
- \f$ S^2 = M \f$. This is different from taking the square root of all
- the entries in the matrix; use ArrayBase::sqrt() if you want to do the
- latter.
- In the <b>real case</b>, the matrix \f$ M \f$ should be invertible and
- it should have no eigenvalues which are real and negative (pairs of
- complex conjugate eigenvalues are allowed). In that case, the matrix
- has a square root which is also real, and this is the square root
- computed by this function.
- The matrix square root is computed by first reducing the matrix to
- quasi-triangular form with the real Schur decomposition. The square
- root of the quasi-triangular matrix can then be computed directly. The
- cost is approximately \f$ 25 n^3 \f$ real flops for the real Schur
- decomposition and \f$ 3\frac13 n^3 \f$ real flops for the remainder
- (though the computation time in practice is likely more than this
- indicates).
- Details of the algorithm can be found in: Nicholas J. Highan,
- "Computing real square roots of a real matrix", <em>Linear Algebra
- Appl.</em>, 88/89:405–430, 1987.
- If the matrix is <b>positive-definite symmetric</b>, then the square
- root is also positive-definite symmetric. In this case, it is best to
- use SelfAdjointEigenSolver::operatorSqrt() to compute it.
- In the <b>complex case</b>, the matrix \f$ M \f$ should be invertible;
- this is a restriction of the algorithm. The square root computed by
- this algorithm is the one whose eigenvalues have an argument in the
- interval \f$ (-\frac12\pi, \frac12\pi] \f$. This is the usual branch
- cut.
- The computation is the same as in the real case, except that the
- complex Schur decomposition is used to reduce the matrix to a
- triangular matrix. The theoretical cost is the same. Details are in:
- Åke Björck and Sven Hammarling, "A Schur method for the
- square root of a matrix", <em>Linear Algebra Appl.</em>,
- 52/53:127–140, 1983.
- Example: The following program checks that the square root of
- \f[ \left[ \begin{array}{cc}
- \cos(\frac13\pi) & -\sin(\frac13\pi) \\
- \sin(\frac13\pi) & \cos(\frac13\pi)
- \end{array} \right], \f]
- corresponding to a rotation over 60 degrees, is a rotation over 30 degrees:
- \f[ \left[ \begin{array}{cc}
- \cos(\frac16\pi) & -\sin(\frac16\pi) \\
- \sin(\frac16\pi) & \cos(\frac16\pi)
- \end{array} \right]. \f]
- \include MatrixSquareRoot.cpp
- Output: \verbinclude MatrixSquareRoot.out
- \sa class RealSchur, class ComplexSchur, class MatrixSquareRoot,
- SelfAdjointEigenSolver::operatorSqrt().
- */
- #endif // EIGEN_MATRIX_FUNCTIONS
|