770 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			770 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Protocol Buffers - Google's data interchange format
 | |
| // Copyright 2014 Google Inc.  All rights reserved.
 | |
| // https://developers.google.com/protocol-buffers/
 | |
| //
 | |
| // Redistribution and use in source and binary forms, with or without
 | |
| // modification, are permitted provided that the following conditions are
 | |
| // met:
 | |
| //
 | |
| //     * Redistributions of source code must retain the above copyright
 | |
| // notice, this list of conditions and the following disclaimer.
 | |
| //     * Redistributions in binary form must reproduce the above
 | |
| // copyright notice, this list of conditions and the following disclaimer
 | |
| // in the documentation and/or other materials provided with the
 | |
| // distribution.
 | |
| //     * Neither the name of Google Inc. nor the names of its
 | |
| // contributors may be used to endorse or promote products derived from
 | |
| // this software without specific prior written permission.
 | |
| //
 | |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 | |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 | |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 | |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 | |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 | |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 | |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 | |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 | |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 | |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 | |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 | |
| 
 | |
| // from google3/util/gtl/map_util.h
 | |
| // Author: Anton Carver
 | |
| 
 | |
| #ifndef GOOGLE_PROTOBUF_STUBS_MAP_UTIL_H__
 | |
| #define GOOGLE_PROTOBUF_STUBS_MAP_UTIL_H__
 | |
| 
 | |
| #include <stddef.h>
 | |
| #include <iterator>
 | |
| #include <string>
 | |
| #include <utility>
 | |
| #include <vector>
 | |
| 
 | |
| #include <google/protobuf/stubs/common.h>
 | |
| 
 | |
| namespace google {
 | |
| namespace protobuf {
 | |
| namespace internal {
 | |
| // Local implementation of RemoveConst to avoid including base/type_traits.h.
 | |
| template <class T> struct RemoveConst { typedef T type; };
 | |
| template <class T> struct RemoveConst<const T> : RemoveConst<T> {};
 | |
| }  // namespace internal
 | |
| 
 | |
| //
 | |
| // Find*()
 | |
| //
 | |
| 
 | |
| // Returns a const reference to the value associated with the given key if it
 | |
| // exists. Crashes otherwise.
 | |
| //
 | |
| // This is intended as a replacement for operator[] as an rvalue (for reading)
 | |
| // when the key is guaranteed to exist.
 | |
| //
 | |
| // operator[] for lookup is discouraged for several reasons:
 | |
| //  * It has a side-effect of inserting missing keys
 | |
| //  * It is not thread-safe (even when it is not inserting, it can still
 | |
| //      choose to resize the underlying storage)
 | |
| //  * It invalidates iterators (when it chooses to resize)
 | |
| //  * It default constructs a value object even if it doesn't need to
 | |
| //
 | |
| // This version assumes the key is printable, and includes it in the fatal log
 | |
| // message.
 | |
| template <class Collection>
 | |
| const typename Collection::value_type::second_type&
 | |
| FindOrDie(const Collection& collection,
 | |
|           const typename Collection::value_type::first_type& key) {
 | |
|   typename Collection::const_iterator it = collection.find(key);
 | |
|   GOOGLE_CHECK(it != collection.end()) << "Map key not found: " << key;
 | |
|   return it->second;
 | |
| }
 | |
| 
 | |
| // Same as above, but returns a non-const reference.
 | |
| template <class Collection>
 | |
| typename Collection::value_type::second_type&
 | |
| FindOrDie(Collection& collection,  // NOLINT
 | |
|           const typename Collection::value_type::first_type& key) {
 | |
|   typename Collection::iterator it = collection.find(key);
 | |
|   GOOGLE_CHECK(it != collection.end()) << "Map key not found: " << key;
 | |
|   return it->second;
 | |
| }
 | |
| 
 | |
| // Same as FindOrDie above, but doesn't log the key on failure.
 | |
| template <class Collection>
 | |
| const typename Collection::value_type::second_type&
 | |
| FindOrDieNoPrint(const Collection& collection,
 | |
|                  const typename Collection::value_type::first_type& key) {
 | |
|   typename Collection::const_iterator it = collection.find(key);
 | |
|   GOOGLE_CHECK(it != collection.end()) << "Map key not found";
 | |
|   return it->second;
 | |
| }
 | |
| 
 | |
| // Same as above, but returns a non-const reference.
