123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621 |
- /**
- * \file Rhumb.hpp
- * \brief Header for GeographicLib::Rhumb and GeographicLib::RhumbLine classes
- *
- * Copyright (c) Charles Karney (2014-2021) <charles@karney.com> and licensed
- * under the MIT/X11 License. For more information, see
- * https://geographiclib.sourceforge.io/
- **********************************************************************/
- #if !defined(GEOGRAPHICLIB_RHUMB_HPP)
- #define GEOGRAPHICLIB_RHUMB_HPP 1
- #include <GeographicLib/Constants.hpp>
- #include <GeographicLib/Ellipsoid.hpp>
- #if !defined(GEOGRAPHICLIB_RHUMBAREA_ORDER)
- /**
- * The order of the series approximation used in rhumb area calculations.
- * GEOGRAPHICLIB_RHUMBAREA_ORDER can be set to any integer in [4, 8].
- **********************************************************************/
- # define GEOGRAPHICLIB_RHUMBAREA_ORDER \
- (GEOGRAPHICLIB_PRECISION == 2 ? 6 : \
- (GEOGRAPHICLIB_PRECISION == 1 ? 4 : 8))
- #endif
- namespace GeographicLib {
- class RhumbLine;
- template <class T> class PolygonAreaT;
- /**
- * \brief Solve of the direct and inverse rhumb problems.
- *
- * The path of constant azimuth between two points on a ellipsoid at (\e
- * lat1, \e lon1) and (\e lat2, \e lon2) is called the rhumb line (also
- * called the loxodrome). Its length is \e s12 and its azimuth is \e azi12.
- * (The azimuth is the heading measured clockwise from north.)
- *
- * Given \e lat1, \e lon1, \e azi12, and \e s12, we can determine \e lat2,
- * and \e lon2. This is the \e direct rhumb problem and its solution is
- * given by the function Rhumb::Direct.
- *
- * Given \e lat1, \e lon1, \e lat2, and \e lon2, we can determine \e azi12
- * and \e s12. This is the \e inverse rhumb problem, whose solution is given
- * by Rhumb::Inverse. This finds the shortest such rhumb line, i.e., the one
- * that wraps no more than half way around the earth. If the end points are
- * on opposite meridians, there are two shortest rhumb lines and the
- * east-going one is chosen.
- *
- * These routines also optionally calculate the area under the rhumb line, \e
- * S12. This is the area, measured counter-clockwise, of the rhumb line
- * quadrilateral with corners (<i>lat1</i>,<i>lon1</i>), (0,<i>lon1</i>),
- * (0,<i>lon2</i>), and (<i>lat2</i>,<i>lon2</i>).
- *
- * Note that rhumb lines may be appreciably longer (up to 50%) than the
- * corresponding Geodesic. For example the distance between London Heathrow
- * and Tokyo Narita via the rhumb line is 11400 km which is 18% longer than
- * the geodesic distance 9600 km.
- *
- * For more information on rhumb lines see \ref rhumb.
- *
- * Example of use:
- * \include example-Rhumb.cpp
- **********************************************************************/
- class GEOGRAPHICLIB_EXPORT Rhumb {
- private:
- typedef Math::real real;
- friend class RhumbLine;
- template <class T> friend class PolygonAreaT;
- Ellipsoid _ell;
- bool _exact;
- real _c2;
- static const int tm_maxord = GEOGRAPHICLIB_TRANSVERSEMERCATOR_ORDER;
- static const int maxpow_ = GEOGRAPHICLIB_RHUMBAREA_ORDER;
- // _R[0] unused
- real _R[maxpow_ + 1];
- static real gd(real x)
- { using std::atan; using std::sinh; return atan(sinh(x)); }
- // Use divided differences to determine (mu2 - mu1) / (psi2 - psi1)
- // accurately
- //
- // Definition: Df(x,y,d) = (f(x) - f(y)) / (x - y)
- // See:
- // W. M. Kahan and R. J. Fateman,
- // Symbolic computation of divided differences,
- // SIGSAM Bull. 33(3), 7-28 (1999)
- // https://doi.org/10.1145/334714.334716
- // http://www.cs.berkeley.edu/~fateman/papers/divdiff.pdf
- static real Dlog(real x, real y) {
- using std::sqrt; using std::asinh;
- real t = x - y;
- // Change
- //
- // atanh(t / (x + y))
- //
- // to
- //
- // asinh(t / (2 * sqrt(x*y)))
- //
- // to avoid taking atanh(1) when x is large and y is 1. N.B., this
- // routine is invoked with positive x and y, so no need to guard against
- // taking the sqrt of a negative quantity. This fixes bogus results for
- // the area being returning when an endpoint is at a pole.
