123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869 |
- /**
- * \file GeodesicExact.hpp
- * \brief Header for GeographicLib::GeodesicExact class
- *
- * Copyright (c) Charles Karney (2012-2020) <charles@karney.com> and licensed
- * under the MIT/X11 License. For more information, see
- * https://geographiclib.sourceforge.io/
- **********************************************************************/
- #if !defined(GEOGRAPHICLIB_GEODESICEXACT_HPP)
- #define GEOGRAPHICLIB_GEODESICEXACT_HPP 1
- #include <GeographicLib/Constants.hpp>
- #include <GeographicLib/EllipticFunction.hpp>
- #if !defined(GEOGRAPHICLIB_GEODESICEXACT_ORDER)
- /**
- * The order of the expansions used by GeodesicExact.
- **********************************************************************/
- # define GEOGRAPHICLIB_GEODESICEXACT_ORDER 30
- #endif
- namespace GeographicLib {
- class GeodesicLineExact;
- /**
- * \brief Exact geodesic calculations
- *
- * The equations for geodesics on an ellipsoid can be expressed in terms of
- * incomplete elliptic integrals. The Geodesic class expands these integrals
- * in a series in the flattening \e f and this provides an accurate solution
- * for \e f ∈ [-0.01, 0.01]. The GeodesicExact class computes the
- * ellitpic integrals directly and so provides a solution which is valid for
- * all \e f. However, in practice, its use should be limited to about
- * <i>b</i>/\e a ∈ [0.01, 100] or \e f ∈ [−99, 0.99].
- *
- * For the WGS84 ellipsoid, these classes are 2--3 times \e slower than the
- * series solution and 2--3 times \e less \e accurate (because it's less easy
- * to control round-off errors with the elliptic integral formulation); i.e.,
- * the error is about 40 nm (40 nanometers) instead of 15 nm. However the
- * error in the series solution scales as <i>f</i><sup>7</sup> while the
- * error in the elliptic integral solution depends weakly on \e f. If the
- * quarter meridian distance is 10000 km and the ratio <i>b</i>/\e a = 1
- * − \e f is varied then the approximate maximum error (expressed as a
- * distance) is <pre>
- * 1 - f error (nm)
- * 1/128 387
- * 1/64 345
- * 1/32 269
- * 1/16 210
- * 1/8 115
- * 1/4 69
- * 1/2 36
- * 1 15
- * 2 25
- * 4 96
- * 8 318
- * 16 985
- * 32 2352
- * 64 6008
- * 128 19024
- * </pre>
- *
- * The computation of the area in these classes is via a 30th order series.
- * This gives accurate results for <i>b</i>/\e a ∈ [1/2, 2]; the
- * accuracy is about 8 decimal digits for <i>b</i>/\e a ∈ [1/4, 4].
- *
- * See \ref geodellip for the formulation. See the documentation on the
- * Geodesic class for additional information on the geodesic problems.
- *
- * Example of use:
- * \include example-GeodesicExact.cpp
- *
- * <a href="GeodSolve.1.html">GeodSolve</a> is a command-line utility
- * providing access to the functionality of GeodesicExact and
- * GeodesicLineExact (via the -E option).
- **********************************************************************/
- class GEOGRAPHICLIB_EXPORT GeodesicExact {
- private:
- typedef Math::real real;
- friend class GeodesicLineExact;
- static const int nC4_ = GEOGRAPHICLIB_GEODESICEXACT_ORDER;
- static const int nC4x_ = (nC4_ * (nC4_ + 1)) / 2;
- static const unsigned maxit1_ = 20;
- unsigned maxit2_;
- real tiny_, tol0_, tol1_, tol2_, tolb_, xthresh_;
- enum captype {
- CAP_NONE = 0U,
- CAP_E = 1U<<0,
- // Skip 1U<<1 for compatibility with Geodesic (not required)
- CAP_D = 1U<<2,
- CAP_H = 1U<<3,
- CAP_C4 = 1U<<4,
- CAP_ALL = 0x1FU,
- CAP_MASK = CAP_ALL,
- OUT_ALL = 0x7F80U,
- OUT_MASK = 0xFF80U, // Includes LONG_UNROLL
- };
- static real CosSeries(real sinx, real cosx, const real c[], int n);
- static real Astroid(real x, real y);
- real _a, _f, _f1, _e2, _ep2, _n, _b, _c2, _etol2;
- real _C4x[nC4x_];
- void Lengths(const EllipticFunction& E,
- real sig12,
- real ssig1, real csig1, real dn1,
- real ssig2, real csig2, real dn2,
- real cbet1, real cbet2, unsigned outmask,
- real& s12s, real& m12a, real& m0,
- real& M12, real& M21) const;
- real InverseStart(EllipticFunction& E,
- real sbet1, real cbet1, real dn1,
- real sbet2, real cbet2, real dn2,
- real lam12, real slam12, real clam12,
- real& salp1, real& calp1,
- real& salp2, real& calp2, real& dnm) const;
- real Lambda12(real sbet1, real cbet1, real dn1,
- real sbet2, real cbet2, real dn2,
- real salp1, real calp1, real slam120, real clam120,
- real& salp2, real& calp2, real& sig12,
- real& ssig1, real& csig1, real& ssig2, real& csig2,
- EllipticFunction& E,
- real& domg12, bool diffp, real& dlam12) const;
- real GenInverse(real lat1, real lon1, real lat2, real lon2,
- unsigned outmask, real& s12,
- real& salp1, real& calp1, real& salp2, real& calp2,
- real& m12, real& M12, real& M21, real& S12) const;
- // These are Maxima generated functions to provide series approximations to
- // the integrals for the area.
