123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419 |
- // This file is part of Eigen, a lightweight C++ template library
- // for linear algebra.
- //
- // Copyright (C) 2009 Mark Borgerding mark a borgerding net
- //
- // This Source Code Form is subject to the terms of the Mozilla
- // Public License v. 2.0. If a copy of the MPL was not distributed
- // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
- #ifndef EIGEN_FFT_H
- #define EIGEN_FFT_H
- #include <complex>
- #include <vector>
- #include <map>
- #include <Eigen/Core>
- /**
- * \defgroup FFT_Module Fast Fourier Transform module
- *
- * \code
- * #include <unsupported/Eigen/FFT>
- * \endcode
- *
- * This module provides Fast Fourier transformation, with a configurable backend
- * implementation.
- *
- * The default implementation is based on kissfft. It is a small, free, and
- * reasonably efficient default.
- *
- * There are currently two implementation backend:
- *
- * - fftw (http://www.fftw.org) : faster, GPL -- incompatible with Eigen in LGPL form, bigger code size.
- * - MKL (http://en.wikipedia.org/wiki/Math_Kernel_Library) : fastest, commercial -- may be incompatible with Eigen in GPL form.
- *
- * \section FFTDesign Design
- *
- * The following design decisions were made concerning scaling and
- * half-spectrum for real FFT.
- *
- * The intent is to facilitate generic programming and ease migrating code
- * from Matlab/octave.
- * We think the default behavior of Eigen/FFT should favor correctness and
- * generality over speed. Of course, the caller should be able to "opt-out" from this
- * behavior and get the speed increase if they want it.
- *
- * 1) %Scaling:
- * Other libraries (FFTW,IMKL,KISSFFT) do not perform scaling, so there
- * is a constant gain incurred after the forward&inverse transforms , so
- * IFFT(FFT(x)) = Kx; this is done to avoid a vector-by-value multiply.
- * The downside is that algorithms that worked correctly in Matlab/octave
- * don't behave the same way once implemented in C++.
- *
- * How Eigen/FFT differs: invertible scaling is performed so IFFT( FFT(x) ) = x.
- *
- * 2) Real FFT half-spectrum
- * Other libraries use only half the frequency spectrum (plus one extra
- * sample for the Nyquist bin) for a real FFT, the other half is the
- * conjugate-symmetric of the first half. This saves them a copy and some
- * memory. The downside is the caller needs to have special logic for the
- * number of bins in complex vs real.
- *
- * How Eigen/FFT differs: The full spectrum is returned from the forward
- * transform. This facilitates generic template programming by obviating
- * separate specializations for real vs complex. On the inverse
- * transform, only half the spectrum is actually used if the output type is real.
- */
-
- #ifdef EIGEN_FFTW_DEFAULT
- // FFTW: faster, GPL -- incompatible with Eigen in LGPL form, bigger code size
- # include <fftw3.h>
- # include "src/FFT/ei_fftw_impl.h"
- namespace Eigen {
- //template <typename T> typedef struct internal::fftw_impl default_fft_impl; this does not work
- template <typename T> struct default_fft_impl : public internal::fftw_impl<T> {};
- }
- #elif defined EIGEN_MKL_DEFAULT
- // TODO
- // intel Math Kernel Library: fastest, commercial -- may be incompatible with Eigen in GPL form
