403 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			403 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
// Protocol Buffers - Google's data interchange format
 | 
						|
// Copyright 2008 Google Inc.  All rights reserved.
 | 
						|
// https://developers.google.com/protocol-buffers/
 | 
						|
//
 | 
						|
// Redistribution and use in source and binary forms, with or without
 | 
						|
// modification, are permitted provided that the following conditions are
 | 
						|
// met:
 | 
						|
//
 | 
						|
//     * Redistributions of source code must retain the above copyright
 | 
						|
// notice, this list of conditions and the following disclaimer.
 | 
						|
//     * Redistributions in binary form must reproduce the above
 | 
						|
// copyright notice, this list of conditions and the following disclaimer
 | 
						|
// in the documentation and/or other materials provided with the
 | 
						|
// distribution.
 | 
						|
//     * Neither the name of Google Inc. nor the names of its
 | 
						|
// contributors may be used to endorse or promote products derived from
 | 
						|
// this software without specific prior written permission.
 | 
						|
//
 | 
						|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 | 
						|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 | 
						|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 | 
						|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 | 
						|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 | 
						|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 | 
						|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 | 
						|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 | 
						|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 | 
						|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 | 
						|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 | 
						|
 | 
						|
// A StringPiece points to part or all of a string, Cord, double-quoted string
 | 
						|
// literal, or other string-like object.  A StringPiece does *not* own the
 | 
						|
// string to which it points.  A StringPiece is not null-terminated.
 | 
						|
//
 | 
						|
// You can use StringPiece as a function or method parameter.  A StringPiece
 | 
						|
// parameter can receive a double-quoted string literal argument, a "const
 | 
						|
// char*" argument, a string argument, or a StringPiece argument with no data
 | 
						|
// copying.  Systematic use of StringPiece for arguments reduces data
 | 
						|
// copies and strlen() calls.
 | 
						|
//
 | 
						|
// Prefer passing StringPieces by value:
 | 
						|
//   void MyFunction(StringPiece arg);
 | 
						|
// If circumstances require, you may also pass by const reference:
 | 
						|
//   void MyFunction(const StringPiece& arg);  // not preferred
 | 
						|
// Both of these have the same lifetime semantics.  Passing by value
 | 
						|
// generates slightly smaller code.  For more discussion, see the thread
 | 
						|
// go/stringpiecebyvalue on c-users.
 | 
						|
//
 | 
						|
// StringPiece is also suitable for local variables if you know that
 | 
						|
// the lifetime of the underlying object is longer than the lifetime
 | 
						|
// of your StringPiece variable.
 | 
						|
//
 | 
						|
// Beware of binding a StringPiece to a temporary:
 | 
						|
//   StringPiece sp = obj.MethodReturningString();  // BAD: lifetime problem
 | 
						|
//
 | 
						|
// This code is okay:
 | 
						|
//   string str = obj.MethodReturningString();  // str owns its contents
 | 
						|
//   StringPiece sp(str);  // GOOD, because str outlives sp
 | 
						|
//
 | 
						|
// StringPiece is sometimes a poor choice for a return value and usually a poor
 | 
						|
// choice for a data member.  If you do use a StringPiece this way, it is your
 | 
						|
// responsibility to ensure that the object pointed to by the StringPiece
 | 
						|
// outlives the StringPiece.
 | 
						|
//
 | 
						|
// A StringPiece may represent just part of a string; thus the name "Piece".
 | 
						|
// For example, when splitting a string, vector<StringPiece> is a natural data
 | 
						|
// type for the output.  For another example, a Cord is a non-contiguous,
 | 
						|
// potentially very long string-like object.  The Cord class has an interface
 | 
						|
// that iteratively provides StringPiece objects that point to the
 | 
						|
// successive pieces of a Cord object.
 | 
						|
//
 | 
						|
// A StringPiece is not null-terminated.  If you write code that scans a
 | 
						|
// StringPiece, you must check its length before reading any characters.
 | 
						|
// Common idioms that work on null-terminated strings do not work on
 | 
						|
// StringPiece objects.
