123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400 |
- /**
- * \file NormalGravity.hpp
- * \brief Header for GeographicLib::NormalGravity class
- *
- * Copyright (c) Charles Karney (2011-2020) <charles@karney.com> and licensed
- * under the MIT/X11 License. For more information, see
- * https://geographiclib.sourceforge.io/
- **********************************************************************/
- #if !defined(GEOGRAPHICLIB_NORMALGRAVITY_HPP)
- #define GEOGRAPHICLIB_NORMALGRAVITY_HPP 1
- #include <GeographicLib/Constants.hpp>
- #include <GeographicLib/Geocentric.hpp>
- namespace GeographicLib {
- /**
- * \brief The normal gravity of the earth
- *
- * "Normal" gravity refers to an idealization of the earth which is modeled
- * as an rotating ellipsoid. The eccentricity of the ellipsoid, the rotation
- * speed, and the distribution of mass within the ellipsoid are such that the
- * ellipsoid is a "level ellipoid", a surface of constant potential
- * (gravitational plus centrifugal). The acceleration due to gravity is
- * therefore perpendicular to the surface of the ellipsoid.
- *
- * Because the distribution of mass within the ellipsoid is unspecified, only
- * the potential exterior to the ellipsoid is well defined. In this class,
- * the mass is assumed to be to concentrated on a "focal disc" of radius,
- * (<i>a</i><sup>2</sup> − <i>b</i><sup>2</sup>)<sup>1/2</sup>, where
- * \e a is the equatorial radius of the ellipsoid and \e b is its polar
- * semi-axis. In the case of an oblate ellipsoid, the mass is concentrated
- * on a "focal rod" of length 2(<i>b</i><sup>2</sup> −
- * <i>a</i><sup>2</sup>)<sup>1/2</sup>. As a result the potential is well
- * defined everywhere.
- *
- * There is a closed solution to this problem which is implemented here.
- * Series "approximations" are only used to evaluate certain combinations of
- * elementary functions where use of the closed expression results in a loss
- * of accuracy for small arguments due to cancellation of the leading terms.
- * However these series include sufficient terms to give full machine
- * precision.
- *
- * Although the formulation used in this class applies to ellipsoids with
- * arbitrary flattening, in practice, its use should be limited to about
- * <i>b</i>/\e a ∈ [0.01, 100] or \e f ∈ [−99, 0.99].
- *
- * Definitions:
- * - <i>V</i><sub>0</sub>, the gravitational contribution to the normal
- * potential;
- * - Φ, the rotational contribution to the normal potential;
- * - \e U = <i>V</i><sub>0</sub> + Φ, the total potential;
- * - <b>Γ</b> = ∇<i>V</i><sub>0</sub>, the acceleration due to
- * mass of the earth;
- * - <b>f</b> = ∇Φ, the centrifugal acceleration;
- * - <b>γ</b> = ∇\e U = <b>Γ</b> + <b>f</b>, the normal
- * acceleration;
- * - \e X, \e Y, \e Z, geocentric coordinates;
- * - \e x, \e y, \e z, local cartesian coordinates used to denote the east,
- * north and up directions.
- *
- * References:
- * - C. Somigliana, Teoria generale del campo gravitazionale dell'ellissoide
- * di rotazione, Mem. Soc. Astron. Ital, <b>4</b>, 541--599 (1929).
- * - W. A. Heiskanen and H. Moritz, Physical Geodesy (Freeman, San
- * Francisco, 1967), Secs. 1-19, 2-7, 2-8 (2-9, 2-10), 6-2 (6-3).
- * - B. Hofmann-Wellenhof, H. Moritz, Physical Geodesy (Second edition,
- * Springer, 2006) https://doi.org/10.1007/978-3-211-33545-1
- * - H. Moritz, Geodetic Reference System 1980, J. Geodesy 54(3), 395-405
- * (1980) https://doi.org/10.1007/BF02521480
- *
- * For more information on normal gravity see \ref normalgravity.
- *
- * Example of use:
- * \include example-NormalGravity.cpp
- **********************************************************************/
- class GEOGRAPHICLIB_EXPORT NormalGravity {
- private:
- static const int maxit_ = 20;
- typedef Math::real real;
- friend class GravityModel;
- real _a, _GM, _omega, _f, _J2, _omega2, _aomega2;
- real _e2, _ep2, _b, _E, _U0, _gammae, _gammap, _Q0, _k, _fstar;
- Geocentric _earth;
- static real atanzz(real x, bool alt) {
- // This routine obeys the identity
- // atanzz(x, alt) = atanzz(-x/(1+x), !alt)
- //
- // Require x >= -1. Best to call with alt, s.t. x >= 0; this results in
- // a call to atan, instead of asin, or to asinh, instead of atanh.
