123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221 |
- /**
- * \file Gnomonic.hpp
- * \brief Header for GeographicLib::Gnomonic class
- *
- * Copyright (c) Charles Karney (2010-2020) <charles@karney.com> and licensed
- * under the MIT/X11 License. For more information, see
- * https://geographiclib.sourceforge.io/
- **********************************************************************/
- #if !defined(GEOGRAPHICLIB_GNOMONIC_HPP)
- #define GEOGRAPHICLIB_GNOMONIC_HPP 1
- #include <GeographicLib/Geodesic.hpp>
- #include <GeographicLib/GeodesicLine.hpp>
- #include <GeographicLib/Constants.hpp>
- namespace GeographicLib {
- /**
- * \brief %Gnomonic projection
- *
- * %Gnomonic projection centered at an arbitrary position \e C on the
- * ellipsoid. This projection is derived in Section 8 of
- * - C. F. F. Karney,
- * <a href="https://doi.org/10.1007/s00190-012-0578-z">
- * Algorithms for geodesics</a>,
- * J. Geodesy <b>87</b>, 43--55 (2013);
- * DOI: <a href="https://doi.org/10.1007/s00190-012-0578-z">
- * 10.1007/s00190-012-0578-z</a>;
- * addenda:
- * <a href="https://geographiclib.sourceforge.io/geod-addenda.html">
- * geod-addenda.html</a>.
- * .
- * The projection of \e P is defined as follows: compute the geodesic line
- * from \e C to \e P; compute the reduced length \e m12, geodesic scale \e
- * M12, and ρ = <i>m12</i>/\e M12; finally \e x = ρ sin \e azi1; \e
- * y = ρ cos \e azi1, where \e azi1 is the azimuth of the geodesic at \e
- * C. The Gnomonic::Forward and Gnomonic::Reverse methods also return the
- * azimuth \e azi of the geodesic at \e P and reciprocal scale \e rk in the
- * azimuthal direction. The scale in the radial direction if
- * 1/<i>rk</i><sup>2</sup>.
- *
- * For a sphere, ρ is reduces to \e a tan(<i>s12</i>/<i>a</i>), where \e
- * s12 is the length of the geodesic from \e C to \e P, and the gnomonic
- * projection has the property that all geodesics appear as straight lines.
- * For an ellipsoid, this property holds only for geodesics interesting the
- * centers. However geodesic segments close to the center are approximately
- * straight.
- *
- * Consider a geodesic segment of length \e l. Let \e T be the point on the
- * geodesic (extended if necessary) closest to \e C the center of the
- * projection and \e t be the distance \e CT. To lowest order, the maximum
- * deviation (as a true distance) of the corresponding gnomonic line segment
- * (i.e., with the same end points) from the geodesic is<br>
- * <br>
- * (<i>K</i>(<i>T</i>) - <i>K</i>(<i>C</i>))
- * <i>l</i><sup>2</sup> \e t / 32.<br>
- * <br>
- * where \e K is the Gaussian curvature.
- *
- * This result applies for any surface. For an ellipsoid of revolution,
- * consider all geodesics whose end points are within a distance \e r of \e
- * C. For a given \e r, the deviation is maximum when the latitude of \e C
- * is 45°, when endpoints are a distance \e r away, and when their
- * azimuths from the center are ± 45° or ± 135°.
- * To lowest order in \e r and the flattening \e f, the deviation is \e f
- * (<i>r</i>/2<i>a</i>)<sup>3</sup> \e r.
- *
- * The conversions all take place using a Geodesic object (by default
- * Geodesic::WGS84()). For more information on geodesics see \ref geodesic.
- *
- * \warning The definition of this projection for a sphere is
- * standard. However, there is no standard for how it should be extended to
- * an ellipsoid. The choices are:
- * - Declare that the projection is undefined for an ellipsoid.
- * - Project to a tangent plane from the center of the ellipsoid. This
- * causes great ellipses to appear as straight lines in the projection;
- * i.e., it generalizes the spherical great circle to a great ellipse.
- * This was proposed by independently by Bowring and Williams in 1997.
- * - Project to the conformal sphere with the constant of integration chosen
- * so that the values of the latitude match for the center point and
- * perform a central projection onto the plane tangent to the conformal
- * sphere at the center point. This causes normal sections through the
- * center point to appear as straight lines in the projection; i.e., it
- * generalizes the spherical great circle to a normal section. This was
- * proposed by I. G. Letoval'tsev, Generalization of the gnomonic
- * projection for a spheroid and the principal geodetic problems involved
- * in the alignment of surface routes, Geodesy and Aerophotography (5),
- * 271--274 (1963).
- * - The projection given here. This causes geodesics close to the center
- * point to appear as straight lines in the projection; i.e., it
- * generalizes the spherical great circle to a geodesic.
- *
- * Example of use:
- * \include example-Gnomonic.cpp
- *
- * <a href="GeodesicProj.1.html">GeodesicProj</a> is a command-line utility
- * providing access to the functionality of AzimuthalEquidistant, Gnomonic,
- * and CassiniSoldner.