 | 
						|
//
 | 
						|
// There are several ways to create a null StringPiece:
 | 
						|
//   StringPiece()
 | 
						|
//   StringPiece(nullptr)
 | 
						|
//   StringPiece(nullptr, 0)
 | 
						|
// For all of the above, sp.data() == nullptr, sp.length() == 0,
 | 
						|
// and sp.empty() == true.  Also, if you create a StringPiece with
 | 
						|
// a non-null pointer then sp.data() != nullptr.  Once created,
 | 
						|
// sp.data() will stay either nullptr or not-nullptr, except if you call
 | 
						|
// sp.clear() or sp.set().
 | 
						|
//
 | 
						|
// Thus, you can use StringPiece(nullptr) to signal an out-of-band value
 | 
						|
// that is different from other StringPiece values.  This is similar
 | 
						|
// to the way that const char* p1 = nullptr; is different from
 | 
						|
// const char* p2 = "";.
 | 
						|
//
 | 
						|
// There are many ways to create an empty StringPiece:
 | 
						|
//   StringPiece()
 | 
						|
//   StringPiece(nullptr)
 | 
						|
//   StringPiece(nullptr, 0)
 | 
						|
//   StringPiece("")
 | 
						|
//   StringPiece("", 0)
 | 
						|
//   StringPiece("abcdef", 0)
 | 
						|
//   StringPiece("abcdef"+6, 0)
 | 
						|
// For all of the above, sp.length() will be 0 and sp.empty() will be true.
 | 
						|
// For some empty StringPiece values, sp.data() will be nullptr.
 | 
						|
// For some empty StringPiece values, sp.data() will not be nullptr.
 | 
						|
//
 | 
						|
// Be careful not to confuse: null StringPiece and empty StringPiece.
 | 
						|
// The set of empty StringPieces properly includes the set of null StringPieces.
 | 
						|
// That is, every null StringPiece is an empty StringPiece,
 | 
						|
// but some non-null StringPieces are empty Stringpieces too.
 | 
						|
//
 | 
						|
// All empty StringPiece values compare equal to each other.
 | 
						|
// Even a null StringPieces compares equal to a non-null empty StringPiece:
 | 
						|
//  StringPiece() == StringPiece("", 0)
 | 
						|
//  StringPiece(nullptr) == StringPiece("abc", 0)
 | 
						|
//  StringPiece(nullptr, 0) == StringPiece("abcdef"+6, 0)
 | 
						|
//
 | 
						|
// Look carefully at this example:
 | 
						|
//   StringPiece("") == nullptr
 | 
						|
// True or false?  TRUE, because StringPiece::operator== converts
 | 
						|
// the right-hand side from nullptr to StringPiece(nullptr),
 | 
						|
// and then compares two zero-length spans of characters.
 | 
						|
// However, we are working to make this example produce a compile error.
 | 
						|
//
 | 
						|
// Suppose you want to write:
 | 
						|
//   bool TestWhat?(StringPiece sp) { return sp == nullptr; }  // BAD
 | 
						|
// Do not do that.  Write one of these instead:
 | 
						|
//   bool TestNull(StringPiece sp) { return sp.data() == nullptr; }
 | 
						|
//   bool TestEmpty(StringPiece sp) { return sp.empty(); }
 | 
						|
// The intent of TestWhat? is unclear.  Did you mean TestNull or TestEmpty?
 | 
						|
// Right now, TestWhat? behaves likes TestEmpty.
 | 
						|
// We are working to make TestWhat? produce a compile error.
 | 
						|
// TestNull is good to test for an out-of-band signal.
 | 
						|
// TestEmpty is good to test for an empty StringPiece.
 | 
						|
//
 | 
						|
// Caveats (again):
 | 
						|
// (1) The lifetime of the pointed-to string (or piece of a string)
 | 
						|
//     must be longer than the lifetime of the StringPiece.
 | 
						|
// (2) There may or may not be a '\0' character after the end of
 | 
						|
//     StringPiece data.
 | 
						|
// (3) A null StringPiece is empty.
 | 
						|
//     An empty StringPiece may or may not be a null StringPiece.
