148 lines
		
	
	
		
			6.3 KiB
		
	
	
	
		
			Protocol Buffer
		
	
	
	
	
	
			
		
		
	
	
			148 lines
		
	
	
		
			6.3 KiB
		
	
	
	
		
			Protocol Buffer
		
	
	
	
	
	
// Protocol Buffers - Google's data interchange format
 | 
						|
// Copyright 2008 Google Inc.  All rights reserved.
 | 
						|
// https://developers.google.com/protocol-buffers/
 | 
						|
//
 | 
						|
// Redistribution and use in source and binary forms, with or without
 | 
						|
// modification, are permitted provided that the following conditions are
 | 
						|
// met:
 | 
						|
//
 | 
						|
//     * Redistributions of source code must retain the above copyright
 | 
						|
// notice, this list of conditions and the following disclaimer.
 | 
						|
//     * Redistributions in binary form must reproduce the above
 | 
						|
// copyright notice, this list of conditions and the following disclaimer
 | 
						|
// in the documentation and/or other materials provided with the
 | 
						|
// distribution.
 | 
						|
//     * Neither the name of Google Inc. nor the names of its
 | 
						|
// contributors may be used to endorse or promote products derived from
 | 
						|
// this software without specific prior written permission.
 | 
						|
//
 | 
						|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 | 
						|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 | 
						|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 | 
						|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 | 
						|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 | 
						|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 | 
						|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 | 
						|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 | 
						|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 | 
						|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 | 
						|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 | 
						|
 | 
						|
syntax = "proto3";
 | 
						|
 | 
						|
package google.protobuf;
 | 
						|
 | 
						|
option csharp_namespace = "Google.Protobuf.WellKnownTypes";
 | 
						|
option cc_enable_arenas = true;
 | 
						|
option go_package = "google.golang.org/protobuf/types/known/timestamppb";
 | 
						|
option java_package = "com.google.protobuf";
 | 
						|
option java_outer_classname = "TimestampProto";
 | 
						|
option java_multiple_files = true;
 | 
						|
option objc_class_prefix = "GPB";
 | 
						|
 | 
						|
// A Timestamp represents a point in time independent of any time zone or local
 | 
						|
// calendar, encoded as a count of seconds and fractions of seconds at
 | 
						|
// nanosecond resolution. The count is relative to an epoch at UTC midnight on
 | 
						|
// January 1, 1970, in the proleptic Gregorian calendar which extends the
 | 
						|
// Gregorian calendar backwards to year one.
 | 
						|
//
 | 
						|
// All minutes are 60 seconds long. Leap seconds are "smeared" so that no leap
 | 
						|
// second table is needed for interpretation, using a [24-hour linear
 | 
						|
// smear](https://developers.google.com/time/smear).
 | 
						|
//
 | 
						|
// The range is from 0001-01-01T00:00:00Z to 9999-12-31T23:59:59.999999999Z. By
 | 
						|
// restricting to that range, we ensure that we can convert to and from [RFC
 | 
						|
// 3339](https://www.ietf.org/rfc/rfc3339.txt) date strings.
 | 
						|
//
 | 
						|
// # Examples
 | 
						|
//
 | 
						|
// Example 1: Compute Timestamp from POSIX `time()`.
 | 
						|
//
 | 
						|
//     Timestamp timestamp;
 | 
						|
//     timestamp.set_seconds(time(NULL));
 | 
						|
//     timestamp.set_nanos(0);
 | 
						|
//
 | 
						|
// Example 2: Compute Timestamp from POSIX `gettimeofday()`.
 | 
						|
//
 | 
						|
//     struct timeval tv;
 | 
						|
//     gettimeofday(&tv, NULL);
 | 
						|
//
 | 
						|
//     Timestamp timestamp;
 | 
						|
//     timestamp.set_seconds(tv.tv_sec);
 | 
						|
//     timestamp.set_nanos(tv.tv_usec * 1000);
 | 
						|
//
 | 
						|
