123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264 |
- /**
- * \file TransverseMercatorExact.hpp
- * \brief Header for GeographicLib::TransverseMercatorExact class
- *
- * Copyright (c) Charles Karney (2008-2020) <charles@karney.com> and licensed
- * under the MIT/X11 License. For more information, see
- * https://geographiclib.sourceforge.io/
- **********************************************************************/
- #if !defined(GEOGRAPHICLIB_TRANSVERSEMERCATOREXACT_HPP)
- #define GEOGRAPHICLIB_TRANSVERSEMERCATOREXACT_HPP 1
- #include <GeographicLib/Constants.hpp>
- #include <GeographicLib/EllipticFunction.hpp>
- namespace GeographicLib {
- /**
- * \brief An exact implementation of the transverse Mercator projection
- *
- * Implementation of the Transverse Mercator Projection given in
- * - L. P. Lee,
- * <a href="https://doi.org/10.3138/X687-1574-4325-WM62"> Conformal
- * Projections Based On Jacobian Elliptic Functions</a>, Part V of
- * Conformal Projections Based on Elliptic Functions,
- * (B. V. Gutsell, Toronto, 1976), 128pp.,
- * ISBN: 0919870163
- * (also appeared as:
- * Monograph 16, Suppl. No. 1 to Canadian Cartographer, Vol 13).
- * - C. F. F. Karney,
- * <a href="https://doi.org/10.1007/s00190-011-0445-3">
- * Transverse Mercator with an accuracy of a few nanometers,</a>
- * J. Geodesy 85(8), 475--485 (Aug. 2011);
- * preprint
- * <a href="https://arxiv.org/abs/1002.1417">arXiv:1002.1417</a>.
- *
- * Lee gives the correct results for forward and reverse transformations
- * subject to the branch cut rules (see the description of the \e extendp
- * argument to the constructor). The maximum error is about 8 nm (8
- * nanometers), ground distance, for the forward and reverse transformations.
- * The error in the convergence is 2 × 10<sup>−15</sup>",
- * the relative error in the scale is 7 × 10<sup>−12</sup>%%.
- * See Sec. 3 of
- * <a href="https://arxiv.org/abs/1002.1417">arXiv:1002.1417</a> for details.
- * The method is "exact" in the sense that the errors are close to the
- * round-off limit and that no changes are needed in the algorithms for them
- * to be used with reals of a higher precision. Thus the errors using long
- * double (with a 64-bit fraction) are about 2000 times smaller than using
- * double (with a 53-bit fraction).
- *
- * This algorithm is about 4.5 times slower than the 6th-order Krüger
- * method, TransverseMercator, taking about 11 us for a combined forward and
- * reverse projection on a 2.66 GHz Intel machine (g++, version 4.3.0, -O3).
- *
- * The ellipsoid parameters and the central scale are set in the constructor.
- * The central meridian (which is a trivial shift of the longitude) is
- * specified as the \e lon0 argument of the TransverseMercatorExact::Forward
- * and TransverseMercatorExact::Reverse functions. The latitude of origin is
- * taken to be the equator. See the documentation on TransverseMercator for
- * how to include a false easting, false northing, or a latitude of origin.
- *
- * See <a href="https://geographiclib.sourceforge.io/tm-grid.kmz"
- * type="application/vnd.google-earth.kmz"> tm-grid.kmz</a>, for an
- * illustration of the transverse Mercator grid in Google Earth.
- *
- * This class also returns the meridian convergence \e gamma and scale \e k.
- * The meridian convergence is the bearing of grid north (the \e y axis)
- * measured clockwise from true north.
- *
- * See TransverseMercatorExact.cpp for more information on the
- * implementation.
- *
- * See \ref transversemercator for a discussion of this projection.
- *
- * Example of use:
- * \include example-TransverseMercatorExact.cpp
- *
- * <a href="TransverseMercatorProj.1.html">TransverseMercatorProj</a> is a
- * command-line utility providing access to the functionality of
- * TransverseMercator and TransverseMercatorExact.
- **********************************************************************/
- class GEOGRAPHICLIB_EXPORT TransverseMercatorExact {
- private:
- typedef Math::real real;
- static const int numit_ = 10;
- real tol_, tol2_, taytol_;
- real _a, _f, _k0, _mu, _mv, _e;
- bool _extendp;
- EllipticFunction _Eu, _Ev;
- void zeta(real u, real snu, real cnu, real dnu,
- real v, real snv, real cnv, real dnv,
- real& taup, real& lam) const;
- void dwdzeta(real u, real snu, real cnu, real dnu,
- real v, real snv, real cnv, real dnv,
- real& du, real& dv) const;
- bool zetainv0(real psi, real lam, real& u, real& v) const;
- void zetainv(real taup, real lam, real& u, real& v) const;
- void sigma(real u, real snu, real cnu, real dnu,
- real v, real snv, real cnv, real dnv,
- real& xi, real& eta) const;
- void dwdsigma(real u, real snu, real cnu, real dnu,
- real v, real snv, real cnv, real dnv,
- real& du, real& dv) const;
- bool sigmainv0(real xi, real eta, real& u, real& v) const;
- void sigmainv(real xi, real eta, real& u, real& v) const;
- void Scale(real tau, real lam,
- real snu, real cnu, real dnu,
- real snv, real cnv, real dnv,
- real& gamma, real& k) const;
- public:
- /**
- * Constructor for a ellipsoid with
- *
- * @param[in] a equatorial radius (meters).
- * @param[in] f flattening of ellipsoid.
- * @param[in] k0 central scale factor.
- * @param[in] extendp use extended domain.
- * @exception GeographicErr if \e a, \e f, or \e k0 is not positive.