 | |
| template <class Collection>
 | |
| typename Collection::value_type::second_type&
 | |
| FindOrDieNoPrint(Collection& collection,  // NOLINT
 | |
|                  const typename Collection::value_type::first_type& key) {
 | |
|   typename Collection::iterator it = collection.find(key);
 | |
|   GOOGLE_CHECK(it != collection.end()) << "Map key not found";
 | |
|   return it->second;
 | |
| }
 | |
| 
 | |
| // Returns a const reference to the value associated with the given key if it
 | |
| // exists, otherwise returns a const reference to the provided default value.
 | |
| //
 | |
| // WARNING: If a temporary object is passed as the default "value,"
 | |
| // this function will return a reference to that temporary object,
 | |
| // which will be destroyed at the end of the statement. A common
 | |
| // example: if you have a map with string values, and you pass a char*
 | |
| // as the default "value," either use the returned value immediately
 | |
| // or store it in a string (not string&).
 | |
| // Details: http://go/findwithdefault
 | |
| template <class Collection>
 | |
| const typename Collection::value_type::second_type&
 | |
| FindWithDefault(const Collection& collection,
 | |
|                 const typename Collection::value_type::first_type& key,
 | |
|                 const typename Collection::value_type::second_type& value) {
 | |
|   typename Collection::const_iterator it = collection.find(key);
 | |
|   if (it == collection.end()) {
 | |
|     return value;
 | |
|   }
 | |
|   return it->second;
 | |
| }
 | |
| 
 | |
| // Returns a pointer to the const value associated with the given key if it
 | |
| // exists, or nullptr otherwise.
 | |
| template <class Collection>
 | |
| const typename Collection::value_type::second_type*
 | |
| FindOrNull(const Collection& collection,
 | |
|            const typename Collection::value_type::first_type& key) {
 | |
|   typename Collection::const_iterator it = collection.find(key);
 | |
|   if (it == collection.end()) {
 | |
|     return 0;
 | |
|   }
 | |
|   return &it->second;
 | |
| }
 | |
| 
 | |
| // Same as above but returns a pointer to the non-const value.
 | |
| template <class Collection>
 | |
| typename Collection::value_type::second_type*
 | |
| FindOrNull(Collection& collection,  // NOLINT
 | |
|            const typename Collection::value_type::first_type& key) {
 | |
|   typename Collection::iterator it = collection.find(key);
 | |
|   if (it == collection.end()) {
 | |
|     return 0;
 | |
|   }
 | |
|   return &it->second;
 | |
| }
 | |
| 
 | |
| // Returns the pointer value associated with the given key. If none is found,
 | |
| // nullptr is returned. The function is designed to be used with a map of keys to
 | |
| // pointers.
 | |
| //
 | |
| // This function does not distinguish between a missing key and a key mapped
 | |
| // to nullptr.
 | |
| template <class Collection>
 | |
| typename Collection::value_type::second_type
 | |
| FindPtrOrNull(const Collection& collection,
 | |
|               const typename Collection::value_type::first_type& key) {
 | |
|   typename Collection::const_iterator it = collection.find(key);
 | |
|   if (it == collection.end()) {
 | |
|     return typename Collection::value_type::second_type();
 | |
|   }
 | |
|   return it->second;
 | |
| }
 | |
| 
 | |
| // Same as above, except takes non-const reference to collection.
 | |
| //
 | |
| // This function is needed for containers that propagate constness to the
 | |
| // pointee, such as boost::ptr_map.
 | |
| template <class Collection>
 | |
| typename Collection::value_type::second_type
 | |
| FindPtrOrNull(Collection& collection,  // NOLINT
 | |
|               const typename Collection::value_type::first_type& key) {
 | |
|   typename Collection::iterator it = collection.find(key);
 | |
|   if (it == collection.end()) {
 | |
|     return typename Collection::value_type::second_type();
 | |
|   }
 | |
|   return it->second;
 | |
| }
 | |
| 
 | |
| // Finds the pointer value associated with the given key in a map whose values
 | |
| // are linked_ptrs. Returns nullptr if key is not found.
 | |
| template <class Collection>
 | |
| typename Collection::value_type::second_type::element_type*
 | |
| FindLinkedPtrOrNull(const Collection& collection,
 | |
|                     const typename Collection::value_type::first_type& key) {
 | |
|   typename Collection::const_iterator it = collection.find(key);
 | |
|   if (it == collection.end()) {
 | |
|     return 0;
 | |
|   }
 | |
|   // Since linked_ptr::get() is a const member returning a non const,
 | |
|   // we do not need a version of this function taking a non const collection.