- using std::sqrt; using std::abs; using std::atan; using std::asin;
- using std::asinh; using std::atanh;
- real z = sqrt(abs(x));
- return x == 0 ? 1 :
- (alt ?
- (!(x < 0) ? asinh(z) : asin(z)) / sqrt(abs(x) / (1 + x)) :
- (!(x < 0) ? atan(z) : atanh(z)) / z);
- }
- static real atan7series(real x);
- static real atan5series(real x);
- static real Qf(real x, bool alt);
- static real Hf(real x, bool alt);
- static real QH3f(real x, bool alt);
- real Jn(int n) const;
- void Initialize(real a, real GM, real omega, real f_J2, bool geometricp);
- public:
- /** \name Setting up the normal gravity
- **********************************************************************/
- ///@{
- /**
- * Constructor for the normal gravity.
- *
- * @param[in] a equatorial radius (meters).
- * @param[in] GM mass constant of the ellipsoid
- * (meters<sup>3</sup>/seconds<sup>2</sup>); this is the product of \e G
- * the gravitational constant and \e M the mass of the earth (usually
- * including the mass of the earth's atmosphere).
- * @param[in] omega the angular velocity (rad s<sup>−1</sup>).
- * @param[in] f_J2 either the flattening of the ellipsoid \e f or the
- * the dynamical form factor \e J2.
- * @param[out] geometricp if true (the default), then \e f_J2 denotes the
- * flattening, else it denotes the dynamical form factor \e J2.
- * @exception if \e a is not positive or if the other parameters do not
- * obey the restrictions given below.
- *
- * The shape of the ellipsoid can be given in one of two ways:
- * - geometrically (\e geomtricp = true), the ellipsoid is defined by the
- * flattening \e f = (\e a − \e b) / \e a, where \e a and \e b are
- * the equatorial radius and the polar semi-axis. The parameters should
- * obey \e a > 0, \e f < 1. There are no restrictions on \e GM or
- * \e omega, in particular, \e GM need not be positive.
- * - physically (\e geometricp = false), the ellipsoid is defined by the
- * dynamical form factor <i>J</i><sub>2</sub> = (\e C − \e A) /
- * <i>Ma</i><sup>2</sup>, where \e A and \e C are the equatorial and
- * polar moments of inertia and \e M is the mass of the earth. The
- * parameters should obey \e a > 0, \e GM > 0 and \e J2 < 1/3
- * − (<i>omega</i><sup>2</sup><i>a</i><sup>3</sup>/<i>GM</i>)
- * 8/(45π). There is no restriction on \e omega.
- **********************************************************************/
- NormalGravity(real a, real GM, real omega, real f_J2,
- bool geometricp = true);
- /**
- * A default constructor for the normal gravity. This sets up an
- * uninitialized object and is used by GravityModel which constructs this
- * object before it has read in the parameters for the reference ellipsoid.
- **********************************************************************/
- NormalGravity() : _a(-1) {}
- ///@}
- /** \name Compute the gravity
- **********************************************************************/
- ///@{
- /**
- * Evaluate the gravity on the surface of the ellipsoid.
- *
- * @param[in] lat the geographic latitude (degrees).
- * @return γ the acceleration due to gravity, positive downwards
- * (m s<sup>−2</sup>).
- *
- * Due to the axial symmetry of the ellipsoid, the result is independent of
- * the value of the longitude. This acceleration is perpendicular to the
- * surface of the ellipsoid. It includes the effects of the earth's
- * rotation.
- **********************************************************************/
- Math::real SurfaceGravity(real lat) const;
- /**
- * Evaluate the gravity at an arbitrary point above (or below) the
- * ellipsoid.
- *
- * @param[in] lat the geographic latitude (degrees).
- * @param[in] h the height above the ellipsoid (meters).
- * @param[out] gammay the northerly component of the acceleration
- * (m s<sup>−2</sup>).
- * @param[out] gammaz the upward component of the acceleration
- * (m s<sup>−2</sup>); this is usually negative.
- * @return \e U the corresponding normal potential
- * (m<sup>2</sup> s<sup>−2</sup>).
- *
- * Due to the axial symmetry of the ellipsoid, the result is independent of
- * the value of the longitude and the easterly component of the
- * acceleration vanishes, \e gammax = 0. The function includes the effects
- * of the earth's rotation. When \e h = 0, this function gives \e gammay =
- * 0 and the returned value matches that of NormalGravity::SurfaceGravity.