 | 
						|
 | 
						|
#ifndef GOOGLE_PROTOBUF_STUBS_STRINGPIECE_H_
 | 
						|
#define GOOGLE_PROTOBUF_STUBS_STRINGPIECE_H_
 | 
						|
 | 
						|
#include <assert.h>
 | 
						|
#include <stddef.h>
 | 
						|
#include <string.h>
 | 
						|
#include <iosfwd>
 | 
						|
#include <limits>
 | 
						|
#include <string>
 | 
						|
 | 
						|
#if defined(__cpp_lib_string_view)
 | 
						|
#include <string_view>
 | 
						|
#endif
 | 
						|
 | 
						|
#include <google/protobuf/stubs/hash.h>
 | 
						|
 | 
						|
#include <google/protobuf/port_def.inc>
 | 
						|
 | 
						|
namespace google {
 | 
						|
namespace protobuf {
 | 
						|
namespace stringpiece_internal {
 | 
						|
 | 
						|
class PROTOBUF_EXPORT StringPiece {
 | 
						|
 public:
 | 
						|
  using traits_type = std::char_traits<char>;
 | 
						|
  using value_type = char;
 | 
						|
  using pointer = char*;
 | 
						|
  using const_pointer = const char*;
 | 
						|
  using reference = char&;
 | 
						|
  using const_reference = const char&;
 | 
						|
  using const_iterator = const char*;
 | 
						|
  using iterator = const_iterator;
 | 
						|
  using const_reverse_iterator = std::reverse_iterator<const_iterator>;
 | 
						|
  using reverse_iterator = const_reverse_iterator;
 | 
						|
  using size_type = size_t;
 | 
						|
  using difference_type = std::ptrdiff_t;
 | 
						|
 | 
						|
 private:
 | 
						|
  const char* ptr_;
 | 
						|
  size_type length_;
 | 
						|
 | 
						|
  static constexpr size_type kMaxSize =
 | 
						|
      (std::numeric_limits<difference_type>::max)();
 | 
						|
 | 
						|
  static size_type CheckSize(size_type size) {
 | 
						|
#if !defined(NDEBUG) || defined(_FORTIFY_SOURCE) && _FORTIFY_SOURCE > 0
 | 
						|
    if (PROTOBUF_PREDICT_FALSE(size > kMaxSize)) {
 | 
						|
      // Some people grep for this message in logs
 | 
						|
      // so take care if you ever change it.
 | 
						|
      LogFatalSizeTooBig(size, "string length exceeds max size");
 | 
						|
    }
 | 
						|
#endif
 | 
						|
    return size;
 | 
						|
  }
 | 
						|
 | 
						|
  // Out-of-line error path.
 | 
						|
  static void LogFatalSizeTooBig(size_type size, const char* details);
 | 
						|
 | 
						|
 public:
 | 
						|
  // We provide non-explicit singleton constructors so users can pass
 | 
						|
  // in a "const char*" or a "string" wherever a "StringPiece" is
 | 
						|
  // expected.
 | 
						|
  //
 | 
						|
  // Style guide exception granted:
 | 
						|
  // http://goto/style-guide-exception-20978288
 | 
						|
  StringPiece() : ptr_(nullptr), length_(0) {}
 | 
						|
 | 
						|
  StringPiece(const char* str)  // NOLINT(runtime/explicit)
 | 
						|
      : ptr_(str), length_(0) {
 | 
						|
    if (str != nullptr) {
 | 
						|
      length_ = CheckSize(strlen(str));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  template <class Allocator>
 | 
						|
  StringPiece(  // NOLINT(runtime/explicit)
 | 
						|
      const std::basic_string<char, std::char_traits<char>, Allocator>& str)
 | 
						|
      : ptr_(str.data()), length_(0) {
 | 
						|
    length_ = CheckSize(str.size());
 | 
						|
  }
 | 
						|
 | 
						|
#if defined(__cpp_lib_string_view)
 | 
						|
  StringPiece(  // NOLINT(runtime/explicit)
 | 
						|
      std::string_view str)
 | 
						|
      : ptr_(str.data()), length_(0) {
 | 
						|
    length_ = CheckSize(str.size());
 | 
						|
  }
 | 
						|
#endif
 | 
						|
 | 
						|
  StringPiece(const char* offset, size_type len)
 | 
						|
      : ptr_(offset), length_(CheckSize(len)) {}
 | 
						|
 | 
						|
  // data() may return a pointer to a buffer with embedded NULs, and the
 | 
						|
  // returned buffer may or may not be null terminated.  Therefore it is
 | 
						|
  // typically a mistake to pass data() to a routine that expects a NUL
 | 
						|
  // terminated string.
