1362 lines
		
	
	
		
			47 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1362 lines
		
	
	
		
			47 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Protocol Buffers - Google's data interchange format
 | |
| // Copyright 2008 Google Inc.  All rights reserved.
 | |
| // https://developers.google.com/protocol-buffers/
 | |
| //
 | |
| // Redistribution and use in source and binary forms, with or without
 | |
| // modification, are permitted provided that the following conditions are
 | |
| // met:
 | |
| //
 | |
| //     * Redistributions of source code must retain the above copyright
 | |
| // notice, this list of conditions and the following disclaimer.
 | |
| //     * Redistributions in binary form must reproduce the above
 | |
| // copyright notice, this list of conditions and the following disclaimer
 | |
| // in the documentation and/or other materials provided with the
 | |
| // distribution.
 | |
| //     * Neither the name of Google Inc. nor the names of its
 | |
| // contributors may be used to endorse or promote products derived from
 | |
| // this software without specific prior written permission.
 | |
| //
 | |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 | |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 | |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 | |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 | |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 | |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 | |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 | |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 | |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 | |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 | |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 | |
| 
 | |
| // This file defines the map container and its helpers to support protobuf maps.
 | |
| //
 | |
| // The Map and MapIterator types are provided by this header file.
 | |
| // Please avoid using other types defined here, unless they are public
 | |
| // types within Map or MapIterator, such as Map::value_type.
 | |
| 
 | |
| #ifndef GOOGLE_PROTOBUF_MAP_H__
 | |
| #define GOOGLE_PROTOBUF_MAP_H__
 | |
| 
 | |
| #include <functional>
 | |
| #include <initializer_list>
 | |
| #include <iterator>
 | |
| #include <limits>  // To support Visual Studio 2008
 | |
| #include <map>
 | |
| #include <string>
 | |
| #include <type_traits>
 | |
| #include <utility>
 | |
| 
 | |
| #if defined(__cpp_lib_string_view)
 | |
| #include <string_view>
 | |
| #endif  // defined(__cpp_lib_string_view)
 | |
| 
 | |
| #include <google/protobuf/stubs/common.h>
 | |
| #include <google/protobuf/arena.h>
 | |
| #include <google/protobuf/generated_enum_util.h>
 | |
| #include <google/protobuf/map_type_handler.h>
 | |
| #include <google/protobuf/stubs/hash.h>
 | |
| 
 | |
| #ifdef SWIG
 | |
| #error "You cannot SWIG proto headers"
 | |
| #endif
 | |
| 
 | |
| #include <google/protobuf/port_def.inc>
 | |
| 
 | |
| namespace google {
 | |
| namespace protobuf {
 | |
| 
 | |
| template <typename Key, typename T>
 | |
| class Map;
 | |
| 
 | |
| class MapIterator;
 | |
| 
 | |
| template <typename Enum>
 | |
| struct is_proto_enum;
 | |
| 
 | |
| namespace internal {
 | |
| template <typename Derived, typename Key, typename T,
 | |
|           WireFormatLite::FieldType key_wire_type,
 | |
|           WireFormatLite::FieldType value_wire_type>
 | |
| class MapFieldLite;
 | |
| 
 | |
| template <typename Derived, typename Key, typename T,
 | |
|           WireFormatLite::FieldType key_wire_type,
 | |
|           WireFormatLite::FieldType value_wire_type>
 | |
| class MapField;
 | |
| 
 | |
| template <typename Key, typename T>
 | |
| class TypeDefinedMapFieldBase;
 | |
| 
 | |
| class DynamicMapField;
 | |
| 
 | |
| class GeneratedMessageReflection;
 | |
| 
 | |
| // re-implement std::allocator to use arena allocator for memory allocation.
 | |
| // Used for Map implementation. Users should not use this class
 | |
| // directly.
 | |
| template <typename U>
 | |
| class MapAllocator {
 | |
|  public:
