123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321 |
- /**
- * \file AlbersEqualArea.hpp
- * \brief Header for GeographicLib::AlbersEqualArea class
- *
- * Copyright (c) Charles Karney (2010-2021) <charles@karney.com> and licensed
- * under the MIT/X11 License. For more information, see
- * https://geographiclib.sourceforge.io/
- **********************************************************************/
- #if !defined(GEOGRAPHICLIB_ALBERSEQUALAREA_HPP)
- #define GEOGRAPHICLIB_ALBERSEQUALAREA_HPP 1
- #include <GeographicLib/Constants.hpp>
- namespace GeographicLib {
- /**
- * \brief Albers equal area conic projection
- *
- * Implementation taken from the report,
- * - J. P. Snyder,
- * <a href="http://pubs.er.usgs.gov/usgspubs/pp/pp1395"> Map Projections: A
- * Working Manual</a>, USGS Professional Paper 1395 (1987),
- * pp. 101--102.
- *
- * This is a implementation of the equations in Snyder except that divided
- * differences will be [have been] used to transform the expressions into
- * ones which may be evaluated accurately. [In this implementation, the
- * projection correctly becomes the cylindrical equal area or the azimuthal
- * equal area projection when the standard latitude is the equator or a
- * pole.]
- *
- * The ellipsoid parameters, the standard parallels, and the scale on the
- * standard parallels are set in the constructor. Internally, the case with
- * two standard parallels is converted into a single standard parallel, the
- * latitude of minimum azimuthal scale, with an azimuthal scale specified on
- * this parallel. This latitude is also used as the latitude of origin which
- * is returned by AlbersEqualArea::OriginLatitude. The azimuthal scale on
- * the latitude of origin is given by AlbersEqualArea::CentralScale. The
- * case with two standard parallels at opposite poles is singular and is
- * disallowed. The central meridian (which is a trivial shift of the
- * longitude) is specified as the \e lon0 argument of the
- * AlbersEqualArea::Forward and AlbersEqualArea::Reverse functions.
- * AlbersEqualArea::Forward and AlbersEqualArea::Reverse also return the
- * meridian convergence, γ, and azimuthal scale, \e k. A small square
- * aligned with the cardinal directions is projected to a rectangle with
- * dimensions \e k (in the E-W direction) and 1/\e k (in the N-S direction).
- * The E-W sides of the rectangle are oriented γ degrees
- * counter-clockwise from the \e x axis. There is no provision in this class
- * for specifying a false easting or false northing or a different latitude
- * of origin.
- *
- * Example of use:
- * \include example-AlbersEqualArea.cpp
- *
- * <a href="ConicProj.1.html">ConicProj</a> is a command-line utility
- * providing access to the functionality of LambertConformalConic and
- * AlbersEqualArea.
- **********************************************************************/
- class GEOGRAPHICLIB_EXPORT AlbersEqualArea {
- private:
- typedef Math::real real;
- real eps_, epsx_, epsx2_, tol_, tol0_;
- real _a, _f, _fm, _e2, _e, _e2m, _qZ, _qx;
- real _sign, _lat0, _k0;
- real _n0, _m02, _nrho0, _k2, _txi0, _scxi0, _sxi0;
- static const int numit_ = 5; // Newton iterations in Reverse
- static const int numit0_ = 20; // Newton iterations in Init
- static real hyp(real x) {
- using std::hypot;
- return hypot(real(1), x);
- }
- // atanh( e * x)/ e if f > 0
- // atan (sqrt(-e2) * x)/sqrt(-e2) if f < 0
- // x if f = 0
- real atanhee(real x) const {
- using std::atan; using std::abs; using std::atanh;
- return _f > 0 ? atanh(_e * x)/_e : (_f < 0 ? (atan(_e * x)/_e) : x);
- }
- // return atanh(sqrt(x))/sqrt(x) - 1, accurate for small x
- static real atanhxm1(real x);
- // Divided differences
- // Definition: Df(x,y) = (f(x)-f(y))/(x-y)
- // See:
- // W. M. Kahan and R. J. Fateman,
- // Symbolic computation of divided differences,
- // SIGSAM Bull. 33(3), 7-28 (1999)
- // https://doi.org/10.1145/334714.334716
- // http://www.cs.berkeley.edu/~fateman/papers/divdiff.pdf
- //
- // General rules
- // h(x) = f(g(x)): Dh(x,y) = Df(g(x),g(y))*Dg(x,y)
- // h(x) = f(x)*g(x):
- // Dh(x,y) = Df(x,y)*g(x) + Dg(x,y)*f(y)
- // = Df(x,y)*g(y) + Dg(x,y)*f(x)
- // = Df(x,y)*(g(x)+g(y))/2 + Dg(x,y)*(f(x)+f(y))/2
- //
- // sn(x) = x/sqrt(1+x^2): Dsn(x,y) = (x+y)/((sn(x)+sn(y))*(1+x^2)*(1+y^2))
- static real Dsn(real x, real y, real sx, real sy) {
- // sx = x/hyp(x)
- real t = x * y;
- return t > 0 ? (x + y) * Math::sq( (sx * sy)/t ) / (sx + sy) :
- (x - y != 0 ? (sx - sy) / (x - y) : 1);
- }
- // Datanhee(x,y) = (atanee(x)-atanee(y))/(x-y)
- // = atanhee((x-y)/(1-e^2*x*y))/(x-y)
- real Datanhee(real x, real y) const {
- real t = x - y, d = 1 - _e2 * x * y;
- return t == 0 ? 1 / d :
- (x*y < 0 ? atanhee(x) - atanhee(y) : atanhee(t / d)) / t;
- }
- // DDatanhee(x,y) = (Datanhee(1,y) - Datanhee(1,x))/(y-x)
- real DDatanhee(real x, real y) const;
- real DDatanhee0(real x, real y) const;
- real DDatanhee1(real x, real y) const;
- real DDatanhee2(real x, real y) const;
- void Init(real sphi1, real cphi1, real sphi2, real cphi2, real k1);
- real txif(real tphi) const;
- real tphif(real txi) const;
- friend class Ellipsoid; // For access to txif, tphif, etc.