 | |
|   return it->second.get();
 | |
| }
 | |
| 
 | |
| // Same as above, but dies if the key is not found.
 | |
| template <class Collection>
 | |
| typename Collection::value_type::second_type::element_type&
 | |
| FindLinkedPtrOrDie(const Collection& collection,
 | |
|                    const typename Collection::value_type::first_type& key) {
 | |
|   typename Collection::const_iterator it = collection.find(key);
 | |
|   GOOGLE_CHECK(it != collection.end()) <<  "key not found: " << key;
 | |
|   // Since linked_ptr::operator*() is a const member returning a non const,
 | |
|   // we do not need a version of this function taking a non const collection.
 | |
|   return *it->second;
 | |
| }
 | |
| 
 | |
| // Finds the value associated with the given key and copies it to *value (if not
 | |
| // nullptr). Returns false if the key was not found, true otherwise.
 | |
| template <class Collection, class Key, class Value>
 | |
| bool FindCopy(const Collection& collection,
 | |
|               const Key& key,
 | |
|               Value* const value) {
 | |
|   typename Collection::const_iterator it = collection.find(key);
 | |
|   if (it == collection.end()) {
 | |
|     return false;
 | |
|   }
 | |
|   if (value) {
 | |
|     *value = it->second;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| //
 | |
| // Contains*()
 | |
| //
 | |
| 
 | |
| // Returns true if and only if the given collection contains the given key.
 | |
| template <class Collection, class Key>
 | |
| bool ContainsKey(const Collection& collection, const Key& key) {
 | |
|   return collection.find(key) != collection.end();
 | |
| }
 | |
| 
 | |
| // Returns true if and only if the given collection contains the given key-value
 | |
| // pair.
 | |
| template <class Collection, class Key, class Value>
 | |
| bool ContainsKeyValuePair(const Collection& collection,
 | |
|                           const Key& key,
 | |
|                           const Value& value) {
 | |
|   typedef typename Collection::const_iterator const_iterator;
 | |
|   std::pair<const_iterator, const_iterator> range = collection.equal_range(key);
 | |
|   for (const_iterator it = range.first; it != range.second; ++it) {
 | |
|     if (it->second == value) {
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| //
 | |
| // Insert*()
 | |
| //
 | |
| 
 | |
| // Inserts the given key-value pair into the collection. Returns true if and
 | |
| // only if the key from the given pair didn't previously exist. Otherwise, the
 | |
| // value in the map is replaced with the value from the given pair.
 | |
| template <class Collection>
 | |
| bool InsertOrUpdate(Collection* const collection,
 | |
|                     const typename Collection::value_type& vt) {
 | |
|   std::pair<typename Collection::iterator, bool> ret = collection->insert(vt);
 | |
|   if (!ret.second) {
 | |
|     // update
 | |
|     ret.first->second = vt.second;
 | |
|     return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // Same as above, except that the key and value are passed separately.
 | |
| template <class Collection>
 | |
| bool InsertOrUpdate(Collection* const collection,
 | |
|                     const typename Collection::value_type::first_type& key,
 | |
|                     const typename Collection::value_type::second_type& value) {
 | |
|   return InsertOrUpdate(
 | |
|       collection, typename Collection::value_type(key, value));
 | |
| }
 | |
| 
 | |
| // Inserts/updates all the key-value pairs from the range defined by the
 | |
| // iterators "first" and "last" into the given collection.
 | |
| template <class Collection, class InputIterator>
 | |
| void InsertOrUpdateMany(Collection* const collection,
 | |
|                         InputIterator first, InputIterator last) {
 | |
|   for (; first != last; ++first) {
 | |
|     InsertOrUpdate(collection, *first);
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Change the value associated with a particular key in a map or hash_map
 | |
| // of the form map<Key, Value*> which owns the objects pointed to by the
 | |
| // value pointers.  If there was an existing value for the key, it is deleted.
 | |
| // True indicates an insert took place, false indicates an update + delete.
 | |
| template <class Collection>
 | |
| bool InsertAndDeleteExisting(
 | |
|     Collection* const collection,
 | |
|     const typename Collection::value_type::first_type& key,
 | |
|     const typename Collection::value_type::second_type& value) {
 | |
|   std::pair<typename Collection::iterator, bool> ret =
 | |
|       collection->insert(typename Collection::value_type(key, value));
 | |
|   if (!ret.second) {
 | |
|     delete ret.first->second;
 | |
|     ret.first->second = value;
 | |
|     return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // Inserts the given key and value into the given collection if and only if the
 | |
| // given key did NOT already exist in the collection. If the key previously
 | |
| // existed in the collection, the value is not changed. Returns true if the
 | |
| // key-value pair was inserted; returns false if the key was already present.