- void C4coeff();
- void C4f(real k2, real c[]) const;
- // Large coefficients are split so that lo contains the low 52 bits and hi
- // the rest. This choice avoids double rounding with doubles and higher
- // precision types. float coefficients will suffer double rounding;
- // however the accuracy is already lousy for floats.
- static Math::real reale(long long hi, long long lo) {
- using std::ldexp;
- return ldexp(real(hi), 52) + lo;
- }
- public:
- /**
- * Bit masks for what calculations to do. These masks do double duty.
- * They signify to the GeodesicLineExact::GeodesicLineExact constructor and
- * to GeodesicExact::Line what capabilities should be included in the
- * GeodesicLineExact object. They also specify which results to return in
- * the general routines GeodesicExact::GenDirect and
- * GeodesicExact::GenInverse routines. GeodesicLineExact::mask is a
- * duplication of this enum.
- **********************************************************************/
- enum mask {
- /**
- * No capabilities, no output.
- * @hideinitializer
- **********************************************************************/
- NONE = 0U,
- /**
- * Calculate latitude \e lat2. (It's not necessary to include this as a
- * capability to GeodesicLineExact because this is included by default.)
- * @hideinitializer
- **********************************************************************/
- LATITUDE = 1U<<7 | CAP_NONE,
- /**
- * Calculate longitude \e lon2.
- * @hideinitializer
- **********************************************************************/
- LONGITUDE = 1U<<8 | CAP_H,
- /**
- * Calculate azimuths \e azi1 and \e azi2. (It's not necessary to
- * include this as a capability to GeodesicLineExact because this is
- * included by default.)
- * @hideinitializer
- **********************************************************************/
- AZIMUTH = 1U<<9 | CAP_NONE,
- /**
- * Calculate distance \e s12.
- * @hideinitializer
- **********************************************************************/
- DISTANCE = 1U<<10 | CAP_E,
- /**
- * Allow distance \e s12 to be used as input in the direct geodesic
- * problem.
- * @hideinitializer
- **********************************************************************/
- DISTANCE_IN = 1U<<11 | CAP_E,
- /**
- * Calculate reduced length \e m12.
- * @hideinitializer
- **********************************************************************/
- REDUCEDLENGTH = 1U<<12 | CAP_D,
- /**
- * Calculate geodesic scales \e M12 and \e M21.
- * @hideinitializer
- **********************************************************************/
- GEODESICSCALE = 1U<<13 | CAP_D,
- /**
- * Calculate area \e S12.
- * @hideinitializer
- **********************************************************************/
- AREA = 1U<<14 | CAP_C4,
- /**
- * Unroll \e lon2 in the direct calculation.
- * @hideinitializer
- **********************************************************************/
- LONG_UNROLL = 1U<<15,
- /**
- * All capabilities, calculate everything. (LONG_UNROLL is not
- * included in this mask.)
- * @hideinitializer
- **********************************************************************/
- ALL = OUT_ALL| CAP_ALL,
- };
- /** \name Constructor
- **********************************************************************/
- ///@{
- /**
- * Constructor for a ellipsoid with
- *
- * @param[in] a equatorial radius (meters).
- * @param[in] f flattening of ellipsoid. Setting \e f = 0 gives a sphere.
- * Negative \e f gives a prolate ellipsoid.
- * @exception GeographicErr if \e a or (1 − \e f) \e a is not
- * positive.
- **********************************************************************/
- GeodesicExact(real a, real f);
- ///@}
- /** \name Direct geodesic problem specified in terms of distance.