- # include "src/FFT/ei_imklfft_impl.h"
- namespace Eigen {
- template <typename T> struct default_fft_impl : public internal::imklfft_impl {};
- }
- #else
- // internal::kissfft_impl: small, free, reasonably efficient default, derived from kissfft
- //
- # include "src/FFT/ei_kissfft_impl.h"
- namespace Eigen {
- template <typename T>
- struct default_fft_impl : public internal::kissfft_impl<T> {};
- }
- #endif
- namespace Eigen {
-
- //
- template<typename T_SrcMat,typename T_FftIfc> struct fft_fwd_proxy;
- template<typename T_SrcMat,typename T_FftIfc> struct fft_inv_proxy;
- namespace internal {
- template<typename T_SrcMat,typename T_FftIfc>
- struct traits< fft_fwd_proxy<T_SrcMat,T_FftIfc> >
- {
- typedef typename T_SrcMat::PlainObject ReturnType;
- };
- template<typename T_SrcMat,typename T_FftIfc>
- struct traits< fft_inv_proxy<T_SrcMat,T_FftIfc> >
- {
- typedef typename T_SrcMat::PlainObject ReturnType;
- };
- }
- template<typename T_SrcMat,typename T_FftIfc>
- struct fft_fwd_proxy
- : public ReturnByValue<fft_fwd_proxy<T_SrcMat,T_FftIfc> >
- {
- typedef DenseIndex Index;
- fft_fwd_proxy(const T_SrcMat& src,T_FftIfc & fft, Index nfft) : m_src(src),m_ifc(fft), m_nfft(nfft) {}
- template<typename T_DestMat> void evalTo(T_DestMat& dst) const;
- Index rows() const { return m_src.rows(); }
- Index cols() const { return m_src.cols(); }
- protected:
- const T_SrcMat & m_src;
- T_FftIfc & m_ifc;
- Index m_nfft;
- private:
- fft_fwd_proxy& operator=(const fft_fwd_proxy&);
- };
- template<typename T_SrcMat,typename T_FftIfc>
- struct fft_inv_proxy
- : public ReturnByValue<fft_inv_proxy<T_SrcMat,T_FftIfc> >
- {
- typedef DenseIndex Index;
- fft_inv_proxy(const T_SrcMat& src,T_FftIfc & fft, Index nfft) : m_src(src),m_ifc(fft), m_nfft(nfft) {}
- template<typename T_DestMat> void evalTo(T_DestMat& dst) const;
- Index rows() const { return m_src.rows(); }
- Index cols() const { return m_src.cols(); }
- protected:
- const T_SrcMat & m_src;
- T_FftIfc & m_ifc;
- Index m_nfft;
- private:
- fft_inv_proxy& operator=(const fft_inv_proxy&);
- };
- template <typename T_Scalar,
- typename T_Impl=default_fft_impl<T_Scalar> >
- class FFT
- {
- public:
- typedef T_Impl impl_type;
- typedef DenseIndex Index;
- typedef typename impl_type::Scalar Scalar;
- typedef typename impl_type::Complex Complex;
- enum Flag {
- Default=0, // goof proof
- Unscaled=1,
- HalfSpectrum=2,
- // SomeOtherSpeedOptimization=4
- Speedy=32767
- };
- FFT( const impl_type & impl=impl_type() , Flag flags=Default ) :m_impl(impl),m_flag(flags) { }
- inline
- bool HasFlag(Flag f) const { return (m_flag & (int)f) == f;}
- inline
- void SetFlag(Flag f) { m_flag |= (int)f;}
- inline
- void ClearFlag(Flag f) { m_flag &= (~(int)f);}
- inline
- void fwd( Complex * dst, const Scalar * src, Index nfft)
- {
- m_impl.fwd(dst,src,static_cast<int>(nfft));
- if ( HasFlag(HalfSpectrum) == false)
- ReflectSpectrum(dst,nfft);
- }
- inline
- void fwd( Complex * dst, const Complex * src, Index nfft)
- {
- m_impl.fwd(dst,src,static_cast<int>(nfft));
- }
- /*
- inline
- void fwd2(Complex * dst, const Complex * src, int n0,int n1)
- {
- m_impl.fwd2(dst,src,n0,n1);
- }
- */
- template <typename _Input>
- inline
- void fwd( std::vector<Complex> & dst, const std::vector<_Input> & src)