- return t != 0 ? 2 * asinh(t / (2 * sqrt(x*y))) / t : 1 / x;
- }
- // N.B., x and y are in degrees
- static real Dtan(real x, real y) {
- real d = x - y, tx = Math::tand(x), ty = Math::tand(y), txy = tx * ty;
- return d != 0 ?
- (2 * txy > -1 ? (1 + txy) * Math::tand(d) : tx - ty) /
- (d * Math::degree()) :
- 1 + txy;
- }
- static real Datan(real x, real y) {
- using std::atan;
- real d = x - y, xy = x * y;
- return d != 0 ?
- (2 * xy > -1 ? atan( d / (1 + xy) ) : atan(x) - atan(y)) / d :
- 1 / (1 + xy);
- }
- static real Dsin(real x, real y) {
- using std::sin; using std::cos;
- real d = (x - y) / 2;
- return cos((x + y)/2) * (d != 0 ? sin(d) / d : 1);
- }
- static real Dsinh(real x, real y) {
- using std::sinh; using std::cosh;
- real d = (x - y) / 2;
- return cosh((x + y) / 2) * (d != 0 ? sinh(d) / d : 1);
- }
- static real Dcosh(real x, real y) {
- using std::sinh;
- real d = (x - y) / 2;
- return sinh((x + y) / 2) * (d != 0 ? sinh(d) / d : 1);
- }
- static real Dasinh(real x, real y) {
- using std::asinh; using std::hypot;
- real d = x - y,
- hx = hypot(real(1), x), hy = hypot(real(1), y);
- return d != 0 ?
- asinh(x*y > 0 ? d * (x + y) / (x*hy + y*hx) : x*hy - y*hx) / d :
- 1 / hx;
- }
- static real Dgd(real x, real y) {
- using std::sinh;
- return Datan(sinh(x), sinh(y)) * Dsinh(x, y);
- }
- // N.B., x and y are the tangents of the angles
- static real Dgdinv(real x, real y)
- { return Dasinh(x, y) / Datan(x, y); }
- // Copied from LambertConformalConic...
- // Deatanhe(x,y) = eatanhe((x-y)/(1-e^2*x*y))/(x-y)
- real Deatanhe(real x, real y) const {
- real t = x - y, d = 1 - _ell._e2 * x * y;
- return t != 0 ? Math::eatanhe(t / d, _ell._es) / t : _ell._e2 / d;
- }
- // (E(x) - E(y)) / (x - y) -- E = incomplete elliptic integral of 2nd kind
- real DE(real x, real y) const;
- // (mux - muy) / (phix - phiy) using elliptic integrals
- real DRectifying(real latx, real laty) const;
- // (psix - psiy) / (phix - phiy)
- real DIsometric(real latx, real laty) const;
- // (sum(c[j]*sin(2*j*x),j=1..n) - sum(c[j]*sin(2*j*x),j=1..n)) / (x - y)
- static real SinCosSeries(bool sinp,
- real x, real y, const real c[], int n);
- // (mux - muy) / (chix - chiy) using Krueger's series
- real DConformalToRectifying(real chix, real chiy) const;
- // (chix - chiy) / (mux - muy) using Krueger's series
- real DRectifyingToConformal(real mux, real muy) const;
- // (mux - muy) / (psix - psiy)
- // N.B., psix and psiy are in degrees
- real DIsometricToRectifying(real psix, real psiy) const;
- // (psix - psiy) / (mux - muy)
- real DRectifyingToIsometric(real mux, real muy) const;
- real MeanSinXi(real psi1, real psi2) const;
- // The following two functions (with lots of ignored arguments) mimic the
- // interface to the corresponding Geodesic function. These are needed by
- // PolygonAreaT.