- **********************************************************************/
- ///@{
- /**
- * Perform the direct geodesic calculation where the length of the geodesic
- * is specified in terms of distance.
- *
- * @param[in] lat1 latitude of point 1 (degrees).
- * @param[in] lon1 longitude of point 1 (degrees).
- * @param[in] azi1 azimuth at point 1 (degrees).
- * @param[in] s12 distance between point 1 and point 2 (meters); it can be
- * signed.
- * @param[out] lat2 latitude of point 2 (degrees).
- * @param[out] lon2 longitude of point 2 (degrees).
- * @param[out] azi2 (forward) azimuth at point 2 (degrees).
- * @param[out] m12 reduced length of geodesic (meters).
- * @param[out] M12 geodesic scale of point 2 relative to point 1
- * (dimensionless).
- * @param[out] M21 geodesic scale of point 1 relative to point 2
- * (dimensionless).
- * @param[out] S12 area under the geodesic (meters<sup>2</sup>).
- * @return \e a12 arc length of between point 1 and point 2 (degrees).
- *
- * \e lat1 should be in the range [−90°, 90°]. The values of
- * \e lon2 and \e azi2 returned are in the range [−180°,
- * 180°].
- *
- * If either point is at a pole, the azimuth is defined by keeping the
- * longitude fixed, writing \e lat = ±(90° − ε),
- * and taking the limit ε → 0+. An arc length greater that
- * 180° signifies a geodesic which is not a shortest path. (For a
- * prolate ellipsoid, an additional condition is necessary for a shortest
- * path: the longitudinal extent must not exceed of 180°.)
- *
- * The following functions are overloaded versions of GeodesicExact::Direct
- * which omit some of the output parameters. Note, however, that the arc
- * length is always computed and returned as the function value.
- **********************************************************************/
- Math::real Direct(real lat1, real lon1, real azi1, real s12,
- real& lat2, real& lon2, real& azi2,
- real& m12, real& M12, real& M21, real& S12)
- const {
- real t;
- return GenDirect(lat1, lon1, azi1, false, s12,
- LATITUDE | LONGITUDE | AZIMUTH |
- REDUCEDLENGTH | GEODESICSCALE | AREA,
- lat2, lon2, azi2, t, m12, M12, M21, S12);
- }
- /**
- * See the documentation for GeodesicExact::Direct.
- **********************************************************************/
- Math::real Direct(real lat1, real lon1, real azi1, real s12,
- real& lat2, real& lon2)
- const {
- real t;
- return GenDirect(lat1, lon1, azi1, false, s12,
- LATITUDE | LONGITUDE,
- lat2, lon2, t, t, t, t, t, t);
- }
- /**
- * See the documentation for GeodesicExact::Direct.
- **********************************************************************/
- Math::real Direct(real lat1, real lon1, real azi1, real s12,
- real& lat2, real& lon2, real& azi2)
- const {
- real t;
- return GenDirect(lat1, lon1, azi1, false, s12,
- LATITUDE | LONGITUDE | AZIMUTH,
- lat2, lon2, azi2, t, t, t, t, t);
- }
- /**
- * See the documentation for GeodesicExact::Direct.
- **********************************************************************/
- Math::real Direct(real lat1, real lon1, real azi1, real s12,
- real& lat2, real& lon2, real& azi2, real& m12)
- const {
- real t;
- return GenDirect(lat1, lon1, azi1, false, s12,
- LATITUDE | LONGITUDE | AZIMUTH | REDUCEDLENGTH,
- lat2, lon2, azi2, t, m12, t, t, t);
- }
- /**
- * See the documentation for GeodesicExact::Direct.
- **********************************************************************/
- Math::real Direct(real lat1, real lon1, real azi1, real s12,
- real& lat2, real& lon2, real& azi2,
- real& M12, real& M21)
- const {
- real t;
- return GenDirect(lat1, lon1, azi1, false, s12,
- LATITUDE | LONGITUDE | AZIMUTH | GEODESICSCALE,
- lat2, lon2, azi2, t, t, M12, M21, t);
- }
- /**
- * See the documentation for GeodesicExact::Direct.
- **********************************************************************/
- Math::real Direct(real lat1, real lon1, real azi1, real s12,
- real& lat2, real& lon2, real& azi2,
- real& m12, real& M12, real& M21)
- const {
- real t;
- return GenDirect(lat1, lon1, azi1, false, s12,
- LATITUDE | LONGITUDE | AZIMUTH |
- REDUCEDLENGTH | GEODESICSCALE,
- lat2, lon2, azi2, t, m12, M12, M21, t);
- }
- ///@}
- /** \name Direct geodesic problem specified in terms of arc length.