- *
- * The transverse Mercator projection has a branch point singularity at \e
- * lat = 0 and \e lon − \e lon0 = 90 (1 − \e e) or (for
- * TransverseMercatorExact::UTM) x = 18381 km, y = 0m. The \e extendp
- * argument governs where the branch cut is placed. With \e extendp =
- * false, the "standard" convention is followed, namely the cut is placed
- * along \e x > 18381 km, \e y = 0m. Forward can be called with any \e lat
- * and \e lon then produces the transformation shown in Lee, Fig 46.
- * Reverse analytically continues this in the ± \e x direction. As
- * a consequence, Reverse may map multiple points to the same geographic
- * location; for example, for TransverseMercatorExact::UTM, \e x =
- * 22051449.037349 m, \e y = −7131237.022729 m and \e x =
- * 29735142.378357 m, \e y = 4235043.607933 m both map to \e lat =
- * −2°, \e lon = 88°.
- *
- * With \e extendp = true, the branch cut is moved to the lower left
- * quadrant. The various symmetries of the transverse Mercator projection
- * can be used to explore the projection on any sheet. In this mode the
- * domains of \e lat, \e lon, \e x, and \e y are restricted to
- * - the union of
- * - \e lat in [0, 90] and \e lon − \e lon0 in [0, 90]
- * - \e lat in (-90, 0] and \e lon − \e lon0 in [90 (1 − \e
- e), 90]
- * - the union of
- * - <i>x</i>/(\e k0 \e a) in [0, ∞) and
- * <i>y</i>/(\e k0 \e a) in [0, E(<i>e</i><sup>2</sup>)]
- * - <i>x</i>/(\e k0 \e a) in [K(1 − <i>e</i><sup>2</sup>) −
- * E(1 − <i>e</i><sup>2</sup>), ∞) and <i>y</i>/(\e k0 \e
- * a) in (−∞, 0]
- * .
- * See Sec. 5 of
- * <a href="https://arxiv.org/abs/1002.1417">arXiv:1002.1417</a> for a full
- * discussion of the treatment of the branch cut.
- *
- * The method will work for all ellipsoids used in terrestrial geodesy.
- * The method cannot be applied directly to the case of a sphere (\e f = 0)
- * because some the constants characterizing this method diverge in that
- * limit, and in practice, \e f should be larger than about
- * numeric_limits<real>::epsilon(). However, TransverseMercator treats the
- * sphere exactly.
- **********************************************************************/
- TransverseMercatorExact(real a, real f, real k0, bool extendp = false);
- /**
- * Forward projection, from geographic to transverse Mercator.
- *
- * @param[in] lon0 central meridian of the projection (degrees).
- * @param[in] lat latitude of point (degrees).
- * @param[in] lon longitude of point (degrees).
- * @param[out] x easting of point (meters).
- * @param[out] y northing of point (meters).
- * @param[out] gamma meridian convergence at point (degrees).
- * @param[out] k scale of projection at point.
- *
- * No false easting or northing is added. \e lat should be in the range
- * [−90°, 90°].
- **********************************************************************/
- void Forward(real lon0, real lat, real lon,
- real& x, real& y, real& gamma, real& k) const;
- /**
- * Reverse projection, from transverse Mercator to geographic.
- *
- * @param[in] lon0 central meridian of the projection (degrees).
- * @param[in] x easting of point (meters).
- * @param[in] y northing of point (meters).
- * @param[out] lat latitude of point (degrees).
- * @param[out] lon longitude of point (degrees).
- * @param[out] gamma meridian convergence at point (degrees).
- * @param[out] k scale of projection at point.
- *
- * No false easting or northing is added. The value of \e lon returned is
- * in the range [−180°, 180°].
- **********************************************************************/
- void Reverse(real lon0, real x, real y,
- real& lat, real& lon, real& gamma, real& k) const;
- /**
- * TransverseMercatorExact::Forward without returning the convergence and
- * scale.
- **********************************************************************/
- void Forward(real lon0, real lat, real lon,
- real& x, real& y) const {
- real gamma, k;
- Forward(lon0, lat, lon, x, y, gamma, k);
- }
- /**
- * TransverseMercatorExact::Reverse without returning the convergence and
- * scale.
- **********************************************************************/
- void Reverse(real lon0, real x, real y,
- real& lat, real& lon) const {
- real gamma, k;
- Reverse(lon0, x, y, lat, lon, gamma, k);
- }
- /** \name Inspector functions
- **********************************************************************/
- ///@{
- /**
- * @return \e a the equatorial radius of the ellipsoid (meters). This is
- * the value used in the constructor.
- **********************************************************************/
- Math::real EquatorialRadius() const { return _a; }
- /**
- * @return \e f the flattening of the ellipsoid. This is the value used in
- * the constructor.
- **********************************************************************/
- Math::real Flattening() const { return _f; }
- /**
- * @return \e k0 central scale for the projection. This is the value of \e
- * k0 used in the constructor and is the scale on the central meridian.
- **********************************************************************/
- Math::real CentralScale() const { return _k0; }
- /**
- * \deprecated An old name for EquatorialRadius().
- **********************************************************************/
- GEOGRAPHICLIB_DEPRECATED("Use EquatorialRadius()")
- Math::real MajorRadius() const { return EquatorialRadius(); }
- ///@}
- /**
- * A global instantiation of TransverseMercatorExact with the WGS84
- * ellipsoid and the UTM scale factor. However, unlike UTM, no false
- * easting or northing is added.
- **********************************************************************/
- static const TransverseMercatorExact& UTM();
- };
- } // namespace GeographicLib
- #endif // GEOGRAPHICLIB_TRANSVERSEMERCATOREXACT_HPP
|