- void GenDirect(real lat1, real lon1, real azi12,
- bool, real s12, unsigned outmask,
- real& lat2, real& lon2, real&, real&, real&, real&, real&,
- real& S12) const {
- GenDirect(lat1, lon1, azi12, s12, outmask, lat2, lon2, S12);
- }
- void GenInverse(real lat1, real lon1, real lat2, real lon2,
- unsigned outmask, real& s12, real& azi12,
- real&, real& , real& , real& , real& S12) const {
- GenInverse(lat1, lon1, lat2, lon2, outmask, s12, azi12, S12);
- }
- public:
- /**
- * Bit masks for what calculations to do. They specify which results to
- * return in the general routines Rhumb::GenDirect and Rhumb::GenInverse
- * routines. RhumbLine::mask is a duplication of this enum.
- **********************************************************************/
- enum mask {
- /**
- * No output.
- * @hideinitializer
- **********************************************************************/
- NONE = 0U,
- /**
- * Calculate latitude \e lat2.
- * @hideinitializer
- **********************************************************************/
- LATITUDE = 1U<<7,
- /**
- * Calculate longitude \e lon2.
- * @hideinitializer
- **********************************************************************/
- LONGITUDE = 1U<<8,
- /**
- * Calculate azimuth \e azi12.
- * @hideinitializer
- **********************************************************************/
- AZIMUTH = 1U<<9,
- /**
- * Calculate distance \e s12.
- * @hideinitializer
- **********************************************************************/
- DISTANCE = 1U<<10,
- /**
- * Calculate area \e S12.
- * @hideinitializer
- **********************************************************************/
- AREA = 1U<<14,
- /**
- * Unroll \e lon2 in the direct calculation.
- * @hideinitializer
- **********************************************************************/
- LONG_UNROLL = 1U<<15,
- /**
- * Calculate everything. (LONG_UNROLL is not included in this mask.)
- * @hideinitializer
- **********************************************************************/
- ALL = 0x7F80U,
- };
- /**
- * Constructor for a ellipsoid with
- *
- * @param[in] a equatorial radius (meters).
- * @param[in] f flattening of ellipsoid. Setting \e f = 0 gives a sphere.
- * Negative \e f gives a prolate ellipsoid.
- * @param[in] exact if true (the default) use an addition theorem for
- * elliptic integrals to compute divided differences; otherwise use
- * series expansion (accurate for |<i>f</i>| < 0.01).
- * @exception GeographicErr if \e a or (1 − \e f) \e a is not
- * positive.
- *
- * See \ref rhumb, for a detailed description of the \e exact parameter.
- **********************************************************************/
- Rhumb(real a, real f, bool exact = true);
- /**
- * Solve the direct rhumb problem returning also the area.
- *
- * @param[in] lat1 latitude of point 1 (degrees).
- * @param[in] lon1 longitude of point 1 (degrees).
- * @param[in] azi12 azimuth of the rhumb line (degrees).
- * @param[in] s12 distance between point 1 and point 2 (meters); it can be
- * negative.
- * @param[out] lat2 latitude of point 2 (degrees).
- * @param[out] lon2 longitude of point 2 (degrees).
- * @param[out] S12 area under the rhumb line (meters<sup>2</sup>).
- *
- * \e lat1 should be in the range [−90°, 90°]. The value of
- * \e lon2 returned is in the range [−180°, 180°].
- *
- * If point 1 is a pole, the cosine of its latitude is taken to be
- * 1/ε<sup>2</sup> (where ε is 2<sup>-52</sup>). This
- * position, which is extremely close to the actual pole, allows the
- * calculation to be carried out in finite terms. If \e s12 is large
- * enough that the rhumb line crosses a pole, the longitude of point 2
- * is indeterminate (a NaN is returned for \e lon2 and \e S12).
- **********************************************************************/
- void Direct(real lat1, real lon1, real azi12, real s12,
- real& lat2, real& lon2, real& S12) const {
- GenDirect(lat1, lon1, azi12, s12,
- LATITUDE | LONGITUDE | AREA, lat2, lon2, S12);
- }
- /**
- * Solve the direct rhumb problem without the area.
- **********************************************************************/
- void Direct(real lat1, real lon1, real azi12, real s12,
- real& lat2, real& lon2) const {
- real t;
- GenDirect(lat1, lon1, azi12, s12, LATITUDE | LONGITUDE, lat2, lon2, t);
- }
- /**
- * The general direct rhumb problem. Rhumb::Direct is defined in terms
- * of this function.
- *
- * @param[in] lat1 latitude of point 1 (degrees).
