123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356 |
- /**
- * \file SphericalHarmonic.hpp
- * \brief Header for GeographicLib::SphericalHarmonic class
- *
- * Copyright (c) Charles Karney (2011-2019) <charles@karney.com> and licensed
- * under the MIT/X11 License. For more information, see
- * https://geographiclib.sourceforge.io/
- **********************************************************************/
- #if !defined(GEOGRAPHICLIB_SPHERICALHARMONIC_HPP)
- #define GEOGRAPHICLIB_SPHERICALHARMONIC_HPP 1
- #include <vector>
- #include <GeographicLib/Constants.hpp>
- #include <GeographicLib/SphericalEngine.hpp>
- #include <GeographicLib/CircularEngine.hpp>
- namespace GeographicLib {
- /**
- * \brief Spherical harmonic series
- *
- * This class evaluates the spherical harmonic sum \verbatim
- V(x, y, z) = sum(n = 0..N)[ q^(n+1) * sum(m = 0..n)[
- (C[n,m] * cos(m*lambda) + S[n,m] * sin(m*lambda)) *
- P[n,m](cos(theta)) ] ]
- \endverbatim
- * where
- * - <i>p</i><sup>2</sup> = <i>x</i><sup>2</sup> + <i>y</i><sup>2</sup>,
- * - <i>r</i><sup>2</sup> = <i>p</i><sup>2</sup> + <i>z</i><sup>2</sup>,
- * - \e q = <i>a</i>/<i>r</i>,
- * - θ = atan2(\e p, \e z) = the spherical \e colatitude,
- * - λ = atan2(\e y, \e x) = the longitude.
- * - P<sub><i>nm</i></sub>(\e t) is the associated Legendre polynomial of
- * degree \e n and order \e m.
- *
- * Two normalizations are supported for P<sub><i>nm</i></sub>
- * - fully normalized denoted by SphericalHarmonic::FULL.
- * - Schmidt semi-normalized denoted by SphericalHarmonic::SCHMIDT.
- *
- * Clenshaw summation is used for the sums over both \e n and \e m. This
- * allows the computation to be carried out without the need for any
- * temporary arrays. See SphericalEngine.cpp for more information on the
- * implementation.
- *
- * References:
- * - C. W. Clenshaw,
- * <a href="https://doi.org/10.1090/S0025-5718-1955-0071856-0">
- * A note on the summation of Chebyshev series</a>,
- * %Math. Tables Aids Comput. 9(51), 118--120 (1955).
- * - R. E. Deakin, Derivatives of the earth's potentials, Geomatics
- * Research Australasia 68, 31--60, (June 1998).
- * - W. A. Heiskanen and H. Moritz, Physical Geodesy, (Freeman, San
- * Francisco, 1967). (See Sec. 1-14, for a definition of Pbar.)
- * - S. A. Holmes and W. E. Featherstone,
- * <a href="https://doi.org/10.1007/s00190-002-0216-2">
- * A unified approach to the Clenshaw summation and the recursive
- * computation of very high degree and order normalised associated Legendre
- * functions</a>, J. Geodesy 76(5), 279--299 (2002).
- * - C. C. Tscherning and K. Poder,
- * <a href="http://cct.gfy.ku.dk/publ_cct/cct80.pdf">
- * Some geodetic applications of Clenshaw summation</a>,
- * Boll. Geod. Sci. Aff. 41(4), 349--375 (1982).
- *
- * Example of use:
- * \include example-SphericalHarmonic.cpp
- **********************************************************************/
- class GEOGRAPHICLIB_EXPORT SphericalHarmonic {
- public:
- /**
- * Supported normalizations for the associated Legendre polynomials.
- **********************************************************************/
- enum normalization {
- /**
- * Fully normalized associated Legendre polynomials.
- *
- * These are defined by
- * <i>P</i><sub><i>nm</i></sub><sup>full</sup>(\e z)
- * = (−1)<sup><i>m</i></sup>
- * sqrt(\e k (2\e n + 1) (\e n − \e m)! / (\e n + \e m)!)