// Example 3: Compute Timestamp from Win32 `GetSystemTimeAsFileTime()`.
 | 
						|
//
 | 
						|
//     FILETIME ft;
 | 
						|
//     GetSystemTimeAsFileTime(&ft);
 | 
						|
//     UINT64 ticks = (((UINT64)ft.dwHighDateTime) << 32) | ft.dwLowDateTime;
 | 
						|
//
 | 
						|
//     // A Windows tick is 100 nanoseconds. Windows epoch 1601-01-01T00:00:00Z
 | 
						|
//     // is 11644473600 seconds before Unix epoch 1970-01-01T00:00:00Z.
 | 
						|
//     Timestamp timestamp;
 | 
						|
//     timestamp.set_seconds((INT64) ((ticks / 10000000) - 11644473600LL));
 | 
						|
//     timestamp.set_nanos((INT32) ((ticks % 10000000) * 100));
 | 
						|
//
 | 
						|
// Example 4: Compute Timestamp from Java `System.currentTimeMillis()`.
 | 
						|
//
 | 
						|
//     long millis = System.currentTimeMillis();
 | 
						|
//
 | 
						|
//     Timestamp timestamp = Timestamp.newBuilder().setSeconds(millis / 1000)
 | 
						|
//         .setNanos((int) ((millis % 1000) * 1000000)).build();
 | 
						|
//
 | 
						|
//
 | 
						|
// Example 5: Compute Timestamp from Java `Instant.now()`.
 | 
						|
//
 | 
						|
//     Instant now = Instant.now();
 | 
						|
//
 | 
						|
//     Timestamp timestamp =
 | 
						|
//         Timestamp.newBuilder().setSeconds(now.getEpochSecond())
 | 
						|
//             .setNanos(now.getNano()).build();
 | 
						|
//
 | 
						|
//
 | 
						|
// Example 6: Compute Timestamp from current time in Python.
 | 
						|
//
 | 
						|
//     timestamp = Timestamp()
 | 
						|
//     timestamp.GetCurrentTime()
 | 
						|
//
 | 
						|
// # JSON Mapping
 | 
						|
//
 | 
						|
// In JSON format, the Timestamp type is encoded as a string in the
 | 
						|
// [RFC 3339](https://www.ietf.org/rfc/rfc3339.txt) format. That is, the
 | 
						|
// format is "{year}-{month}-{day}T{hour}:{min}:{sec}[.{frac_sec}]Z"
 | 
						|
// where {year} is always expressed using four digits while {month}, {day},
 | 
						|
// {hour}, {min}, and {sec} are zero-padded to two digits each. The fractional
 | 
						|
// seconds, which can go up to 9 digits (i.e. up to 1 nanosecond resolution),
 | 
						|
// are optional. The "Z" suffix indicates the timezone ("UTC"); the timezone
 | 
						|
// is required. A proto3 JSON serializer should always use UTC (as indicated by
 | 
						|
// "Z") when printing the Timestamp type and a proto3 JSON parser should be
 | 
						|
// able to accept both UTC and other timezones (as indicated by an offset).
 | 
						|
//
 | 
						|
// For example, "2017-01-15T01:30:15.01Z" encodes 15.01 seconds past
 | 
						|
// 01:30 UTC on January 15, 2017.
 | 
						|
//
 | 
						|
// In JavaScript, one can convert a Date object to this format using the
 | 
						|
// standard
 | 
						|
// [toISOString()](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Date/toISOString)
 | 
						|
// method. In Python, a standard `datetime.datetime` object can be converted
 | 
						|
// to this format using
 | 
						|
// [`strftime`](https://docs.python.org/2/library/time.html#time.strftime) with
 | 
						|
// the time format spec '%Y-%m-%dT%H:%M:%S.%fZ'. Likewise, in Java, one can use
 | 
						|
// the Joda Time's [`ISODateTimeFormat.dateTime()`](
 | 
						|
// http://www.joda.org/joda-time/apidocs/org/joda/time/format/ISODateTimeFormat.html#dateTime%2D%2D
 | 
						|
// ) to obtain a formatter capable of generating timestamps in this format.
 | 
						|
//
 | 
						|
//
 | 
						|
message Timestamp {
 | 
						|
  // Represents seconds of UTC time since Unix epoch
 | 
						|
  // 1970-01-01T00:00:00Z. Must be from 0001-01-01T00:00:00Z to
 | 
						|
  // 9999-12-31T23:59:59Z inclusive.
 | 
						|
  int64 seconds = 1;
 | 
						|
 | 
						|
  // Non-negative fractions of a second at nanosecond resolution. Negative
 | 
						|
  // second values with fractions must still have non-negative nanos values
 | 
						|
  // that count forward in time. Must be from 0 to 999,999,999
 | 
						|
  // inclusive.
 | 
						|
  int32 nanos = 2;
 | 
						|
}
 |