- * @param[in] lon1 longitude of point 1 (degrees).
- * @param[in] azi12 azimuth of the rhumb line (degrees).
- * @param[in] s12 distance between point 1 and point 2 (meters); it can be
- * negative.
- * @param[in] outmask a bitor'ed combination of Rhumb::mask values
- * specifying which of the following parameters should be set.
- * @param[out] lat2 latitude of point 2 (degrees).
- * @param[out] lon2 longitude of point 2 (degrees).
- * @param[out] S12 area under the rhumb line (meters<sup>2</sup>).
- *
- * The Rhumb::mask values possible for \e outmask are
- * - \e outmask |= Rhumb::LATITUDE for the latitude \e lat2;
- * - \e outmask |= Rhumb::LONGITUDE for the latitude \e lon2;
- * - \e outmask |= Rhumb::AREA for the area \e S12;
- * - \e outmask |= Rhumb::ALL for all of the above;
- * - \e outmask |= Rhumb::LONG_UNROLL to unroll \e lon2 instead of wrapping
- * it into the range [−180°, 180°].
- * .
- * With the Rhumb::LONG_UNROLL bit set, the quantity \e lon2 −
- * \e lon1 indicates how many times and in what sense the rhumb line
- * encircles the ellipsoid.
- **********************************************************************/
- void GenDirect(real lat1, real lon1, real azi12, real s12,
- unsigned outmask, real& lat2, real& lon2, real& S12) const;
- /**
- * Solve the inverse rhumb problem returning also the area.
- *
- * @param[in] lat1 latitude of point 1 (degrees).
- * @param[in] lon1 longitude of point 1 (degrees).
- * @param[in] lat2 latitude of point 2 (degrees).
- * @param[in] lon2 longitude of point 2 (degrees).
- * @param[out] s12 rhumb distance between point 1 and point 2 (meters).
- * @param[out] azi12 azimuth of the rhumb line (degrees).
- * @param[out] S12 area under the rhumb line (meters<sup>2</sup>).
- *
- * The shortest rhumb line is found. If the end points are on opposite
- * meridians, there are two shortest rhumb lines and the east-going one is
- * chosen. \e lat1 and \e lat2 should be in the range [−90°,
- * 90°]. The value of \e azi12 returned is in the range
- * [−180°, 180°].
- *
- * If either point is a pole, the cosine of its latitude is taken to be
- * 1/ε<sup>2</sup> (where ε is 2<sup>-52</sup>). This
- * position, which is extremely close to the actual pole, allows the
- * calculation to be carried out in finite terms.
- **********************************************************************/
- void Inverse(real lat1, real lon1, real lat2, real lon2,
- real& s12, real& azi12, real& S12) const {
- GenInverse(lat1, lon1, lat2, lon2,
- DISTANCE | AZIMUTH | AREA, s12, azi12, S12);
- }
- /**
- * Solve the inverse rhumb problem without the area.
- **********************************************************************/
- void Inverse(real lat1, real lon1, real lat2, real lon2,
- real& s12, real& azi12) const {
- real t;
- GenInverse(lat1, lon1, lat2, lon2, DISTANCE | AZIMUTH, s12, azi12, t);
- }
- /**
- * The general inverse rhumb problem. Rhumb::Inverse is defined in terms
- * of this function.
- *
- * @param[in] lat1 latitude of point 1 (degrees).
- * @param[in] lon1 longitude of point 1 (degrees).
- * @param[in] lat2 latitude of point 2 (degrees).
- * @param[in] lon2 longitude of point 2 (degrees).
- * @param[in] outmask a bitor'ed combination of Rhumb::mask values
- * specifying which of the following parameters should be set.
- * @param[out] s12 rhumb distance between point 1 and point 2 (meters).
- * @param[out] azi12 azimuth of the rhumb line (degrees).
- * @param[out] S12 area under the rhumb line (meters<sup>2</sup>).
- *
- * The Rhumb::mask values possible for \e outmask are
- * - \e outmask |= Rhumb::DISTANCE for the latitude \e s12;
- * - \e outmask |= Rhumb::AZIMUTH for the latitude \e azi12;
- * - \e outmask |= Rhumb::AREA for the area \e S12;
- * - \e outmask |= Rhumb::ALL for all of the above;
- **********************************************************************/
- void GenInverse(real lat1, real lon1, real lat2, real lon2,
- unsigned outmask,
- real& s12, real& azi12, real& S12) const;
- /**
- * Set up to compute several points on a single rhumb line.