- **********************************************************************/
- Math::real Gravity(real lat, real h, real& gammay, real& gammaz)
- const;
- /**
- * Evaluate the components of the acceleration due to gravity and the
- * centrifugal acceleration in geocentric coordinates.
- *
- * @param[in] X geocentric coordinate of point (meters).
- * @param[in] Y geocentric coordinate of point (meters).
- * @param[in] Z geocentric coordinate of point (meters).
- * @param[out] gammaX the \e X component of the acceleration
- * (m s<sup>−2</sup>).
- * @param[out] gammaY the \e Y component of the acceleration
- * (m s<sup>−2</sup>).
- * @param[out] gammaZ the \e Z component of the acceleration
- * (m s<sup>−2</sup>).
- * @return \e U = <i>V</i><sub>0</sub> + Φ the sum of the
- * gravitational and centrifugal potentials
- * (m<sup>2</sup> s<sup>−2</sup>).
- *
- * The acceleration given by <b>γ</b> = ∇\e U =
- * ∇<i>V</i><sub>0</sub> + ∇Φ = <b>Γ</b> + <b>f</b>.
- **********************************************************************/
- Math::real U(real X, real Y, real Z,
- real& gammaX, real& gammaY, real& gammaZ) const;
- /**
- * Evaluate the components of the acceleration due to the gravitational
- * force in geocentric coordinates.
- *
- * @param[in] X geocentric coordinate of point (meters).
- * @param[in] Y geocentric coordinate of point (meters).
- * @param[in] Z geocentric coordinate of point (meters).
- * @param[out] GammaX the \e X component of the acceleration due to the
- * gravitational force (m s<sup>−2</sup>).
- * @param[out] GammaY the \e Y component of the acceleration due to the
- * @param[out] GammaZ the \e Z component of the acceleration due to the
- * gravitational force (m s<sup>−2</sup>).
- * @return <i>V</i><sub>0</sub> the gravitational potential
- * (m<sup>2</sup> s<sup>−2</sup>).
- *
- * This function excludes the centrifugal acceleration and is appropriate
- * to use for space applications. In terrestrial applications, the
- * function NormalGravity::U (which includes this effect) should usually be
- * used.
- **********************************************************************/
- Math::real V0(real X, real Y, real Z,
- real& GammaX, real& GammaY, real& GammaZ) const;
- /**
- * Evaluate the centrifugal acceleration in geocentric coordinates.
- *
- * @param[in] X geocentric coordinate of point (meters).
- * @param[in] Y geocentric coordinate of point (meters).
- * @param[out] fX the \e X component of the centrifugal acceleration
- * (m s<sup>−2</sup>).
- * @param[out] fY the \e Y component of the centrifugal acceleration
- * (m s<sup>−2</sup>).
- * @return Φ the centrifugal potential (m<sup>2</sup>
- * s<sup>−2</sup>).
- *
- * Φ is independent of \e Z, thus \e fZ = 0. This function
- * NormalGravity::U sums the results of NormalGravity::V0 and
- * NormalGravity::Phi.
- **********************************************************************/
- Math::real Phi(real X, real Y, real& fX, real& fY) const;
- ///@}
- /** \name Inspector functions
- **********************************************************************/
- ///@{
- /**
- * @return true if the object has been initialized.
- **********************************************************************/
- bool Init() const { return _a > 0; }
- /**
- * @return \e a the equatorial radius of the ellipsoid (meters). This is
- * the value used in the constructor.
- **********************************************************************/
- Math::real EquatorialRadius() const
- { return Init() ? _a : Math::NaN(); }
- /**
- * @return \e GM the mass constant of the ellipsoid
- * (m<sup>3</sup> s<sup>−2</sup>). This is the value used in the
- * constructor.
- **********************************************************************/
- Math::real MassConstant() const
- { return Init() ? _GM : Math::NaN(); }
- /**
- * @return <i>J</i><sub><i>n</i></sub> the dynamical form factors of the
- * ellipsoid.
- *
- * If \e n = 2 (the default), this is the value of <i>J</i><sub>2</sub>
- * used in the constructor. Otherwise it is the zonal coefficient of the
- * Legendre harmonic sum of the normal gravitational potential. Note that
- * <i>J</i><sub><i>n</i></sub> = 0 if \e n is odd. In most gravity
- * applications, fully normalized Legendre functions are used and the
- * corresponding coefficient is <i>C</i><sub><i>n</i>0</sub> =
- * −<i>J</i><sub><i>n</i></sub> / sqrt(2 \e n + 1).