- **********************************************************************/
- class GEOGRAPHICLIB_EXPORT Gnomonic {
- private:
- typedef Math::real real;
- real eps0_, eps_;
- Geodesic _earth;
- real _a, _f;
- // numit_ increased from 10 to 20 to fix convergence failure with high
- // precision (e.g., GEOGRAPHICLIB_DIGITS=2000) calculations. Reverse uses
- // Newton's method which converges quadratically and so numit_ = 10 would
- // normally be big enough. However, since the Geodesic class is based on a
- // series it is of limited accuracy; in particular, the derivative rules
- // used by Reverse only hold approximately. Consequently, after a few
- // iterations, the convergence in the Reverse falls back to improvements in
- // each step by a constant (albeit small) factor.
- static const int numit_ = 20;
- public:
- /**
- * Constructor for Gnomonic.
- *
- * @param[in] earth the Geodesic object to use for geodesic calculations.
- * By default this uses the WGS84 ellipsoid.
- **********************************************************************/
- explicit Gnomonic(const Geodesic& earth = Geodesic::WGS84());
- /**
- * Forward projection, from geographic to gnomonic.
- *
- * @param[in] lat0 latitude of center point of projection (degrees).
- * @param[in] lon0 longitude of center point of projection (degrees).
- * @param[in] lat latitude of point (degrees).
- * @param[in] lon longitude of point (degrees).
- * @param[out] x easting of point (meters).
- * @param[out] y northing of point (meters).
- * @param[out] azi azimuth of geodesic at point (degrees).
- * @param[out] rk reciprocal of azimuthal scale at point.
- *
- * \e lat0 and \e lat should be in the range [−90°, 90°].
- * The scale of the projection is 1/<i>rk</i><sup>2</sup> in the "radial"
- * direction, \e azi clockwise from true north, and is 1/\e rk in the
- * direction perpendicular to this. If the point lies "over the horizon",
- * i.e., if \e rk ≤ 0, then NaNs are returned for \e x and \e y (the
- * correct values are returned for \e azi and \e rk). A call to Forward
- * followed by a call to Reverse will return the original (\e lat, \e lon)
- * (to within roundoff) provided the point in not over the horizon.
- **********************************************************************/
- void Forward(real lat0, real lon0, real lat, real lon,
- real& x, real& y, real& azi, real& rk) const;
- /**
- * Reverse projection, from gnomonic to geographic.
- *
- * @param[in] lat0 latitude of center point of projection (degrees).
- * @param[in] lon0 longitude of center point of projection (degrees).
- * @param[in] x easting of point (meters).
- * @param[in] y northing of point (meters).
- * @param[out] lat latitude of point (degrees).
- * @param[out] lon longitude of point (degrees).
- * @param[out] azi azimuth of geodesic at point (degrees).
- * @param[out] rk reciprocal of azimuthal scale at point.
- *
- * \e lat0 should be in the range [−90°, 90°]. \e lat will
- * be in the range [−90°, 90°] and \e lon will be in the
- * range [−180°, 180°]. The scale of the projection is
- * 1/<i>rk</i><sup>2</sup> in the "radial" direction, \e azi clockwise from
- * true north, and is 1/\e rk in the direction perpendicular to this. Even
- * though all inputs should return a valid \e lat and \e lon, it's possible
- * that the procedure fails to converge for very large \e x or \e y; in
- * this case NaNs are returned for all the output arguments. A call to
- * Reverse followed by a call to Forward will return the original (\e x, \e
- * y) (to roundoff).
- **********************************************************************/
- void Reverse(real lat0, real lon0, real x, real y,
- real& lat, real& lon, real& azi, real& rk) const;
- /**
- * Gnomonic::Forward without returning the azimuth and scale.
- **********************************************************************/
- void Forward(real lat0, real lon0, real lat, real lon,
- real& x, real& y) const {
- real azi, rk;
- Forward(lat0, lon0, lat, lon, x, y, azi, rk);
- }
- /**
- * Gnomonic::Reverse without returning the azimuth and scale.
- **********************************************************************/
- void Reverse(real lat0, real lon0, real x, real y,
- real& lat, real& lon) const {
- real azi, rk;
- Reverse(lat0, lon0, x, y, lat, lon, azi, rk);
- }
- /** \name Inspector functions
- **********************************************************************/
- ///@{
- /**
- * @return \e a the equatorial radius of the ellipsoid (meters). This is
- * the value inherited from the Geodesic object used in the constructor.
- **********************************************************************/
- Math::real EquatorialRadius() const { return _earth.EquatorialRadius(); }
- /**
- * @return \e f the flattening of the ellipsoid. This is the value
- * inherited from the Geodesic object used in the constructor.
- **********************************************************************/
- Math::real Flattening() const { return _earth.Flattening(); }
- /**
- * \deprecated An old name for EquatorialRadius().
- **********************************************************************/
- GEOGRAPHICLIB_DEPRECATED("Use EquatorialRadius()")
- Math::real MajorRadius() const { return EquatorialRadius(); }
- ///@}
- };
- } // namespace GeographicLib
- #endif // GEOGRAPHICLIB_GNOMONIC_HPP
|