- * <b>P</b><sub><i>n</i></sub><sup><i>m</i></sup>(\e z), where
- * <b>P</b><sub><i>n</i></sub><sup><i>m</i></sup>(\e z) is Ferrers
- * function (also known as the Legendre function on the cut or the
- * associated Legendre polynomial) https://dlmf.nist.gov/14.7.E10 and
- * \e k = 1 for \e m = 0 and \e k = 2 otherwise.
- *
- * The mean squared value of
- * <i>P</i><sub><i>nm</i></sub><sup>full</sup>(cosθ)
- * cos(<i>m</i>λ) and
- * <i>P</i><sub><i>nm</i></sub><sup>full</sup>(cosθ)
- * sin(<i>m</i>λ) over the sphere is 1.
- *
- * @hideinitializer
- **********************************************************************/
- FULL = SphericalEngine::FULL,
- /**
- * Schmidt semi-normalized associated Legendre polynomials.
- *
- * These are defined by
- * <i>P</i><sub><i>nm</i></sub><sup>schmidt</sup>(\e z)
- * = (−1)<sup><i>m</i></sup>
- * sqrt(\e k (\e n − \e m)! / (\e n + \e m)!)
- * <b>P</b><sub><i>n</i></sub><sup><i>m</i></sup>(\e z), where
- * <b>P</b><sub><i>n</i></sub><sup><i>m</i></sup>(\e z) is Ferrers
- * function (also known as the Legendre function on the cut or the
- * associated Legendre polynomial) https://dlmf.nist.gov/14.7.E10 and
- * \e k = 1 for \e m = 0 and \e k = 2 otherwise.
- *
- * The mean squared value of
- * <i>P</i><sub><i>nm</i></sub><sup>schmidt</sup>(cosθ)
- * cos(<i>m</i>λ) and
- * <i>P</i><sub><i>nm</i></sub><sup>schmidt</sup>(cosθ)
- * sin(<i>m</i>λ) over the sphere is 1/(2\e n + 1).
- *
- * @hideinitializer
- **********************************************************************/
- SCHMIDT = SphericalEngine::SCHMIDT,
- };
- private:
- typedef Math::real real;
- SphericalEngine::coeff _c[1];
- real _a;
- unsigned _norm;
- public:
- /**
- * Constructor with a full set of coefficients specified.
- *
- * @param[in] C the coefficients <i>C</i><sub><i>nm</i></sub>.
- * @param[in] S the coefficients <i>S</i><sub><i>nm</i></sub>.
- * @param[in] N the maximum degree and order of the sum
- * @param[in] a the reference radius appearing in the definition of the
- * sum.
- * @param[in] norm the normalization for the associated Legendre
- * polynomials, either SphericalHarmonic::FULL (the default) or
- * SphericalHarmonic::SCHMIDT.
- * @exception GeographicErr if \e N does not satisfy \e N ≥ −1.
- * @exception GeographicErr if \e C or \e S is not big enough to hold the
- * coefficients.
- *
- * The coefficients <i>C</i><sub><i>nm</i></sub> and
- * <i>S</i><sub><i>nm</i></sub> are stored in the one-dimensional vectors
- * \e C and \e S which must contain (\e N + 1)(\e N + 2)/2 and \e N (\e N +
- * 1)/2 elements, respectively, stored in "column-major" order. Thus for
- * \e N = 3, the order would be:
- * <i>C</i><sub>00</sub>,
- * <i>C</i><sub>10</sub>,
- * <i>C</i><sub>20</sub>,
- * <i>C</i><sub>30</sub>,
- * <i>C</i><sub>11</sub>,
- * <i>C</i><sub>21</sub>,
- * <i>C</i><sub>31</sub>,
- * <i>C</i><sub>22</sub>,
- * <i>C</i><sub>32</sub>,
- * <i>C</i><sub>33</sub>.