- **********************************************************************/
- ///@{
- /**
- * Perform the direct geodesic calculation where the length of the geodesic
- * is specified in terms of arc length.
- *
- * @param[in] lat1 latitude of point 1 (degrees).
- * @param[in] lon1 longitude of point 1 (degrees).
- * @param[in] azi1 azimuth at point 1 (degrees).
- * @param[in] a12 arc length between point 1 and point 2 (degrees); it can
- * be signed.
- * @param[out] lat2 latitude of point 2 (degrees).
- * @param[out] lon2 longitude of point 2 (degrees).
- * @param[out] azi2 (forward) azimuth at point 2 (degrees).
- * @param[out] s12 distance between point 1 and point 2 (meters).
- * @param[out] m12 reduced length of geodesic (meters).
- * @param[out] M12 geodesic scale of point 2 relative to point 1
- * (dimensionless).
- * @param[out] M21 geodesic scale of point 1 relative to point 2
- * (dimensionless).
- * @param[out] S12 area under the geodesic (meters<sup>2</sup>).
- *
- * \e lat1 should be in the range [−90°, 90°]. The values of
- * \e lon2 and \e azi2 returned are in the range [−180°,
- * 180°].
- *
- * If either point is at a pole, the azimuth is defined by keeping the
- * longitude fixed, writing \e lat = ±(90° − ε),
- * and taking the limit ε → 0+. An arc length greater that
- * 180° signifies a geodesic which is not a shortest path. (For a
- * prolate ellipsoid, an additional condition is necessary for a shortest
- * path: the longitudinal extent must not exceed of 180°.)
- *
- * The following functions are overloaded versions of GeodesicExact::Direct
- * which omit some of the output parameters.
- **********************************************************************/
- void ArcDirect(real lat1, real lon1, real azi1, real a12,
- real& lat2, real& lon2, real& azi2, real& s12,
- real& m12, real& M12, real& M21, real& S12)
- const {
- GenDirect(lat1, lon1, azi1, true, a12,
- LATITUDE | LONGITUDE | AZIMUTH | DISTANCE |
- REDUCEDLENGTH | GEODESICSCALE | AREA,
- lat2, lon2, azi2, s12, m12, M12, M21, S12);
- }
- /**
- * See the documentation for GeodesicExact::ArcDirect.
- **********************************************************************/
- void ArcDirect(real lat1, real lon1, real azi1, real a12,
- real& lat2, real& lon2) const {
- real t;
- GenDirect(lat1, lon1, azi1, true, a12,
- LATITUDE | LONGITUDE,
- lat2, lon2, t, t, t, t, t, t);
- }
- /**
- * See the documentation for GeodesicExact::ArcDirect.
- **********************************************************************/
- void ArcDirect(real lat1, real lon1, real azi1, real a12,
- real& lat2, real& lon2, real& azi2) const {
- real t;
- GenDirect(lat1, lon1, azi1, true, a12,
- LATITUDE | LONGITUDE | AZIMUTH,
- lat2, lon2, azi2, t, t, t, t, t);
- }
- /**
- * See the documentation for GeodesicExact::ArcDirect.
- **********************************************************************/
- void ArcDirect(real lat1, real lon1, real azi1, real a12,
- real& lat2, real& lon2, real& azi2, real& s12)
- const {
- real t;
- GenDirect(lat1, lon1, azi1, true, a12,
- LATITUDE | LONGITUDE | AZIMUTH | DISTANCE,
- lat2, lon2, azi2, s12, t, t, t, t);
- }
- /**
- * See the documentation for GeodesicExact::ArcDirect.
- **********************************************************************/
- void ArcDirect(real lat1, real lon1, real azi1, real a12,
- real& lat2, real& lon2, real& azi2,
- real& s12, real& m12) const {
- real t;
- GenDirect(lat1, lon1, azi1, true, a12,
- LATITUDE | LONGITUDE | AZIMUTH | DISTANCE |
- REDUCEDLENGTH,
- lat2, lon2, azi2, s12, m12, t, t, t);
- }
- /**
- * See the documentation for GeodesicExact::ArcDirect.
- **********************************************************************/
- void ArcDirect(real lat1, real lon1, real azi1, real a12,
- real& lat2, real& lon2, real& azi2, real& s12,
- real& M12, real& M21) const {
- real t;
- GenDirect(lat1, lon1, azi1, true, a12,
- LATITUDE | LONGITUDE | AZIMUTH | DISTANCE |
- GEODESICSCALE,
- lat2, lon2, azi2, s12, t, M12, M21, t);
- }
- /**
- * See the documentation for GeodesicExact::ArcDirect.