 | |
| template <class Collection>
 | |
| bool InsertIfNotPresent(Collection* const collection,
 | |
|                         const typename Collection::value_type& vt) {
 | |
|   return collection->insert(vt).second;
 | |
| }
 | |
| 
 | |
| // Same as above except the key and value are passed separately.
 | |
| template <class Collection>
 | |
| bool InsertIfNotPresent(
 | |
|     Collection* const collection,
 | |
|     const typename Collection::value_type::first_type& key,
 | |
|     const typename Collection::value_type::second_type& value) {
 | |
|   return InsertIfNotPresent(
 | |
|       collection, typename Collection::value_type(key, value));
 | |
| }
 | |
| 
 | |
| // Same as above except dies if the key already exists in the collection.
 | |
| template <class Collection>
 | |
| void InsertOrDie(Collection* const collection,
 | |
|                  const typename Collection::value_type& value) {
 | |
|   GOOGLE_CHECK(InsertIfNotPresent(collection, value))
 | |
|       << "duplicate value: " << value;
 | |
| }
 | |
| 
 | |
| // Same as above except doesn't log the value on error.
 | |
| template <class Collection>
 | |
| void InsertOrDieNoPrint(Collection* const collection,
 | |
|                         const typename Collection::value_type& value) {
 | |
|   GOOGLE_CHECK(InsertIfNotPresent(collection, value)) << "duplicate value.";
 | |
| }
 | |
| 
 | |
| // Inserts the key-value pair into the collection. Dies if key was already
 | |
| // present.
 | |
| template <class Collection>
 | |
| void InsertOrDie(Collection* const collection,
 | |
|                  const typename Collection::value_type::first_type& key,
 | |
|                  const typename Collection::value_type::second_type& data) {
 | |
|   GOOGLE_CHECK(InsertIfNotPresent(collection, key, data))
 | |
|       << "duplicate key: " << key;
 | |
| }
 | |
| 
 | |
| // Same as above except doesn't log the key on error.
 | |
| template <class Collection>
 | |
| void InsertOrDieNoPrint(
 | |
|     Collection* const collection,
 | |
|     const typename Collection::value_type::first_type& key,
 | |
|     const typename Collection::value_type::second_type& data) {
 | |
|   GOOGLE_CHECK(InsertIfNotPresent(collection, key, data)) << "duplicate key.";
 | |
| }
 | |
| 
 | |
| // Inserts a new key and default-initialized value. Dies if the key was already
 | |
| // present. Returns a reference to the value. Example usage:
 | |
| //
 | |
| // map<int, SomeProto> m;
 | |
| // SomeProto& proto = InsertKeyOrDie(&m, 3);
 | |
| // proto.set_field("foo");
 | |
| template <class Collection>
 | |
| typename Collection::value_type::second_type& InsertKeyOrDie(
 | |
|     Collection* const collection,
 | |
|     const typename Collection::value_type::first_type& key) {
 | |
|   typedef typename Collection::value_type value_type;
 | |
|   std::pair<typename Collection::iterator, bool> res =
 | |
|       collection->insert(value_type(key, typename value_type::second_type()));
 | |
|   GOOGLE_CHECK(res.second) << "duplicate key: " << key;
 | |
|   return res.first->second;
 | |
| }
 | |
| 
 | |
| //
 | |
| // Lookup*()
 | |
| //
 | |
| 
 | |
| // Looks up a given key and value pair in a collection and inserts the key-value
 | |
| // pair if it's not already present. Returns a reference to the value associated
 | |
| // with the key.
 | |
| template <class Collection>
 | |
| typename Collection::value_type::second_type&
 | |
| LookupOrInsert(Collection* const collection,
 | |
|                const typename Collection::value_type& vt) {
 | |
|   return collection->insert(vt).first->second;
 | |
| }
 | |
| 
 | |
| // Same as above except the key-value are passed separately.