- public:
- /**
- * Constructor with a single standard parallel.
- *
- * @param[in] a equatorial radius of ellipsoid (meters).
- * @param[in] f flattening of ellipsoid. Setting \e f = 0 gives a sphere.
- * Negative \e f gives a prolate ellipsoid.
- * @param[in] stdlat standard parallel (degrees), the circle of tangency.
- * @param[in] k0 azimuthal scale on the standard parallel.
- * @exception GeographicErr if \e a, (1 − \e f) \e a, or \e k0 is
- * not positive.
- * @exception GeographicErr if \e stdlat is not in [−90°,
- * 90°].
- **********************************************************************/
- AlbersEqualArea(real a, real f, real stdlat, real k0);
- /**
- * Constructor with two standard parallels.
- *
- * @param[in] a equatorial radius of ellipsoid (meters).
- * @param[in] f flattening of ellipsoid. Setting \e f = 0 gives a sphere.
- * Negative \e f gives a prolate ellipsoid.
- * @param[in] stdlat1 first standard parallel (degrees).
- * @param[in] stdlat2 second standard parallel (degrees).
- * @param[in] k1 azimuthal scale on the standard parallels.
- * @exception GeographicErr if \e a, (1 − \e f) \e a, or \e k1 is
- * not positive.
- * @exception GeographicErr if \e stdlat1 or \e stdlat2 is not in
- * [−90°, 90°], or if \e stdlat1 and \e stdlat2 are
- * opposite poles.
- **********************************************************************/
- AlbersEqualArea(real a, real f, real stdlat1, real stdlat2, real k1);
- /**
- * Constructor with two standard parallels specified by sines and cosines.
- *
- * @param[in] a equatorial radius of ellipsoid (meters).
- * @param[in] f flattening of ellipsoid. Setting \e f = 0 gives a sphere.
- * Negative \e f gives a prolate ellipsoid.
- * @param[in] sinlat1 sine of first standard parallel.
- * @param[in] coslat1 cosine of first standard parallel.
- * @param[in] sinlat2 sine of second standard parallel.
- * @param[in] coslat2 cosine of second standard parallel.
- * @param[in] k1 azimuthal scale on the standard parallels.
- * @exception GeographicErr if \e a, (1 − \e f) \e a, or \e k1 is
- * not positive.
- * @exception GeographicErr if \e stdlat1 or \e stdlat2 is not in
- * [−90°, 90°], or if \e stdlat1 and \e stdlat2 are
- * opposite poles.
- *
- * This allows parallels close to the poles to be specified accurately.
- * This routine computes the latitude of origin and the azimuthal scale at
- * this latitude. If \e dlat = abs(\e lat2 − \e lat1) ≤ 160°,
- * then the error in the latitude of origin is less than 4.5 ×
- * 10<sup>−14</sup>d;.
- **********************************************************************/
- AlbersEqualArea(real a, real f,
- real sinlat1, real coslat1,
- real sinlat2, real coslat2,
- real k1);
- /**
- * Set the azimuthal scale for the projection.
- *
- * @param[in] lat (degrees).
- * @param[in] k azimuthal scale at latitude \e lat (default 1).
- * @exception GeographicErr \e k is not positive.
- * @exception GeographicErr if \e lat is not in (−90°,
- * 90°).
- *
- * This allows a "latitude of conformality" to be specified.