- **********************************************************************/
- void ArcDirect(real lat1, real lon1, real azi1, real a12,
- real& lat2, real& lon2, real& azi2, real& s12,
- real& m12, real& M12, real& M21) const {
- real t;
- GenDirect(lat1, lon1, azi1, true, a12,
- LATITUDE | LONGITUDE | AZIMUTH | DISTANCE |
- REDUCEDLENGTH | GEODESICSCALE,
- lat2, lon2, azi2, s12, m12, M12, M21, t);
- }
- ///@}
- /** \name General version of the direct geodesic solution.
- **********************************************************************/
- ///@{
- /**
- * The general direct geodesic calculation. GeodesicExact::Direct and
- * GeodesicExact::ArcDirect are defined in terms of this function.
- *
- * @param[in] lat1 latitude of point 1 (degrees).
- * @param[in] lon1 longitude of point 1 (degrees).
- * @param[in] azi1 azimuth at point 1 (degrees).
- * @param[in] arcmode boolean flag determining the meaning of the second
- * parameter.
- * @param[in] s12_a12 if \e arcmode is false, this is the distance between
- * point 1 and point 2 (meters); otherwise it is the arc length between
- * point 1 and point 2 (degrees); it can be signed.
- * @param[in] outmask a bitor'ed combination of GeodesicExact::mask values
- * specifying which of the following parameters should be set.
- * @param[out] lat2 latitude of point 2 (degrees).
- * @param[out] lon2 longitude of point 2 (degrees).
- * @param[out] azi2 (forward) azimuth at point 2 (degrees).
- * @param[out] s12 distance between point 1 and point 2 (meters).
- * @param[out] m12 reduced length of geodesic (meters).
- * @param[out] M12 geodesic scale of point 2 relative to point 1
- * (dimensionless).
- * @param[out] M21 geodesic scale of point 1 relative to point 2
- * (dimensionless).
- * @param[out] S12 area under the geodesic (meters<sup>2</sup>).
- * @return \e a12 arc length of between point 1 and point 2 (degrees).
- *
- * The GeodesicExact::mask values possible for \e outmask are
- * - \e outmask |= GeodesicExact::LATITUDE for the latitude \e lat2;
- * - \e outmask |= GeodesicExact::LONGITUDE for the latitude \e lon2;
- * - \e outmask |= GeodesicExact::AZIMUTH for the latitude \e azi2;
- * - \e outmask |= GeodesicExact::DISTANCE for the distance \e s12;
- * - \e outmask |= GeodesicExact::REDUCEDLENGTH for the reduced length \e
- * m12;
- * - \e outmask |= GeodesicExact::GEODESICSCALE for the geodesic scales \e
- * M12 and \e M21;
- * - \e outmask |= GeodesicExact::AREA for the area \e S12;
- * - \e outmask |= GeodesicExact::ALL for all of the above;
- * - \e outmask |= GeodesicExact::LONG_UNROLL to unroll \e lon2 instead of
- * wrapping it into the range [−180°, 180°].
- * .
- * The function value \e a12 is always computed and returned and this
- * equals \e s12_a12 is \e arcmode is true. If \e outmask includes
- * GeodesicExact::DISTANCE and \e arcmode is false, then \e s12 = \e
- * s12_a12. It is not necessary to include GeodesicExact::DISTANCE_IN in
- * \e outmask; this is automatically included is \e arcmode is false.
- *
- * With the GeodesicExact::LONG_UNROLL bit set, the quantity \e lon2
- * − \e lon1 indicates how many times and in what sense the geodesic
- * encircles the ellipsoid.
- **********************************************************************/
- Math::real GenDirect(real lat1, real lon1, real azi1,
- bool arcmode, real s12_a12, unsigned outmask,
- real& lat2, real& lon2, real& azi2,
- real& s12, real& m12, real& M12, real& M21,
- real& S12) const;
- ///@}
- /** \name Inverse geodesic problem.
- **********************************************************************/
- ///@{
- /**
- * Perform the inverse geodesic calculation.
- *
- * @param[in] lat1 latitude of point 1 (degrees).
- * @param[in] lon1 longitude of point 1 (degrees).
- * @param[in] lat2 latitude of point 2 (degrees).
- * @param[in] lon2 longitude of point 2 (degrees).
- * @param[out] s12 distance between point 1 and point 2 (meters).
- * @param[out] azi1 azimuth at point 1 (degrees).
- * @param[out] azi2 (forward) azimuth at point 2 (degrees).
- * @param[out] m12 reduced length of geodesic (meters).