- *
- * @param[in] lat1 latitude of point 1 (degrees).
- * @param[in] lon1 longitude of point 1 (degrees).
- * @param[in] azi12 azimuth of the rhumb line (degrees).
- * @return a RhumbLine object.
- *
- * \e lat1 should be in the range [−90°, 90°].
- *
- * If point 1 is a pole, the cosine of its latitude is taken to be
- * 1/ε<sup>2</sup> (where ε is 2<sup>-52</sup>). This
- * position, which is extremely close to the actual pole, allows the
- * calculation to be carried out in finite terms.
- **********************************************************************/
- RhumbLine Line(real lat1, real lon1, real azi12) const;
- /** \name Inspector functions.
- **********************************************************************/
- ///@{
- /**
- * @return \e a the equatorial radius of the ellipsoid (meters). This is
- * the value used in the constructor.
- **********************************************************************/
- Math::real EquatorialRadius() const { return _ell.EquatorialRadius(); }
- /**
- * @return \e f the flattening of the ellipsoid. This is the
- * value used in the constructor.
- **********************************************************************/
- Math::real Flattening() const { return _ell.Flattening(); }
- /**
- * @return total area of ellipsoid in meters<sup>2</sup>. The area of a
- * polygon encircling a pole can be found by adding
- * Geodesic::EllipsoidArea()/2 to the sum of \e S12 for each side of the
- * polygon.
- **********************************************************************/
- Math::real EllipsoidArea() const { return _ell.Area(); }
- /**
- * \deprecated An old name for EquatorialRadius().
- **********************************************************************/
- GEOGRAPHICLIB_DEPRECATED("Use EquatorialRadius()")
- Math::real MajorRadius() const { return EquatorialRadius(); }
- ///@}
- /**
- * A global instantiation of Rhumb with the parameters for the WGS84
- * ellipsoid.
- **********************************************************************/
- static const Rhumb& WGS84();
- };
- /**
- * \brief Find a sequence of points on a single rhumb line.
- *
- * RhumbLine facilitates the determination of a series of points on a single
- * rhumb line. The starting point (\e lat1, \e lon1) and the azimuth \e
- * azi12 are specified in the call to Rhumb::Line which returns a RhumbLine
- * object. RhumbLine.Position returns the location of point 2 (and,
- * optionally, the corresponding area, \e S12) a distance \e s12 along the
- * rhumb line.
- *
- * There is no public constructor for this class. (Use Rhumb::Line to create
- * an instance.) The Rhumb object used to create a RhumbLine must stay in
- * scope as long as the RhumbLine.
- *
- * Example of use:
- * \include example-RhumbLine.cpp
- **********************************************************************/
- class GEOGRAPHICLIB_EXPORT RhumbLine {
- private:
- typedef Math::real real;
- friend class Rhumb;
- const Rhumb& _rh;
- bool _exact; // TODO: RhumbLine::_exact is unused; retire
- real _lat1, _lon1, _azi12, _salp, _calp, _mu1, _psi1, _r1;
- // copy assignment not allowed
- RhumbLine& operator=(const RhumbLine&) = delete;
- RhumbLine(const Rhumb& rh, real lat1, real lon1, real azi12,
- bool exact);
- public:
- /**
- * Construction is via default copy constructor.
- **********************************************************************/
- RhumbLine(const RhumbLine&) = default;
- /**
- * This is a duplication of Rhumb::mask.
- **********************************************************************/
- enum mask {
- /**
- * No output.
- * @hideinitializer
- **********************************************************************/
- NONE = Rhumb::NONE,
- /**
- * Calculate latitude \e lat2.
- * @hideinitializer
- **********************************************************************/
- LATITUDE = Rhumb::LATITUDE,
- /**
- * Calculate longitude \e lon2.
- * @hideinitializer
- **********************************************************************/
- LONGITUDE = Rhumb::LONGITUDE,
- /**
- * Calculate azimuth \e azi12.
- * @hideinitializer
- **********************************************************************/
- AZIMUTH = Rhumb::AZIMUTH,
- /**
- * Calculate distance \e s12.
- * @hideinitializer
- **********************************************************************/
- DISTANCE = Rhumb::DISTANCE,
- /**
- * Calculate area \e S12.