 | |
| template <class Collection>
 | |
| typename Collection::value_type::second_type&
 | |
| LookupOrInsert(Collection* const collection,
 | |
|                const typename Collection::value_type::first_type& key,
 | |
|                const typename Collection::value_type::second_type& value) {
 | |
|   return LookupOrInsert(
 | |
|       collection, typename Collection::value_type(key, value));
 | |
| }
 | |
| 
 | |
| // Counts the number of equivalent elements in the given "sequence", and stores
 | |
| // the results in "count_map" with element as the key and count as the value.
 | |
| //
 | |
| // Example:
 | |
| //   vector<string> v = {"a", "b", "c", "a", "b"};
 | |
| //   map<string, int> m;
 | |
| //   AddTokenCounts(v, 1, &m);
 | |
| //   assert(m["a"] == 2);
 | |
| //   assert(m["b"] == 2);
 | |
| //   assert(m["c"] == 1);
 | |
| template <typename Sequence, typename Collection>
 | |
| void AddTokenCounts(
 | |
|     const Sequence& sequence,
 | |
|     const typename Collection::value_type::second_type& increment,
 | |
|     Collection* const count_map) {
 | |
|   for (typename Sequence::const_iterator it = sequence.begin();
 | |
|        it != sequence.end(); ++it) {
 | |
|     typename Collection::value_type::second_type& value =
 | |
|         LookupOrInsert(count_map, *it,
 | |
|                        typename Collection::value_type::second_type());
 | |
|     value += increment;
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Returns a reference to the value associated with key. If not found, a value
 | |
| // is default constructed on the heap and added to the map.
 | |
| //
 | |
| // This function is useful for containers of the form map<Key, Value*>, where
 | |
| // inserting a new key, value pair involves constructing a new heap-allocated
 | |
| // Value, and storing a pointer to that in the collection.
 | |
| template <class Collection>
 | |
| typename Collection::value_type::second_type&
 | |
| LookupOrInsertNew(Collection* const collection,
 | |
|                   const typename Collection::value_type::first_type& key) {
 | |
|   typedef typename std::iterator_traits<
 | |
|     typename Collection::value_type::second_type>::value_type Element;
 | |
|   std::pair<typename Collection::iterator, bool> ret =
 | |
|       collection->insert(typename Collection::value_type(
 | |
|           key,
 | |
|           static_cast<typename Collection::value_type::second_type>(nullptr)));
 | |
|   if (ret.second) {
 | |
|     ret.first->second = new Element();
 | |
|   }
 | |
|   return ret.first->second;
 | |
| }
 | |
| 
 | |
| // Same as above but constructs the value using the single-argument constructor
 | |
| // and the given "arg".
 | |
| template <class Collection, class Arg>
 | |
| typename Collection::value_type::second_type&
 | |
| LookupOrInsertNew(Collection* const collection,
 | |
|                   const typename Collection::value_type::first_type& key,
 | |
|                   const Arg& arg) {
 | |
|   typedef typename std::iterator_traits<
 | |
|     typename Collection::value_type::second_type>::value_type Element;
 | |
|   std::pair<typename Collection::iterator, bool> ret =
 | |
|       collection->insert(typename Collection::value_type(
 | |
|           key,
 | |
|           static_cast<typename Collection::value_type::second_type>(nullptr)));
 | |
|   if (ret.second) {
 | |
|     ret.first->second = new Element(arg);
 | |
|   }
 | |
|   return ret.first->second;
 | |
| }
 | |
| 
 | |
| // Lookup of linked/shared pointers is used in two scenarios:
 | |
| //
 | |
| // Use LookupOrInsertNewLinkedPtr if the container owns the elements.
 | |
| // In this case it is fine working with the raw pointer as long as it is
 | |
| // guaranteed that no other thread can delete/update an accessed element.
 | |
| // A mutex will need to lock the container operation as well as the use
 | |
| // of the returned elements. Finding an element may be performed using
 | |
| // FindLinkedPtr*().
 | |
| //
 | |
| // Use LookupOrInsertNewSharedPtr if the container does not own the elements
 | |
| // for their whole lifetime. This is typically the case when a reader allows
 | |
| // parallel updates to the container. In this case a Mutex only needs to lock
 | |
| // container operations, but all element operations must be performed on the
 | |
| // shared pointer. Finding an element must be performed using FindPtr*() and
 | |
| // cannot be done with FindLinkedPtr*() even though it compiles.
 | |
| 
 | |
| // Lookup a key in a map or hash_map whose values are linked_ptrs.  If it is
 | |
| // missing, set collection[key].reset(new Value::element_type) and return that.
 | |
| // Value::element_type must be default constructable.