- **********************************************************************/
- void SetScale(real lat, real k = real(1));
- /**
- * Forward projection, from geographic to Lambert conformal conic.
- *
- * @param[in] lon0 central meridian longitude (degrees).
- * @param[in] lat latitude of point (degrees).
- * @param[in] lon longitude of point (degrees).
- * @param[out] x easting of point (meters).
- * @param[out] y northing of point (meters).
- * @param[out] gamma meridian convergence at point (degrees).
- * @param[out] k azimuthal scale of projection at point; the radial
- * scale is the 1/\e k.
- *
- * The latitude origin is given by AlbersEqualArea::LatitudeOrigin(). No
- * false easting or northing is added and \e lat should be in the range
- * [−90°, 90°]. The values of \e x and \e y returned for
- * points which project to infinity (i.e., one or both of the poles) will
- * be large but finite.
- **********************************************************************/
- void Forward(real lon0, real lat, real lon,
- real& x, real& y, real& gamma, real& k) const;
- /**
- * Reverse projection, from Lambert conformal conic to geographic.
- *
- * @param[in] lon0 central meridian longitude (degrees).
- * @param[in] x easting of point (meters).
- * @param[in] y northing of point (meters).
- * @param[out] lat latitude of point (degrees).
- * @param[out] lon longitude of point (degrees).
- * @param[out] gamma meridian convergence at point (degrees).
- * @param[out] k azimuthal scale of projection at point; the radial
- * scale is the 1/\e k.
- *
- * The latitude origin is given by AlbersEqualArea::LatitudeOrigin(). No
- * false easting or northing is added. The value of \e lon returned is in
- * the range [−180°, 180°]. The value of \e lat returned is
- * in the range [−90°, 90°]. If the input point is outside
- * the legal projected space the nearest pole is returned.
- **********************************************************************/
- void Reverse(real lon0, real x, real y,
- real& lat, real& lon, real& gamma, real& k) const;
- /**
- * AlbersEqualArea::Forward without returning the convergence and
- * scale.
- **********************************************************************/
- void Forward(real lon0, real lat, real lon,
- real& x, real& y) const {
- real gamma, k;
- Forward(lon0, lat, lon, x, y, gamma, k);
- }
- /**
- * AlbersEqualArea::Reverse without returning the convergence and
- * scale.
- **********************************************************************/
- void Reverse(real lon0, real x, real y,
- real& lat, real& lon) const {
- real gamma, k;
- Reverse(lon0, x, y, lat, lon, gamma, k);
- }
- /** \name Inspector functions
- **********************************************************************/
- ///@{
- /**
- * @return \e a the equatorial radius of the ellipsoid (meters). This is
- * the value used in the constructor.
- **********************************************************************/
- Math::real EquatorialRadius() const { return _a; }
- /**
- * @return \e f the flattening of the ellipsoid. This is the value used in
- * the constructor.
- **********************************************************************/
- Math::real Flattening() const { return _f; }
- /**
- * @return latitude of the origin for the projection (degrees).
- *
- * This is the latitude of minimum azimuthal scale and equals the \e stdlat
- * in the 1-parallel constructor and lies between \e stdlat1 and \e stdlat2
- * in the 2-parallel constructors.
- **********************************************************************/
- Math::real OriginLatitude() const { return _lat0; }
- /**
- * @return central scale for the projection. This is the azimuthal scale
- * on the latitude of origin.
- **********************************************************************/
- Math::real CentralScale() const { return _k0; }
- /**
- * \deprecated An old name for EquatorialRadius().
- **********************************************************************/
- GEOGRAPHICLIB_DEPRECATED("Use EquatorialRadius()")
- Math::real MajorRadius() const { return EquatorialRadius(); }
- ///@}
- /**
- * A global instantiation of AlbersEqualArea with the WGS84 ellipsoid, \e
- * stdlat = 0, and \e k0 = 1. This degenerates to the cylindrical equal
- * area projection.
- **********************************************************************/
- static const AlbersEqualArea& CylindricalEqualArea();
- /**
- * A global instantiation of AlbersEqualArea with the WGS84 ellipsoid, \e
- * stdlat = 90°, and \e k0 = 1. This degenerates to the
- * Lambert azimuthal equal area projection.
- **********************************************************************/
- static const AlbersEqualArea& AzimuthalEqualAreaNorth();
- /**
- * A global instantiation of AlbersEqualArea with the WGS84 ellipsoid, \e
- * stdlat = −90°, and \e k0 = 1. This degenerates to the
- * Lambert azimuthal equal area projection.
- **********************************************************************/
- static const AlbersEqualArea& AzimuthalEqualAreaSouth();
- };
- } // namespace GeographicLib
- #endif // GEOGRAPHICLIB_ALBERSEQUALAREA_HPP
|