- {
- if ( NumTraits<_Input>::IsComplex == 0 && HasFlag(HalfSpectrum) )
- dst.resize( (src.size()>>1)+1); // half the bins + Nyquist bin
- else
- dst.resize(src.size());
- fwd(&dst[0],&src[0],src.size());
- }
- template<typename InputDerived, typename ComplexDerived>
- inline
- void fwd( MatrixBase<ComplexDerived> & dst, const MatrixBase<InputDerived> & src, Index nfft=-1)
- {
- typedef typename ComplexDerived::Scalar dst_type;
- typedef typename InputDerived::Scalar src_type;
- EIGEN_STATIC_ASSERT_VECTOR_ONLY(InputDerived)
- EIGEN_STATIC_ASSERT_VECTOR_ONLY(ComplexDerived)
- EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(ComplexDerived,InputDerived) // size at compile-time
- EIGEN_STATIC_ASSERT((internal::is_same<dst_type, Complex>::value),
- YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
- EIGEN_STATIC_ASSERT(int(InputDerived::Flags)&int(ComplexDerived::Flags)&DirectAccessBit,
- THIS_METHOD_IS_ONLY_FOR_EXPRESSIONS_WITH_DIRECT_MEMORY_ACCESS_SUCH_AS_MAP_OR_PLAIN_MATRICES)
- if (nfft<1)
- nfft = src.size();
- if ( NumTraits< src_type >::IsComplex == 0 && HasFlag(HalfSpectrum) )
- dst.derived().resize( (nfft>>1)+1);
- else
- dst.derived().resize(nfft);
- if ( src.innerStride() != 1 || src.size() < nfft ) {
- Matrix<src_type,1,Dynamic> tmp;
- if (src.size()<nfft) {
- tmp.setZero(nfft);
- tmp.block(0,0,src.size(),1 ) = src;
- }else{
- tmp = src;
- }
- fwd( &dst[0],&tmp[0],nfft );
- }else{
- fwd( &dst[0],&src[0],nfft );
- }
- }
-
- template<typename InputDerived>
- inline
- fft_fwd_proxy< MatrixBase<InputDerived>, FFT<T_Scalar,T_Impl> >
- fwd( const MatrixBase<InputDerived> & src, Index nfft=-1)
- {
- return fft_fwd_proxy< MatrixBase<InputDerived> ,FFT<T_Scalar,T_Impl> >( src, *this,nfft );
- }
- template<typename InputDerived>
- inline
- fft_inv_proxy< MatrixBase<InputDerived>, FFT<T_Scalar,T_Impl> >
- inv( const MatrixBase<InputDerived> & src, Index nfft=-1)
- {
- return fft_inv_proxy< MatrixBase<InputDerived> ,FFT<T_Scalar,T_Impl> >( src, *this,nfft );
- }
- inline
- void inv( Complex * dst, const Complex * src, Index nfft)
- {
- m_impl.inv( dst,src,static_cast<int>(nfft) );
- if ( HasFlag( Unscaled ) == false)
- scale(dst,Scalar(1./nfft),nfft); // scale the time series
- }
- inline
- void inv( Scalar * dst, const Complex * src, Index nfft)
- {
- m_impl.inv( dst,src,static_cast<int>(nfft) );
- if ( HasFlag( Unscaled ) == false)
- scale(dst,Scalar(1./nfft),nfft); // scale the time series
- }
- template<typename OutputDerived, typename ComplexDerived>
- inline
- void inv( MatrixBase<OutputDerived> & dst, const MatrixBase<ComplexDerived> & src, Index nfft=-1)
- {
- typedef typename ComplexDerived::Scalar src_type;
- typedef typename ComplexDerived::RealScalar real_type;
- typedef typename OutputDerived::Scalar dst_type;
- const bool realfft= (NumTraits<dst_type>::IsComplex == 0);
- EIGEN_STATIC_ASSERT_VECTOR_ONLY(OutputDerived)
- EIGEN_STATIC_ASSERT_VECTOR_ONLY(ComplexDerived)
- EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(ComplexDerived,OutputDerived) // size at compile-time
- EIGEN_STATIC_ASSERT((internal::is_same<src_type, Complex>::value),
- YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
- EIGEN_STATIC_ASSERT(int(OutputDerived::Flags)&int(ComplexDerived::Flags)&DirectAccessBit,