- * @hideinitializer
- **********************************************************************/
- AREA = Rhumb::AREA,
- /**
- * Unroll \e lon2 in the direct calculation.
- * @hideinitializer
- **********************************************************************/
- LONG_UNROLL = Rhumb::LONG_UNROLL,
- /**
- * Calculate everything. (LONG_UNROLL is not included in this mask.)
- * @hideinitializer
- **********************************************************************/
- ALL = Rhumb::ALL,
- };
- /**
- * Compute the position of point 2 which is a distance \e s12 (meters) from
- * point 1. The area is also computed.
- *
- * @param[in] s12 distance between point 1 and point 2 (meters); it can be
- * negative.
- * @param[out] lat2 latitude of point 2 (degrees).
- * @param[out] lon2 longitude of point 2 (degrees).
- * @param[out] S12 area under the rhumb line (meters<sup>2</sup>).
- *
- * The value of \e lon2 returned is in the range [−180°,
- * 180°].
- *
- * If \e s12 is large enough that the rhumb line crosses a pole, the
- * longitude of point 2 is indeterminate (a NaN is returned for \e lon2 and
- * \e S12).
- **********************************************************************/
- void Position(real s12, real& lat2, real& lon2, real& S12) const {
- GenPosition(s12, LATITUDE | LONGITUDE | AREA, lat2, lon2, S12);
- }
- /**
- * Compute the position of point 2 which is a distance \e s12 (meters) from
- * point 1. The area is not computed.
- **********************************************************************/
- void Position(real s12, real& lat2, real& lon2) const {
- real t;
- GenPosition(s12, LATITUDE | LONGITUDE, lat2, lon2, t);
- }
- /**
- * The general position routine. RhumbLine::Position is defined in term so
- * this function.
- *
- * @param[in] s12 distance between point 1 and point 2 (meters); it can be
- * negative.
- * @param[in] outmask a bitor'ed combination of RhumbLine::mask values
- * specifying which of the following parameters should be set.
- * @param[out] lat2 latitude of point 2 (degrees).
- * @param[out] lon2 longitude of point 2 (degrees).
- * @param[out] S12 area under the rhumb line (meters<sup>2</sup>).
- *
- * The RhumbLine::mask values possible for \e outmask are
- * - \e outmask |= RhumbLine::LATITUDE for the latitude \e lat2;
- * - \e outmask |= RhumbLine::LONGITUDE for the latitude \e lon2;
- * - \e outmask |= RhumbLine::AREA for the area \e S12;
- * - \e outmask |= RhumbLine::ALL for all of the above;
- * - \e outmask |= RhumbLine::LONG_UNROLL to unroll \e lon2 instead of
- * wrapping it into the range [−180°, 180°].
- * .
- * With the RhumbLine::LONG_UNROLL bit set, the quantity \e lon2 − \e
- * lon1 indicates how many times and in what sense the rhumb line encircles
- * the ellipsoid.
- *
- * If \e s12 is large enough that the rhumb line crosses a pole, the
- * longitude of point 2 is indeterminate (a NaN is returned for \e lon2 and
- * \e S12).
- **********************************************************************/
- void GenPosition(real s12, unsigned outmask,
- real& lat2, real& lon2, real& S12) const;
- /** \name Inspector functions
- **********************************************************************/
- ///@{
- /**
- * @return \e lat1 the latitude of point 1 (degrees).
- **********************************************************************/
- Math::real Latitude() const { return _lat1; }
- /**
- * @return \e lon1 the longitude of point 1 (degrees).
- **********************************************************************/
- Math::real Longitude() const { return _lon1; }
- /**
- * @return \e azi12 the azimuth of the rhumb line (degrees).
- **********************************************************************/
- Math::real Azimuth() const { return _azi12; }
- /**
- * @return \e a the equatorial radius of the ellipsoid (meters). This is
- * the value inherited from the Rhumb object used in the constructor.
- **********************************************************************/
- Math::real EquatorialRadius() const { return _rh.EquatorialRadius(); }
- /**
- * @return \e f the flattening of the ellipsoid. This is the value
- * inherited from the Rhumb object used in the constructor.
- **********************************************************************/
- Math::real Flattening() const { return _rh.Flattening(); }
- };
- } // namespace GeographicLib
- #endif // GEOGRAPHICLIB_RHUMB_HPP
|