 | |
| template <class Collection>
 | |
| typename Collection::value_type::second_type::element_type*
 | |
| LookupOrInsertNewLinkedPtr(
 | |
|     Collection* const collection,
 | |
|     const typename Collection::value_type::first_type& key) {
 | |
|   typedef typename Collection::value_type::second_type Value;
 | |
|   std::pair<typename Collection::iterator, bool> ret =
 | |
|       collection->insert(typename Collection::value_type(key, Value()));
 | |
|   if (ret.second) {
 | |
|     ret.first->second.reset(new typename Value::element_type);
 | |
|   }
 | |
|   return ret.first->second.get();
 | |
| }
 | |
| 
 | |
| // A variant of LookupOrInsertNewLinkedPtr where the value is constructed using
 | |
| // a single-parameter constructor.  Note: the constructor argument is computed
 | |
| // even if it will not be used, so only values cheap to compute should be passed
 | |
| // here.  On the other hand it does not matter how expensive the construction of
 | |
| // the actual stored value is, as that only occurs if necessary.
 | |
| template <class Collection, class Arg>
 | |
| typename Collection::value_type::second_type::element_type*
 | |
| LookupOrInsertNewLinkedPtr(
 | |
|     Collection* const collection,
 | |
|     const typename Collection::value_type::first_type& key,
 | |
|     const Arg& arg) {
 | |
|   typedef typename Collection::value_type::second_type Value;
 | |
|   std::pair<typename Collection::iterator, bool> ret =
 | |
|       collection->insert(typename Collection::value_type(key, Value()));
 | |
|   if (ret.second) {
 | |
|     ret.first->second.reset(new typename Value::element_type(arg));
 | |
|   }
 | |
|   return ret.first->second.get();
 | |
| }
 | |
| 
 | |
| // Lookup a key in a map or hash_map whose values are shared_ptrs.  If it is
 | |
| // missing, set collection[key].reset(new Value::element_type). Unlike
 | |
| // LookupOrInsertNewLinkedPtr, this function returns the shared_ptr instead of
 | |
| // the raw pointer. Value::element_type must be default constructable.
 | |
| template <class Collection>
 | |
| typename Collection::value_type::second_type&
 | |
| LookupOrInsertNewSharedPtr(
 | |
|     Collection* const collection,
 | |
|     const typename Collection::value_type::first_type& key) {
 | |
|   typedef typename Collection::value_type::second_type SharedPtr;
 | |
|   typedef typename Collection::value_type::second_type::element_type Element;
 | |
|   std::pair<typename Collection::iterator, bool> ret =
 | |
|       collection->insert(typename Collection::value_type(key, SharedPtr()));
 | |
|   if (ret.second) {
 | |
|     ret.first->second.reset(new Element());
 | |
|   }
 | |
|   return ret.first->second;
 | |
| }
 | |
| 
 | |
| // A variant of LookupOrInsertNewSharedPtr where the value is constructed using
 | |
| // a single-parameter constructor.  Note: the constructor argument is computed
 | |
| // even if it will not be used, so only values cheap to compute should be passed
 | |
| // here.  On the other hand it does not matter how expensive the construction of
 | |
| // the actual stored value is, as that only occurs if necessary.
 | |
| template <class Collection, class Arg>
 | |
| typename Collection::value_type::second_type&
 | |
| LookupOrInsertNewSharedPtr(
 | |
|     Collection* const collection,
 | |
|     const typename Collection::value_type::first_type& key,
 | |
|     const Arg& arg) {
 | |
|   typedef typename Collection::value_type::second_type SharedPtr;
 | |
|   typedef typename Collection::value_type::second_type::element_type Element;
 | |
|   std::pair<typename Collection::iterator, bool> ret =
 | |
|       collection->insert(typename Collection::value_type(key, SharedPtr()));
 | |
|   if (ret.second) {
 | |
|     ret.first->second.reset(new Element(arg));
 | |
|   }
 | |
|   return ret.first->second;
 | |
| }
 | |
| 
 | |
| //
 | |
| // Misc Utility Functions
 | |
| //
 | |
| 
 | |
| // Updates the value associated with the given key. If the key was not already
 | |
| // present, then the key-value pair are inserted and "previous" is unchanged. If
 | |
| // the key was already present, the value is updated and "*previous" will
 | |
| // contain a copy of the old value.
 | |
| //
 | |
| // InsertOrReturnExisting has complementary behavior that returns the
 | |
| // address of an already existing value, rather than updating it.