 | 
						|
  const_pointer data() const { return ptr_; }
 | 
						|
  size_type size() const { return length_; }
 | 
						|
  size_type length() const { return length_; }
 | 
						|
  bool empty() const { return length_ == 0; }
 | 
						|
 | 
						|
  char operator[](size_type i) const {
 | 
						|
    assert(i < length_);
 | 
						|
    return ptr_[i];
 | 
						|
  }
 | 
						|
 | 
						|
  void remove_prefix(size_type n) {
 | 
						|
    assert(length_ >= n);
 | 
						|
    ptr_ += n;
 | 
						|
    length_ -= n;
 | 
						|
  }
 | 
						|
 | 
						|
  void remove_suffix(size_type n) {
 | 
						|
    assert(length_ >= n);
 | 
						|
    length_ -= n;
 | 
						|
  }
 | 
						|
 | 
						|
  // returns {-1, 0, 1}
 | 
						|
  int compare(StringPiece x) const {
 | 
						|
    size_type min_size = length_ < x.length_ ? length_ : x.length_;
 | 
						|
    int r = memcmp(ptr_, x.ptr_, static_cast<size_t>(min_size));
 | 
						|
    if (r < 0) return -1;
 | 
						|
    if (r > 0) return 1;
 | 
						|
    if (length_ < x.length_) return -1;
 | 
						|
    if (length_ > x.length_) return 1;
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
 | 
						|
  std::string as_string() const { return ToString(); }
 | 
						|
  // We also define ToString() here, since many other string-like
 | 
						|
  // interfaces name the routine that converts to a C++ string
 | 
						|
  // "ToString", and it's confusing to have the method that does that
 | 
						|
  // for a StringPiece be called "as_string()".  We also leave the
 | 
						|
  // "as_string()" method defined here for existing code.
 | 
						|
  std::string ToString() const {
 | 
						|
    if (ptr_ == nullptr) return "";
 | 
						|
    return std::string(data(), static_cast<size_type>(size()));
 | 
						|
  }
 | 
						|
 | 
						|
  explicit operator std::string() const { return ToString(); }
 | 
						|
 | 
						|
  void CopyToString(std::string* target) const;
 | 
						|
  void AppendToString(std::string* target) const;
 | 
						|
 | 
						|
  bool starts_with(StringPiece x) const {
 | 
						|
    return (length_ >= x.length_) &&
 | 
						|
           (memcmp(ptr_, x.ptr_, static_cast<size_t>(x.length_)) == 0);
 | 
						|
  }
 | 
						|
 | 
						|
  bool ends_with(StringPiece x) const {
 | 
						|
    return ((length_ >= x.length_) &&
 | 
						|
            (memcmp(ptr_ + (length_-x.length_), x.ptr_,
 | 
						|
                 static_cast<size_t>(x.length_)) == 0));
 | 
						|
  }
 | 
						|
 | 
						|
  // Checks whether StringPiece starts with x and if so advances the beginning
 | 
						|
  // of it to past the match.  It's basically a shortcut for starts_with
 | 
						|
  // followed by remove_prefix.
 | 
						|
  bool Consume(StringPiece x);
 | 
						|
  // Like above but for the end of the string.
