123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274 |
- /**
- * \file Geocentric.hpp
- * \brief Header for GeographicLib::Geocentric class
- *
- * Copyright (c) Charles Karney (2008-2020) <charles@karney.com> and licensed
- * under the MIT/X11 License. For more information, see
- * https://geographiclib.sourceforge.io/
- **********************************************************************/
- #if !defined(GEOGRAPHICLIB_GEOCENTRIC_HPP)
- #define GEOGRAPHICLIB_GEOCENTRIC_HPP 1
- #include <vector>
- #include <GeographicLib/Constants.hpp>
- namespace GeographicLib {
- /**
- * \brief %Geocentric coordinates
- *
- * Convert between geodetic coordinates latitude = \e lat, longitude = \e
- * lon, height = \e h (measured vertically from the surface of the ellipsoid)
- * to geocentric coordinates (\e X, \e Y, \e Z). The origin of geocentric
- * coordinates is at the center of the earth. The \e Z axis goes thru the
- * north pole, \e lat = 90°. The \e X axis goes thru \e lat = 0,
- * \e lon = 0. %Geocentric coordinates are also known as earth centered,
- * earth fixed (ECEF) coordinates.
- *
- * The conversion from geographic to geocentric coordinates is
- * straightforward. For the reverse transformation we use
- * - H. Vermeille,
- * <a href="https://doi.org/10.1007/s00190-002-0273-6"> Direct
- * transformation from geocentric coordinates to geodetic coordinates</a>,
- * J. Geodesy 76, 451--454 (2002).
- * .
- * Several changes have been made to ensure that the method returns accurate
- * results for all finite inputs (even if \e h is infinite). The changes are
- * described in Appendix B of
- * - C. F. F. Karney,
- * <a href="https://arxiv.org/abs/1102.1215v1">Geodesics
- * on an ellipsoid of revolution</a>,
- * Feb. 2011;
- * preprint
- * <a href="https://arxiv.org/abs/1102.1215v1">arxiv:1102.1215v1</a>.
- * .
- * Vermeille similarly updated his method in
- * - H. Vermeille,
- * <a href="https://doi.org/10.1007/s00190-010-0419-x">
- * An analytical method to transform geocentric into
- * geodetic coordinates</a>, J. Geodesy 85, 105--117 (2011).
- * .
- * See \ref geocentric for more information.
- *
- * The errors in these routines are close to round-off. Specifically, for
- * points within 5000 km of the surface of the ellipsoid (either inside or
- * outside the ellipsoid), the error is bounded by 7 nm (7 nanometers) for
- * the WGS84 ellipsoid. See \ref geocentric for further information on the
- * errors.
- *
- * Example of use:
- * \include example-Geocentric.cpp
- *
- * <a href="CartConvert.1.html">CartConvert</a> is a command-line utility
- * providing access to the functionality of Geocentric and LocalCartesian.
- **********************************************************************/
- class GEOGRAPHICLIB_EXPORT Geocentric {
- private:
- typedef Math::real real;
- friend class LocalCartesian;
- friend class MagneticCircle; // MagneticCircle uses Rotation
- friend class MagneticModel; // MagneticModel uses IntForward
- friend class GravityCircle; // GravityCircle uses Rotation
- friend class GravityModel; // GravityModel uses IntForward
- friend class NormalGravity; // NormalGravity uses IntForward
- static const size_t dim_ = 3;
- static const size_t dim2_ = dim_ * dim_;
- real _a, _f, _e2, _e2m, _e2a, _e4a, _maxrad;
- static void Rotation(real sphi, real cphi, real slam, real clam,
- real M[dim2_]);
- static void Rotate(const real M[dim2_], real x, real y, real z,
- real& X, real& Y, real& Z) {
- // Perform [X,Y,Z]^t = M.[x,y,z]^t
- // (typically local cartesian to geocentric)
- X = M[0] * x + M[1] * y + M[2] * z;
- Y = M[3] * x + M[4] * y + M[5] * z;
- Z = M[6] * x + M[7] * y + M[8] * z;
- }
- static void Unrotate(const real M[dim2_], real X, real Y, real Z,
- real& x, real& y, real& z) {
- // Perform [x,y,z]^t = M^t.[X,Y,Z]^t
- // (typically geocentric to local cartesian)
- x = M[0] * X + M[3] * Y + M[6] * Z;
- y = M[1] * X + M[4] * Y + M[7] * Z;
- z = M[2] * X + M[5] * Y + M[8] * Z;
- }
- void IntForward(real lat, real lon, real h, real& X, real& Y, real& Z,
- real M[dim2_]) const;
- void IntReverse(real X, real Y, real Z, real& lat, real& lon, real& h,
- real M[dim2_]) const;
- public:
- /**
- * Constructor for a ellipsoid with
- *
- * @param[in] a equatorial radius (meters).
- * @param[in] f flattening of ellipsoid. Setting \e f = 0 gives a sphere.
- * Negative \e f gives a prolate ellipsoid.
- * @exception GeographicErr if \e a or (1 − \e f) \e a is not
- * positive.
- **********************************************************************/
- Geocentric(real a, real f);
- /**
- * A default constructor (for use by NormalGravity).
- **********************************************************************/
- Geocentric() : _a(-1) {}
- /**
- * Convert from geodetic to geocentric coordinates.
- *
- * @param[in] lat latitude of point (degrees).
- * @param[in] lon longitude of point (degrees).
- * @param[in] h height of point above the ellipsoid (meters).
- * @param[out] X geocentric coordinate (meters).
- * @param[out] Y geocentric coordinate (meters).
- * @param[out] Z geocentric coordinate (meters).
- *
- * \e lat should be in the range [−90°, 90°].