- **********************************************************************/
- Math::real DynamicalFormFactor(int n = 2) const
- { return Init() ? ( n == 2 ? _J2 : Jn(n)) : Math::NaN(); }
- /**
- * @return ω the angular velocity of the ellipsoid (rad
- * s<sup>−1</sup>). This is the value used in the constructor.
- **********************************************************************/
- Math::real AngularVelocity() const
- { return Init() ? _omega : Math::NaN(); }
- /**
- * @return <i>f</i> the flattening of the ellipsoid (\e a − \e b)/\e
- * a.
- **********************************************************************/
- Math::real Flattening() const
- { return Init() ? _f : Math::NaN(); }
- /**
- * @return γ<sub>e</sub> the normal gravity at equator (m
- * s<sup>−2</sup>).
- **********************************************************************/
- Math::real EquatorialGravity() const
- { return Init() ? _gammae : Math::NaN(); }
- /**
- * @return γ<sub>p</sub> the normal gravity at poles (m
- * s<sup>−2</sup>).
- **********************************************************************/
- Math::real PolarGravity() const
- { return Init() ? _gammap : Math::NaN(); }
- /**
- * @return <i>f*</i> the gravity flattening (γ<sub>p</sub> −
- * γ<sub>e</sub>) / γ<sub>e</sub>.
- **********************************************************************/
- Math::real GravityFlattening() const
- { return Init() ? _fstar : Math::NaN(); }
- /**
- * @return <i>U</i><sub>0</sub> the constant normal potential for the
- * surface of the ellipsoid (m<sup>2</sup> s<sup>−2</sup>).
- **********************************************************************/
- Math::real SurfacePotential() const
- { return Init() ? _U0 : Math::NaN(); }
- /**
- * @return the Geocentric object used by this instance.
- **********************************************************************/
- const Geocentric& Earth() const { return _earth; }
- /**
- * \deprecated An old name for EquatorialRadius().
- **********************************************************************/
- GEOGRAPHICLIB_DEPRECATED("Use EquatorialRadius()")
- Math::real MajorRadius() const { return EquatorialRadius(); }
- ///@}
- /**
- * A global instantiation of NormalGravity for the WGS84 ellipsoid.
- **********************************************************************/
- static const NormalGravity& WGS84();
- /**
- * A global instantiation of NormalGravity for the GRS80 ellipsoid.
- **********************************************************************/
- static const NormalGravity& GRS80();
- /**
- * Compute the flattening from the dynamical form factor.
- *
- * @param[in] a equatorial radius (meters).
- * @param[in] GM mass constant of the ellipsoid
- * (meters<sup>3</sup>/seconds<sup>2</sup>); this is the product of \e G
- * the gravitational constant and \e M the mass of the earth (usually
- * including the mass of the earth's atmosphere).
- * @param[in] omega the angular velocity (rad s<sup>−1</sup>).
- * @param[in] J2 the dynamical form factor.
- * @return \e f the flattening of the ellipsoid.
- *
- * This routine requires \e a > 0, \e GM > 0, \e J2 < 1/3 −
- * <i>omega</i><sup>2</sup><i>a</i><sup>3</sup>/<i>GM</i> 8/(45π). A
- * NaN is returned if these conditions do not hold. The restriction to
- * positive \e GM is made because for negative \e GM two solutions are
- * possible.
- **********************************************************************/
- static Math::real J2ToFlattening(real a, real GM, real omega, real J2);
- /**
- * Compute the dynamical form factor from the flattening.
- *
- * @param[in] a equatorial radius (meters).
- * @param[in] GM mass constant of the ellipsoid
- * (meters<sup>3</sup>/seconds<sup>2</sup>); this is the product of \e G
- * the gravitational constant and \e M the mass of the earth (usually
- * including the mass of the earth's atmosphere).
- * @param[in] omega the angular velocity (rad s<sup>−1</sup>).
- * @param[in] f the flattening of the ellipsoid.
- * @return \e J2 the dynamical form factor.
- *
- * This routine requires \e a > 0, \e GM ≠ 0, \e f < 1. The
- * values of these parameters are not checked.
- **********************************************************************/
- static Math::real FlatteningToJ2(real a, real GM, real omega, real f);
- };
- } // namespace GeographicLib
- #endif // GEOGRAPHICLIB_NORMALGRAVITY_HPP
|