- * In general the (\e n,\e m) element is at index \e m \e N − \e m
- * (\e m − 1)/2 + \e n. The layout of \e S is the same except that
- * the first column is omitted (since the \e m = 0 terms never contribute
- * to the sum) and the 0th element is <i>S</i><sub>11</sub>
- *
- * The class stores <i>pointers</i> to the first elements of \e C and \e S.
- * These arrays should not be altered or destroyed during the lifetime of a
- * SphericalHarmonic object.
- **********************************************************************/
- SphericalHarmonic(const std::vector<real>& C,
- const std::vector<real>& S,
- int N, real a, unsigned norm = FULL)
- : _a(a)
- , _norm(norm)
- { _c[0] = SphericalEngine::coeff(C, S, N); }
- /**
- * Constructor with a subset of coefficients specified.
- *
- * @param[in] C the coefficients <i>C</i><sub><i>nm</i></sub>.
- * @param[in] S the coefficients <i>S</i><sub><i>nm</i></sub>.
- * @param[in] N the degree used to determine the layout of \e C and \e S.
- * @param[in] nmx the maximum degree used in the sum. The sum over \e n is
- * from 0 thru \e nmx.
- * @param[in] mmx the maximum order used in the sum. The sum over \e m is
- * from 0 thru min(\e n, \e mmx).
- * @param[in] a the reference radius appearing in the definition of the
- * sum.
- * @param[in] norm the normalization for the associated Legendre
- * polynomials, either SphericalHarmonic::FULL (the default) or
- * SphericalHarmonic::SCHMIDT.
- * @exception GeographicErr if \e N, \e nmx, and \e mmx do not satisfy
- * \e N ≥ \e nmx ≥ \e mmx ≥ −1.
- * @exception GeographicErr if \e C or \e S is not big enough to hold the
- * coefficients.
- *
- * The class stores <i>pointers</i> to the first elements of \e C and \e S.
- * These arrays should not be altered or destroyed during the lifetime of a
- * SphericalHarmonic object.
- **********************************************************************/
- SphericalHarmonic(const std::vector<real>& C,
- const std::vector<real>& S,
- int N, int nmx, int mmx,
- real a, unsigned norm = FULL)
- : _a(a)
- , _norm(norm)
- { _c[0] = SphericalEngine::coeff(C, S, N, nmx, mmx); }
- /**
- * A default constructor so that the object can be created when the
- * constructor for another object is initialized. This default object can
- * then be reset with the default copy assignment operator.
- **********************************************************************/
- SphericalHarmonic() {}
- /**
- * Compute the spherical harmonic sum.
- *
- * @param[in] x cartesian coordinate.
- * @param[in] y cartesian coordinate.
- * @param[in] z cartesian coordinate.
- * @return \e V the spherical harmonic sum.
- *
- * This routine requires constant memory and thus never throws an
- * exception.
- **********************************************************************/
- Math::real operator()(real x, real y, real z) const {
- real f[] = {1};
- real v = 0;
- real dummy;
- switch (_norm) {
- case FULL:
- v = SphericalEngine::Value<false, SphericalEngine::FULL, 1>
- (_c, f, x, y, z, _a, dummy, dummy, dummy);
- break;
- case SCHMIDT:
- default: // To avoid compiler warnings
- v = SphericalEngine::Value<false, SphericalEngine::SCHMIDT, 1>
- (_c, f, x, y, z, _a, dummy, dummy, dummy);
- break;
- }
- return v;
- }
- /**
- * Compute a spherical harmonic sum and its gradient.
- *
- * @param[in] x cartesian coordinate.
- * @param[in] y cartesian coordinate.
- * @param[in] z cartesian coordinate.
- * @param[out] gradx \e x component of the gradient
- * @param[out] grady \e y component of the gradient
- * @param[out] gradz \e z component of the gradient
- * @return \e V the spherical harmonic sum.
- *
- * This is the same as the previous function, except that the components of
- * the gradients of the sum in the \e x, \e y, and \e z directions are
- * computed. This routine requires constant memory and thus never throws
- * an exception.