 | |
| template <class Collection>
 | |
| bool UpdateReturnCopy(Collection* const collection,
 | |
|                       const typename Collection::value_type::first_type& key,
 | |
|                       const typename Collection::value_type::second_type& value,
 | |
|                       typename Collection::value_type::second_type* previous) {
 | |
|   std::pair<typename Collection::iterator, bool> ret =
 | |
|       collection->insert(typename Collection::value_type(key, value));
 | |
|   if (!ret.second) {
 | |
|     // update
 | |
|     if (previous) {
 | |
|       *previous = ret.first->second;
 | |
|     }
 | |
|     ret.first->second = value;
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // Same as above except that the key and value are passed as a pair.
 | |
| template <class Collection>
 | |
| bool UpdateReturnCopy(Collection* const collection,
 | |
|                       const typename Collection::value_type& vt,
 | |
|                       typename Collection::value_type::second_type* previous) {
 | |
|   std::pair<typename Collection::iterator, bool> ret = collection->insert(vt);
 | |
|   if (!ret.second) {
 | |
|     // update
 | |
|     if (previous) {
 | |
|       *previous = ret.first->second;
 | |
|     }
 | |
|     ret.first->second = vt.second;
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // Tries to insert the given key-value pair into the collection. Returns nullptr if
 | |
| // the insert succeeds. Otherwise, returns a pointer to the existing value.
 | |
| //
 | |
| // This complements UpdateReturnCopy in that it allows to update only after
 | |
| // verifying the old value and still insert quickly without having to look up
 | |
| // twice. Unlike UpdateReturnCopy this also does not come with the issue of an
 | |
| // undefined previous* in case new data was inserted.
 | |
| template <class Collection>
 | |
| typename Collection::value_type::second_type* InsertOrReturnExisting(
 | |
|     Collection* const collection, const typename Collection::value_type& vt) {
 | |
|   std::pair<typename Collection::iterator, bool> ret = collection->insert(vt);
 | |
|   if (ret.second) {
 | |
|     return nullptr;  // Inserted, no existing previous value.
 | |
|   } else {
 | |
|     return &ret.first->second;  // Return address of already existing value.
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Same as above, except for explicit key and data.
 | |
| template <class Collection>
 | |
| typename Collection::value_type::second_type* InsertOrReturnExisting(
 | |
|     Collection* const collection,
 | |
|     const typename Collection::value_type::first_type& key,
 | |
|     const typename Collection::value_type::second_type& data) {
 | |
|   return InsertOrReturnExisting(collection,
 | |
|                                 typename Collection::value_type(key, data));
 | |
| }
 | |
| 
 | |
| // Erases the collection item identified by the given key, and returns the value
 | |
| // associated with that key. It is assumed that the value (i.e., the
 | |
| // mapped_type) is a pointer. Returns nullptr if the key was not found in the
 | |
| // collection.
 | |
| //
 | |
| // Examples:
 | |
| //   map<string, MyType*> my_map;
 | |
| //
 | |
| // One line cleanup:
 | |
| //     delete EraseKeyReturnValuePtr(&my_map, "abc");
 | |
| //
 | |
| // Use returned value:
 | |
| //     std::unique_ptr<MyType> value_ptr(
 | |
| //         EraseKeyReturnValuePtr(&my_map, "abc"));
 | |
| //     if (value_ptr.get())
 | |
| //       value_ptr->DoSomething();
 | |
| //
 | |
| template <class Collection>
 | |
| typename Collection::value_type::second_type EraseKeyReturnValuePtr(
 | |
|     Collection* const collection,
 | |
|     const typename Collection::value_type::first_type& key) {
 | |
|   typename Collection::iterator it = collection->find(key);
 | |
|   if (it == collection->end()) {
 | |
|     return nullptr;
 | |
|   }
 | |
|   typename Collection::value_type::second_type v = it->second;
 | |
|   collection->erase(it);
 | |
|   return v;
 | |
| }
 | |
| 
 | |
| // Inserts all the keys from map_container into key_container, which must
 | |
| // support insert(MapContainer::key_type).
 | |
| //
 | |
| // Note: any initial contents of the key_container are not cleared.
 | |
| template <class MapContainer, class KeyContainer>
 | |
| void InsertKeysFromMap(const MapContainer& map_container,
 | |
|                        KeyContainer* key_container) {
 | |
|   GOOGLE_CHECK(key_container != nullptr);
 | |
|   for (typename MapContainer::const_iterator it = map_container.begin();
 | |
|        it != map_container.end(); ++it) {
 | |
|     key_container->insert(it->first);
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Appends all the keys from map_container into key_container, which must
 | |
| // support push_back(MapContainer::key_type).