- * @param[out] M12 geodesic scale of point 2 relative to point 1
- * (dimensionless).
- * @param[out] M21 geodesic scale of point 1 relative to point 2
- * (dimensionless).
- * @param[out] S12 area under the geodesic (meters<sup>2</sup>).
- * @return \e a12 arc length of between point 1 and point 2 (degrees).
- *
- * \e lat1 and \e lat2 should be in the range [−90°, 90°].
- * The values of \e azi1 and \e azi2 returned are in the range
- * [−180°, 180°].
- *
- * If either point is at a pole, the azimuth is defined by keeping the
- * longitude fixed, writing \e lat = ±(90° − ε),
- * and taking the limit ε → 0+.
- *
- * The following functions are overloaded versions of
- * GeodesicExact::Inverse which omit some of the output parameters. Note,
- * however, that the arc length is always computed and returned as the
- * function value.
- **********************************************************************/
- Math::real Inverse(real lat1, real lon1, real lat2, real lon2,
- real& s12, real& azi1, real& azi2, real& m12,
- real& M12, real& M21, real& S12) const {
- return GenInverse(lat1, lon1, lat2, lon2,
- DISTANCE | AZIMUTH |
- REDUCEDLENGTH | GEODESICSCALE | AREA,
- s12, azi1, azi2, m12, M12, M21, S12);
- }
- /**
- * See the documentation for GeodesicExact::Inverse.
- **********************************************************************/
- Math::real Inverse(real lat1, real lon1, real lat2, real lon2,
- real& s12) const {
- real t;
- return GenInverse(lat1, lon1, lat2, lon2,
- DISTANCE,
- s12, t, t, t, t, t, t);
- }
- /**
- * See the documentation for GeodesicExact::Inverse.
- **********************************************************************/
- Math::real Inverse(real lat1, real lon1, real lat2, real lon2,
- real& azi1, real& azi2) const {
- real t;
- return GenInverse(lat1, lon1, lat2, lon2,
- AZIMUTH,
- t, azi1, azi2, t, t, t, t);
- }
- /**
- * See the documentation for GeodesicExact::Inverse.
- **********************************************************************/
- Math::real Inverse(real lat1, real lon1, real lat2, real lon2,
- real& s12, real& azi1, real& azi2)
- const {
- real t;
- return GenInverse(lat1, lon1, lat2, lon2,
- DISTANCE | AZIMUTH,
- s12, azi1, azi2, t, t, t, t);
- }
- /**
- * See the documentation for GeodesicExact::Inverse.
- **********************************************************************/
- Math::real Inverse(real lat1, real lon1, real lat2, real lon2,
- real& s12, real& azi1, real& azi2, real& m12)
- const {
- real t;
- return GenInverse(lat1, lon1, lat2, lon2,
- DISTANCE | AZIMUTH | REDUCEDLENGTH,
- s12, azi1, azi2, m12, t, t, t);
- }
- /**
- * See the documentation for GeodesicExact::Inverse.
- **********************************************************************/
- Math::real Inverse(real lat1, real lon1, real lat2, real lon2,
- real& s12, real& azi1, real& azi2,
- real& M12, real& M21) const {
- real t;
- return GenInverse(lat1, lon1, lat2, lon2,
- DISTANCE | AZIMUTH | GEODESICSCALE,
- s12, azi1, azi2, t, M12, M21, t);
- }
- /**
- * See the documentation for GeodesicExact::Inverse.
- **********************************************************************/
- Math::real Inverse(real lat1, real lon1, real lat2, real lon2,
- real& s12, real& azi1, real& azi2, real& m12,
- real& M12, real& M21) const {
- real t;
- return GenInverse(lat1, lon1, lat2, lon2,
- DISTANCE | AZIMUTH |
- REDUCEDLENGTH | GEODESICSCALE,
- s12, azi1, azi2, m12, M12, M21, t);
- }
- ///@}
- /** \name General version of inverse geodesic solution.
- **********************************************************************/
- ///@{
- /**
- * The general inverse geodesic calculation. GeodesicExact::Inverse is
- * defined in terms of this function.
- *
- * @param[in] lat1 latitude of point 1 (degrees).
- * @param[in] lon1 longitude of point 1 (degrees).
- * @param[in] lat2 latitude of point 2 (degrees).
- * @param[in] lon2 longitude of point 2 (degrees).
- * @param[in] outmask a bitor'ed combination of GeodesicExact::mask values
- * specifying which of the following parameters should be set.
- * @param[out] s12 distance between point 1 and point 2 (meters).
- * @param[out] azi1 azimuth at point 1 (degrees).