 | 
						|
  bool ConsumeFromEnd(StringPiece x);
 | 
						|
 | 
						|
  // standard STL container boilerplate
 | 
						|
  static const size_type npos;
 | 
						|
  const_iterator begin() const { return ptr_; }
 | 
						|
  const_iterator end() const { return ptr_ + length_; }
 | 
						|
  const_reverse_iterator rbegin() const {
 | 
						|
    return const_reverse_iterator(ptr_ + length_);
 | 
						|
  }
 | 
						|
  const_reverse_iterator rend() const {
 | 
						|
    return const_reverse_iterator(ptr_);
 | 
						|
  }
 | 
						|
  size_type max_size() const { return length_; }
 | 
						|
  size_type capacity() const { return length_; }
 | 
						|
 | 
						|
  // cpplint.py emits a false positive [build/include_what_you_use]
 | 
						|
  size_type copy(char* buf, size_type n, size_type pos = 0) const;  // NOLINT
 | 
						|
 | 
						|
  bool contains(StringPiece s) const;
 | 
						|
 | 
						|
  size_type find(StringPiece s, size_type pos = 0) const;
 | 
						|
  size_type find(char c, size_type pos = 0) const;
 | 
						|
  size_type rfind(StringPiece s, size_type pos = npos) const;
 | 
						|
  size_type rfind(char c, size_type pos = npos) const;
 | 
						|
 | 
						|
  size_type find_first_of(StringPiece s, size_type pos = 0) const;
 | 
						|
  size_type find_first_of(char c, size_type pos = 0) const {
 | 
						|
    return find(c, pos);
 | 
						|
  }
 | 
						|
  size_type find_first_not_of(StringPiece s, size_type pos = 0) const;
 | 
						|
  size_type find_first_not_of(char c, size_type pos = 0) const;
 | 
						|
  size_type find_last_of(StringPiece s, size_type pos = npos) const;
 | 
						|
  size_type find_last_of(char c, size_type pos = npos) const {
 | 
						|
    return rfind(c, pos);
 | 
						|
  }
 | 
						|
  size_type find_last_not_of(StringPiece s, size_type pos = npos) const;
 | 
						|
  size_type find_last_not_of(char c, size_type pos = npos) const;
 | 
						|
 | 
						|
  StringPiece substr(size_type pos, size_type n = npos) const;
 | 
						|
};
 | 
						|
 | 
						|
// This large function is defined inline so that in a fairly common case where
 | 
						|
// one of the arguments is a literal, the compiler can elide a lot of the
 | 
						|
// following comparisons.
 | 
						|
inline bool operator==(StringPiece x, StringPiece y) {
 | 
						|
  StringPiece::size_type len = x.size();
 | 
						|
  if (len != y.size()) {
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  return x.data() == y.data() || len <= 0 ||
 | 
						|
      memcmp(x.data(), y.data(), static_cast<size_t>(len)) == 0;
 | 
						|
}
 | 
						|
 | 
						|
inline bool operator!=(StringPiece x, StringPiece y) {
 | 
						|
  return !(x == y);
 | 
						|
}
 | 
						|
 | 
						|
inline bool operator<(StringPiece x, StringPiece y) {
 | 
						|
  const StringPiece::size_type min_size =
 | 
						|
      x.size() < y.size() ? x.size() : y.size();
 | 
						|
  const int r = memcmp(x.data(), y.data(), static_cast<size_t>(min_size));
 | 
						|
  return (r < 0) || (r == 0 && x.size() < y.size());
 | 
						|
}
 | 
						|
 | 
						|
inline bool operator>(StringPiece x, StringPiece y) {
 | 
						|
  return y < x;
 | 
						|
}
 | 
						|
 | 
						|
inline bool operator<=(StringPiece x, StringPiece y) {
 | 
						|
  return !(x > y);
 | 
						|
}
 | 
						|
 | 
						|
inline bool operator>=(StringPiece x, StringPiece y) {
 | 
						|
  return !(x < y);
 | 
						|
}
 | 
						|
 | 
						|
// allow StringPiece to be logged
 | 
						|
extern std::ostream& operator<<(std::ostream& o, StringPiece piece);
 | 
						|
 | 
						|
}  // namespace stringpiece_internal
 | 
						|
 | 
						|
using ::google::protobuf::stringpiece_internal::StringPiece;
 | 
						|
 | 
						|
}  // namespace protobuf
 | 
						|
}  // namespace google
 | 
						|
 | 
						|
GOOGLE_PROTOBUF_HASH_NAMESPACE_DECLARATION_START
 | 
						|
template<> struct hash<StringPiece> {
 | 
						|
  size_t operator()(const StringPiece& s) const {
 | 
						|
    size_t result = 0;
 | 
						|
    for (const char *str = s.data(), *end = str + s.size(); str < end; str++) {
 | 
						|
      result = 5 * result + static_cast<size_t>(*str);
 | 
						|
    }
 | 
						|
    return result;
 | 
						|
  }
 | 
						|
};
 | 
						|
GOOGLE_PROTOBUF_HASH_NAMESPACE_DECLARATION_END
 | 
						|
 | 
						|
#include <google/protobuf/port_undef.inc>
 | 
						|
 | 
						|
#endif  // STRINGS_STRINGPIECE_H_
 |