 | |
| //
 | |
| // Note: any initial contents of the key_container are not cleared.
 | |
| template <class MapContainer, class KeyContainer>
 | |
| void AppendKeysFromMap(const MapContainer& map_container,
 | |
|                        KeyContainer* key_container) {
 | |
|   GOOGLE_CHECK(key_container != nullptr);
 | |
|   for (typename MapContainer::const_iterator it = map_container.begin();
 | |
|        it != map_container.end(); ++it) {
 | |
|     key_container->push_back(it->first);
 | |
|   }
 | |
| }
 | |
| 
 | |
| // A more specialized overload of AppendKeysFromMap to optimize reallocations
 | |
| // for the common case in which we're appending keys to a vector and hence can
 | |
| // (and sometimes should) call reserve() first.
 | |
| //
 | |
| // (It would be possible to play SFINAE games to call reserve() for any
 | |
| // container that supports it, but this seems to get us 99% of what we need
 | |
| // without the complexity of a SFINAE-based solution.)
 | |
| template <class MapContainer, class KeyType>
 | |
| void AppendKeysFromMap(const MapContainer& map_container,
 | |
|                        std::vector<KeyType>* key_container) {
 | |
|   GOOGLE_CHECK(key_container != nullptr);
 | |
|   // We now have the opportunity to call reserve(). Calling reserve() every
 | |
|   // time is a bad idea for some use cases: libstdc++'s implementation of
 | |
|   // vector<>::reserve() resizes the vector's backing store to exactly the
 | |
|   // given size (unless it's already at least that big). Because of this,
 | |
|   // the use case that involves appending a lot of small maps (total size
 | |
|   // N) one by one to a vector would be O(N^2). But never calling reserve()
 | |
|   // loses the opportunity to improve the use case of adding from a large
 | |
|   // map to an empty vector (this improves performance by up to 33%). A
 | |
|   // number of heuristics are possible; see the discussion in
 | |
|   // cl/34081696. Here we use the simplest one.
 | |
|   if (key_container->empty()) {
 | |
|     key_container->reserve(map_container.size());
 | |
|   }
 | |
|   for (typename MapContainer::const_iterator it = map_container.begin();
 | |
|        it != map_container.end(); ++it) {
 | |
|     key_container->push_back(it->first);
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Inserts all the values from map_container into value_container, which must
 | |
| // support push_back(MapContainer::mapped_type).
 | |
| //
 | |
| // Note: any initial contents of the value_container are not cleared.
 | |
| template <class MapContainer, class ValueContainer>
 | |
| void AppendValuesFromMap(const MapContainer& map_container,
 | |
|                          ValueContainer* value_container) {
 | |
|   GOOGLE_CHECK(value_container != nullptr);
 | |
|   for (typename MapContainer::const_iterator it = map_container.begin();
 | |
|        it != map_container.end(); ++it) {
 | |
|     value_container->push_back(it->second);
 | |
|   }
 | |
| }
 | |
| 
 | |
| // A more specialized overload of AppendValuesFromMap to optimize reallocations
 | |
| // for the common case in which we're appending values to a vector and hence
 | |
| // can (and sometimes should) call reserve() first.
 | |
| //
 | |
| // (It would be possible to play SFINAE games to call reserve() for any
 | |
| // container that supports it, but this seems to get us 99% of what we need
 | |
| // without the complexity of a SFINAE-based solution.)
 | |
| template <class MapContainer, class ValueType>
 | |
| void AppendValuesFromMap(const MapContainer& map_container,
 | |
|                          std::vector<ValueType>* value_container) {
 | |
|   GOOGLE_CHECK(value_container != nullptr);
 | |
|   // See AppendKeysFromMap for why this is done.
 | |
|   if (value_container->empty()) {
 | |
|     value_container->reserve(map_container.size());
 | |
|   }
 | |
|   for (typename MapContainer::const_iterator it = map_container.begin();
 | |
|        it != map_container.end(); ++it) {
 | |
|     value_container->push_back(it->second);
 | |
|   }
 | |
| }
 | |
| 
 | |
| }  // namespace protobuf
 | |
| }  // namespace google
 | |
| 
 | |
| #endif  // GOOGLE_PROTOBUF_STUBS_MAP_UTIL_H__
 |