- **********************************************************************/
- void Forward(real lat, real lon, real h, real& X, real& Y, real& Z)
- const {
- if (Init())
- IntForward(lat, lon, h, X, Y, Z, NULL);
- }
- /**
- * Convert from geodetic to geocentric coordinates and return rotation
- * matrix.
- *
- * @param[in] lat latitude of point (degrees).
- * @param[in] lon longitude of point (degrees).
- * @param[in] h height of point above the ellipsoid (meters).
- * @param[out] X geocentric coordinate (meters).
- * @param[out] Y geocentric coordinate (meters).
- * @param[out] Z geocentric coordinate (meters).
- * @param[out] M if the length of the vector is 9, fill with the rotation
- * matrix in row-major order.
- *
- * Let \e v be a unit vector located at (\e lat, \e lon, \e h). We can
- * express \e v as \e column vectors in one of two ways
- * - in east, north, up coordinates (where the components are relative to a
- * local coordinate system at (\e lat, \e lon, \e h)); call this
- * representation \e v1.
- * - in geocentric \e X, \e Y, \e Z coordinates; call this representation
- * \e v0.
- * .
- * Then we have \e v0 = \e M ⋅ \e v1.
- **********************************************************************/
- void Forward(real lat, real lon, real h, real& X, real& Y, real& Z,
- std::vector<real>& M)
- const {
- if (!Init())
- return;
- if (M.end() == M.begin() + dim2_) {
- real t[dim2_];
- IntForward(lat, lon, h, X, Y, Z, t);
- std::copy(t, t + dim2_, M.begin());
- } else
- IntForward(lat, lon, h, X, Y, Z, NULL);
- }
- /**
- * Convert from geocentric to geodetic to coordinates.
- *
- * @param[in] X geocentric coordinate (meters).
- * @param[in] Y geocentric coordinate (meters).
- * @param[in] Z geocentric coordinate (meters).
- * @param[out] lat latitude of point (degrees).
- * @param[out] lon longitude of point (degrees).
- * @param[out] h height of point above the ellipsoid (meters).
- *
- * In general, there are multiple solutions and the result which minimizes
- * |<i>h</i> |is returned, i.e., (<i>lat</i>, <i>lon</i>) corresponds to
- * the closest point on the ellipsoid. If there are still multiple
- * solutions with different latitudes (applies only if \e Z = 0), then the
- * solution with \e lat > 0 is returned. If there are still multiple
- * solutions with different longitudes (applies only if \e X = \e Y = 0)
- * then \e lon = 0 is returned. The value of \e h returned satisfies \e h
- * ≥ − \e a (1 − <i>e</i><sup>2</sup>) / sqrt(1 −
- * <i>e</i><sup>2</sup> sin<sup>2</sup>\e lat). The value of \e lon
- * returned is in the range [−180°, 180°].
- **********************************************************************/
- void Reverse(real X, real Y, real Z, real& lat, real& lon, real& h)
- const {
- if (Init())
- IntReverse(X, Y, Z, lat, lon, h, NULL);
- }
- /**
- * Convert from geocentric to geodetic to coordinates.
- *
- * @param[in] X geocentric coordinate (meters).
- * @param[in] Y geocentric coordinate (meters).
- * @param[in] Z geocentric coordinate (meters).
- * @param[out] lat latitude of point (degrees).
- * @param[out] lon longitude of point (degrees).
- * @param[out] h height of point above the ellipsoid (meters).
- * @param[out] M if the length of the vector is 9, fill with the rotation
- * matrix in row-major order.
- *
- * Let \e v be a unit vector located at (\e lat, \e lon, \e h). We can
- * express \e v as \e column vectors in one of two ways
- * - in east, north, up coordinates (where the components are relative to a
- * local coordinate system at (\e lat, \e lon, \e h)); call this
- * representation \e v1.
- * - in geocentric \e X, \e Y, \e Z coordinates; call this representation
- * \e v0.
- * .
- * Then we have \e v1 = <i>M</i><sup>T</sup> ⋅ \e v0, where
- * <i>M</i><sup>T</sup> is the transpose of \e M.
- **********************************************************************/
- void Reverse(real X, real Y, real Z, real& lat, real& lon, real& h,
- std::vector<real>& M)
- const {
- if (!Init())
- return;
- if (M.end() == M.begin() + dim2_) {
- real t[dim2_];
- IntReverse(X, Y, Z, lat, lon, h, t);
- std::copy(t, t + dim2_, M.begin());
- } else
- IntReverse(X, Y, Z, lat, lon, h, NULL);
- }
- /** \name Inspector functions
- **********************************************************************/
- ///@{
- /**
- * @return true if the object has been initialized.
- **********************************************************************/
- bool Init() const { return _a > 0; }
- /**
- * @return \e a the equatorial radius of the ellipsoid (meters). This is
- * the value used in the constructor.
- **********************************************************************/
- Math::real EquatorialRadius() const
- { return Init() ? _a : Math::NaN(); }
- /**
- * @return \e f the flattening of the ellipsoid. This is the
- * value used in the constructor.
- **********************************************************************/
- Math::real Flattening() const
- { return Init() ? _f : Math::NaN(); }
- /**
- * \deprecated An old name for EquatorialRadius().
- **********************************************************************/
- GEOGRAPHICLIB_DEPRECATED("Use EquatorialRadius()")
- Math::real MajorRadius() const { return EquatorialRadius(); }
- ///@}
- /**
- * A global instantiation of Geocentric with the parameters for the WGS84
- * ellipsoid.
- **********************************************************************/
- static const Geocentric& WGS84();
- };
- } // namespace GeographicLib
- #endif // GEOGRAPHICLIB_GEOCENTRIC_HPP
|