- **********************************************************************/
- Math::real operator()(real x, real y, real z,
- real& gradx, real& grady, real& gradz) const {
- real f[] = {1};
- real v = 0;
- switch (_norm) {
- case FULL:
- v = SphericalEngine::Value<true, SphericalEngine::FULL, 1>
- (_c, f, x, y, z, _a, gradx, grady, gradz);
- break;
- case SCHMIDT:
- default: // To avoid compiler warnings
- v = SphericalEngine::Value<true, SphericalEngine::SCHMIDT, 1>
- (_c, f, x, y, z, _a, gradx, grady, gradz);
- break;
- }
- return v;
- }
- /**
- * Create a CircularEngine to allow the efficient evaluation of several
- * points on a circle of latitude.
- *
- * @param[in] p the radius of the circle.
- * @param[in] z the height of the circle above the equatorial plane.
- * @param[in] gradp if true the returned object will be able to compute the
- * gradient of the sum.
- * @exception std::bad_alloc if the memory for the CircularEngine can't be
- * allocated.
- * @return the CircularEngine object.
- *
- * SphericalHarmonic::operator()() exchanges the order of the sums in the
- * definition, i.e., ∑<sub><i>n</i> = 0..<i>N</i></sub>
- * ∑<sub><i>m</i> = 0..<i>n</i></sub> becomes ∑<sub><i>m</i> =
- * 0..<i>N</i></sub> ∑<sub><i>n</i> = <i>m</i>..<i>N</i></sub>.
- * SphericalHarmonic::Circle performs the inner sum over degree \e n (which
- * entails about <i>N</i><sup>2</sup> operations). Calling
- * CircularEngine::operator()() on the returned object performs the outer
- * sum over the order \e m (about \e N operations).
- *
- * Here's an example of computing the spherical sum at a sequence of
- * longitudes without using a CircularEngine object \code
- SphericalHarmonic h(...); // Create the SphericalHarmonic object
- double r = 2, lat = 33, lon0 = 44, dlon = 0.01;
- double
- phi = lat * Math::degree<double>(),
- z = r * sin(phi), p = r * cos(phi);
- for (int i = 0; i <= 100; ++i) {
- real
- lon = lon0 + i * dlon,
- lam = lon * Math::degree<double>();
- std::cout << lon << " " << h(p * cos(lam), p * sin(lam), z) << "\n";
- }
- \endcode
- * Here is the same calculation done using a CircularEngine object. This
- * will be about <i>N</i>/2 times faster. \code
- SphericalHarmonic h(...); // Create the SphericalHarmonic object
- double r = 2, lat = 33, lon0 = 44, dlon = 0.01;
- double
- phi = lat * Math::degree<double>(),
- z = r * sin(phi), p = r * cos(phi);
- CircularEngine c(h(p, z, false)); // Create the CircularEngine object
- for (int i = 0; i <= 100; ++i) {
- real
- lon = lon0 + i * dlon;
- std::cout << lon << " " << c(lon) << "\n";
- }
- \endcode
- **********************************************************************/
- CircularEngine Circle(real p, real z, bool gradp) const {
- real f[] = {1};
- switch (_norm) {
- case FULL:
- return gradp ?
- SphericalEngine::Circle<true, SphericalEngine::FULL, 1>
- (_c, f, p, z, _a) :
- SphericalEngine::Circle<false, SphericalEngine::FULL, 1>
- (_c, f, p, z, _a);
- break;
- case SCHMIDT:
- default: // To avoid compiler warnings
- return gradp ?
- SphericalEngine::Circle<true, SphericalEngine::SCHMIDT, 1>
- (_c, f, p, z, _a) :
- SphericalEngine::Circle<false, SphericalEngine::SCHMIDT, 1>
- (_c, f, p, z, _a);
- break;
- }
- }
- /**
- * @return the zeroth SphericalEngine::coeff object.
- **********************************************************************/
- const SphericalEngine::coeff& Coefficients() const
- { return _c[0]; }
- };
- } // namespace GeographicLib
- #endif // GEOGRAPHICLIB_SPHERICALHARMONIC_HPP
|