- * @param[out] azi2 (forward) azimuth at point 2 (degrees).
- * @param[out] m12 reduced length of geodesic (meters).
- * @param[out] M12 geodesic scale of point 2 relative to point 1
- * (dimensionless).
- * @param[out] M21 geodesic scale of point 1 relative to point 2
- * (dimensionless).
- * @param[out] S12 area under the geodesic (meters<sup>2</sup>).
- * @return \e a12 arc length of between point 1 and point 2 (degrees).
- *
- * The GeodesicExact::mask values possible for \e outmask are
- * - \e outmask |= GeodesicExact::DISTANCE for the distance \e s12;
- * - \e outmask |= GeodesicExact::AZIMUTH for the latitude \e azi2;
- * - \e outmask |= GeodesicExact::REDUCEDLENGTH for the reduced length \e
- * m12;
- * - \e outmask |= GeodesicExact::GEODESICSCALE for the geodesic scales \e
- * M12 and \e M21;
- * - \e outmask |= GeodesicExact::AREA for the area \e S12;
- * - \e outmask |= GeodesicExact::ALL for all of the above.
- * .
- * The arc length is always computed and returned as the function value.
- **********************************************************************/
- Math::real GenInverse(real lat1, real lon1, real lat2, real lon2,
- unsigned outmask,
- real& s12, real& azi1, real& azi2,
- real& m12, real& M12, real& M21, real& S12) const;
- ///@}
- /** \name Interface to GeodesicLineExact.
- **********************************************************************/
- ///@{
- /**
- * Set up to compute several points on a single geodesic.
- *
- * @param[in] lat1 latitude of point 1 (degrees).
- * @param[in] lon1 longitude of point 1 (degrees).
- * @param[in] azi1 azimuth at point 1 (degrees).
- * @param[in] caps bitor'ed combination of GeodesicExact::mask values
- * specifying the capabilities the GeodesicLineExact object should
- * possess, i.e., which quantities can be returned in calls to
- * GeodesicLineExact::Position.
- * @return a GeodesicLineExact object.
- *
- * \e lat1 should be in the range [−90°, 90°].
- *
- * The GeodesicExact::mask values are
- * - \e caps |= GeodesicExact::LATITUDE for the latitude \e lat2; this is
- * added automatically;
- * - \e caps |= GeodesicExact::LONGITUDE for the latitude \e lon2;
- * - \e caps |= GeodesicExact::AZIMUTH for the azimuth \e azi2; this is
- * added automatically;
- * - \e caps |= GeodesicExact::DISTANCE for the distance \e s12;
- * - \e caps |= GeodesicExact::REDUCEDLENGTH for the reduced length \e m12;
- * - \e caps |= GeodesicExact::GEODESICSCALE for the geodesic scales \e M12
- * and \e M21;
- * - \e caps |= GeodesicExact::AREA for the area \e S12;
- * - \e caps |= GeodesicExact::DISTANCE_IN permits the length of the
- * geodesic to be given in terms of \e s12; without this capability the
- * length can only be specified in terms of arc length;
- * - \e caps |= GeodesicExact::ALL for all of the above.
- * .
- * The default value of \e caps is GeodesicExact::ALL which turns on all
- * the capabilities.
- *
- * If the point is at a pole, the azimuth is defined by keeping \e lon1
- * fixed, writing \e lat1 = ±(90 − ε), and taking the
- * limit ε → 0+.
- **********************************************************************/
- GeodesicLineExact Line(real lat1, real lon1, real azi1,
- unsigned caps = ALL) const;
- /**
- * Define a GeodesicLineExact in terms of the inverse geodesic problem.
- *
- * @param[in] lat1 latitude of point 1 (degrees).
- * @param[in] lon1 longitude of point 1 (degrees).
- * @param[in] lat2 latitude of point 2 (degrees).
- * @param[in] lon2 longitude of point 2 (degrees).
- * @param[in] caps bitor'ed combination of GeodesicExact::mask values
- * specifying the capabilities the GeodesicLineExact object should
- * possess, i.e., which quantities can be returned in calls to
- * GeodesicLineExact::Position.
- * @return a GeodesicLineExact object.
- *
- * This function sets point 3 of the GeodesicLineExact to correspond to
- * point 2 of the inverse geodesic problem.
- *
- * \e lat1 and \e lat2 should be in the range [−90°, 90°].
- **********************************************************************/
- GeodesicLineExact InverseLine(real lat1, real lon1, real lat2, real lon2,
- unsigned caps = ALL) const;
- /**
- * Define a GeodesicLineExact in terms of the direct geodesic problem
- * specified in terms of distance.