- THIS_METHOD_IS_ONLY_FOR_EXPRESSIONS_WITH_DIRECT_MEMORY_ACCESS_SUCH_AS_MAP_OR_PLAIN_MATRICES)
- if (nfft<1) { //automatic FFT size determination
- if ( realfft && HasFlag(HalfSpectrum) )
- nfft = 2*(src.size()-1); //assume even fft size
- else
- nfft = src.size();
- }
- dst.derived().resize( nfft );
- // check for nfft that does not fit the input data size
- Index resize_input= ( realfft && HasFlag(HalfSpectrum) )
- ? ( (nfft/2+1) - src.size() )
- : ( nfft - src.size() );
- if ( src.innerStride() != 1 || resize_input ) {
- // if the vector is strided, then we need to copy it to a packed temporary
- Matrix<src_type,1,Dynamic> tmp;
- if ( resize_input ) {
- size_t ncopy = (std::min)(src.size(),src.size() + resize_input);
- tmp.setZero(src.size() + resize_input);
- if ( realfft && HasFlag(HalfSpectrum) ) {
- // pad at the Nyquist bin
- tmp.head(ncopy) = src.head(ncopy);
- tmp(ncopy-1) = real(tmp(ncopy-1)); // enforce real-only Nyquist bin
- }else{
- size_t nhead,ntail;
- nhead = 1+ncopy/2-1; // range [0:pi)
- ntail = ncopy/2-1; // range (-pi:0)
- tmp.head(nhead) = src.head(nhead);
- tmp.tail(ntail) = src.tail(ntail);
- if (resize_input<0) { //shrinking -- create the Nyquist bin as the average of the two bins that fold into it
- tmp(nhead) = ( src(nfft/2) + src( src.size() - nfft/2 ) )*real_type(.5);
- }else{ // expanding -- split the old Nyquist bin into two halves
- tmp(nhead) = src(nhead) * real_type(.5);
- tmp(tmp.size()-nhead) = tmp(nhead);
- }
- }
- }else{
- tmp = src;
- }
- inv( &dst[0],&tmp[0], nfft);
- }else{
- inv( &dst[0],&src[0], nfft);
- }
- }
- template <typename _Output>
- inline
- void inv( std::vector<_Output> & dst, const std::vector<Complex> & src,Index nfft=-1)
- {
- if (nfft<1)
- nfft = ( NumTraits<_Output>::IsComplex == 0 && HasFlag(HalfSpectrum) ) ? 2*(src.size()-1) : src.size();
- dst.resize( nfft );
- inv( &dst[0],&src[0],nfft);
- }
- /*
- // TODO: multi-dimensional FFTs
- inline
- void inv2(Complex * dst, const Complex * src, int n0,int n1)
- {
- m_impl.inv2(dst,src,n0,n1);
- if ( HasFlag( Unscaled ) == false)
- scale(dst,1./(n0*n1),n0*n1);
- }
- */
- inline
- impl_type & impl() {return m_impl;}
- private:
- template <typename T_Data>
- inline
- void scale(T_Data * x,Scalar s,Index nx)
- {
- #if 1
- for (int k=0;k<nx;++k)
- *x++ *= s;
- #else
- if ( ((ptrdiff_t)x) & 15 )
- Matrix<T_Data, Dynamic, 1>::Map(x,nx) *= s;
- else
- Matrix<T_Data, Dynamic, 1>::MapAligned(x,nx) *= s;
- //Matrix<T_Data, Dynamic, Dynamic>::Map(x,nx) * s;
- #endif
- }
- inline
- void ReflectSpectrum(Complex * freq, Index nfft)
- {
- // create the implicit right-half spectrum (conjugate-mirror of the left-half)
- Index nhbins=(nfft>>1)+1;
- for (Index k=nhbins;k < nfft; ++k )
- freq[k] = conj(freq[nfft-k]);
- }
- impl_type m_impl;
- int m_flag;
- };
- template<typename T_SrcMat,typename T_FftIfc>
- template<typename T_DestMat> inline
- void fft_fwd_proxy<T_SrcMat,T_FftIfc>::evalTo(T_DestMat& dst) const
- {
- m_ifc.fwd( dst, m_src, m_nfft);
- }
- template<typename T_SrcMat,typename T_FftIfc>
- template<typename T_DestMat> inline
- void fft_inv_proxy<T_SrcMat,T_FftIfc>::evalTo(T_DestMat& dst) const
- {
- m_ifc.inv( dst, m_src, m_nfft);
- }
- }
- #endif
- /* vim: set filetype=cpp et sw=2 ts=2 ai: */
|