- *
- * @param[in] lat1 latitude of point 1 (degrees).
- * @param[in] lon1 longitude of point 1 (degrees).
- * @param[in] azi1 azimuth at point 1 (degrees).
- * @param[in] s12 distance between point 1 and point 2 (meters); it can be
- * negative.
- * @param[in] caps bitor'ed combination of GeodesicExact::mask values
- * specifying the capabilities the GeodesicLineExact object should
- * possess, i.e., which quantities can be returned in calls to
- * GeodesicLineExact::Position.
- * @return a GeodesicLineExact object.
- *
- * This function sets point 3 of the GeodesicLineExact to correspond to
- * point 2 of the direct geodesic problem.
- *
- * \e lat1 should be in the range [−90°, 90°].
- **********************************************************************/
- GeodesicLineExact DirectLine(real lat1, real lon1, real azi1, real s12,
- unsigned caps = ALL) const;
- /**
- * Define a GeodesicLineExact in terms of the direct geodesic problem
- * specified in terms of arc length.
- *
- * @param[in] lat1 latitude of point 1 (degrees).
- * @param[in] lon1 longitude of point 1 (degrees).
- * @param[in] azi1 azimuth at point 1 (degrees).
- * @param[in] a12 arc length between point 1 and point 2 (degrees); it can
- * be negative.
- * @param[in] caps bitor'ed combination of GeodesicExact::mask values
- * specifying the capabilities the GeodesicLineExact object should
- * possess, i.e., which quantities can be returned in calls to
- * GeodesicLineExact::Position.
- * @return a GeodesicLineExact object.
- *
- * This function sets point 3 of the GeodesicLineExact to correspond to
- * point 2 of the direct geodesic problem.
- *
- * \e lat1 should be in the range [−90°, 90°].
- **********************************************************************/
- GeodesicLineExact ArcDirectLine(real lat1, real lon1, real azi1, real a12,
- unsigned caps = ALL) const;
- /**
- * Define a GeodesicLineExact in terms of the direct geodesic problem
- * specified in terms of either distance or arc length.
- *
- * @param[in] lat1 latitude of point 1 (degrees).
- * @param[in] lon1 longitude of point 1 (degrees).
- * @param[in] azi1 azimuth at point 1 (degrees).
- * @param[in] arcmode boolean flag determining the meaning of the \e
- * s12_a12.
- * @param[in] s12_a12 if \e arcmode is false, this is the distance between
- * point 1 and point 2 (meters); otherwise it is the arc length between
- * point 1 and point 2 (degrees); it can be negative.
- * @param[in] caps bitor'ed combination of GeodesicExact::mask values
- * specifying the capabilities the GeodesicLineExact object should
- * possess, i.e., which quantities can be returned in calls to
- * GeodesicLineExact::Position.
- * @return a GeodesicLineExact object.
- *
- * This function sets point 3 of the GeodesicLineExact to correspond to
- * point 2 of the direct geodesic problem.
- *
- * \e lat1 should be in the range [−90°, 90°].
- **********************************************************************/
- GeodesicLineExact GenDirectLine(real lat1, real lon1, real azi1,
- bool arcmode, real s12_a12,
- unsigned caps = ALL) const;
- ///@}
- /** \name Inspector functions.
- **********************************************************************/
- ///@{
- /**
- * @return \e a the equatorial radius of the ellipsoid (meters). This is
- * the value used in the constructor.
- **********************************************************************/
- Math::real EquatorialRadius() const { return _a; }
- /**
- * @return \e f the flattening of the ellipsoid. This is the
- * value used in the constructor.
- **********************************************************************/
- Math::real Flattening() const { return _f; }
- /**
- * @return total area of ellipsoid in meters<sup>2</sup>. The area of a
- * polygon encircling a pole can be found by adding
- * GeodesicExact::EllipsoidArea()/2 to the sum of \e S12 for each side of
- * the polygon.
- **********************************************************************/
- Math::real EllipsoidArea() const
- { return 4 * Math::pi() * _c2; }
- /**
- * \deprecated An old name for EquatorialRadius().
- **********************************************************************/
- GEOGRAPHICLIB_DEPRECATED("Use EquatorialRadius()")
- Math::real MajorRadius() const { return EquatorialRadius(); }
- ///@}
- /**
- * A global instantiation of GeodesicExact with the parameters for the
- * WGS84 ellipsoid.
- **********************************************************************/
- static const GeodesicExact& WGS84();
- };
- } // namespace GeographicLib
- #endif // GEOGRAPHICLIB_GEODESICEXACT_HPP
|