 | |
|   using value_type = U;
 | |
|   using pointer = value_type*;
 | |
|   using const_pointer = const value_type*;
 | |
|   using reference = value_type&;
 | |
|   using const_reference = const value_type&;
 | |
|   using size_type = size_t;
 | |
|   using difference_type = ptrdiff_t;
 | |
| 
 | |
|   constexpr MapAllocator() : arena_(nullptr) {}
 | |
|   explicit constexpr MapAllocator(Arena* arena) : arena_(arena) {}
 | |
|   template <typename X>
 | |
|   MapAllocator(const MapAllocator<X>& allocator)  // NOLINT(runtime/explicit)
 | |
|       : arena_(allocator.arena()) {}
 | |
| 
 | |
|   pointer allocate(size_type n, const void* /* hint */ = nullptr) {
 | |
|     // If arena is not given, malloc needs to be called which doesn't
 | |
|     // construct element object.
 | |
|     if (arena_ == nullptr) {
 | |
|       return static_cast<pointer>(::operator new(n * sizeof(value_type)));
 | |
|     } else {
 | |
|       return reinterpret_cast<pointer>(
 | |
|           Arena::CreateArray<uint8_t>(arena_, n * sizeof(value_type)));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void deallocate(pointer p, size_type n) {
 | |
|     if (arena_ == nullptr) {
 | |
| #if defined(__GXX_DELETE_WITH_SIZE__) || defined(__cpp_sized_deallocation)
 | |
|       ::operator delete(p, n * sizeof(value_type));
 | |
| #else
 | |
|       (void)n;
 | |
|       ::operator delete(p);
 | |
| #endif
 | |
|     }
 | |
|   }
 | |
| 
 | |
| #if !defined(GOOGLE_PROTOBUF_OS_APPLE) && !defined(GOOGLE_PROTOBUF_OS_NACL) && \
 | |
|     !defined(GOOGLE_PROTOBUF_OS_EMSCRIPTEN)
 | |
|   template <class NodeType, class... Args>
 | |
|   void construct(NodeType* p, Args&&... args) {
 | |
|     // Clang 3.6 doesn't compile static casting to void* directly. (Issue
 | |
|     // #1266) According C++ standard 5.2.9/1: "The static_cast operator shall
 | |
|     // not cast away constness". So first the maybe const pointer is casted to
 | |
|     // const void* and after the const void* is const casted.
 | |
|     new (const_cast<void*>(static_cast<const void*>(p)))
 | |
|         NodeType(std::forward<Args>(args)...);
 | |
|   }
 | |
| 
 | |
|   template <class NodeType>
 | |
|   void destroy(NodeType* p) {
 | |
|     p->~NodeType();
 | |
|   }
 | |
| #else
 | |
|   void construct(pointer p, const_reference t) { new (p) value_type(t); }
 | |
| 
 | |
|   void destroy(pointer p) { p->~value_type(); }
 | |
| #endif
 | |
| 
 | |
|   template <typename X>
 | |
|   struct rebind {
 | |
|     using other = MapAllocator<X>;
 | |
|   };
 | |
| 
 | |
|   template <typename X>
 | |
|   bool operator==(const MapAllocator<X>& other) const {
 | |
|     return arena_ == other.arena_;
 | |
|   }
 | |
| 
 | |
|   template <typename X>
 | |
|   bool operator!=(const MapAllocator<X>& other) const {
 | |
|     return arena_ != other.arena_;
 | |
|   }
 | |
| 
 | |
|   // To support Visual Studio 2008
 | |
|   size_type max_size() const {
 | |
|     // parentheses around (std::...:max) prevents macro warning of max()
 | |
|     return (std::numeric_limits<size_type>::max)();
 | |
|   }
 | |
| 
 | |
|   // To support gcc-4.4, which does not properly
 | |
|   // support templated friend classes
 | |
|   Arena* arena() const { return arena_; }
 | |
| 
 | |
|  private:
 | |
|   using DestructorSkippable_ = void;
 | |
|   Arena* arena_;
 | |
| };
 | |
| 
 | |
| template <typename T>
 | |
| using KeyForTree =
 | |
|     typename std::conditional<std::is_scalar<T>::value, T,
 | |
|                               std::reference_wrapper<const T>>::type;
 | |
| 
 | |
| // Default case: Not transparent.
 | |
| // We use std::hash<key_type>/std::less<key_type> and all the lookup functions
 | |
| // only accept `key_type`.
 | |
| template <typename key_type>
 | |
| struct TransparentSupport {
 | |
|   using hash = std::hash<key_type>;
 | |
|   using less = std::less<key_type>;
 | |
| 
 | |
|   static bool Equals(const key_type& a, const key_type& b) { return a == b; }
 | |
| 
 | |
|   template <typename K>
 | |
|   using key_arg = key_type;
 | |
| };
 | |
| 
 | |
| #if defined(__cpp_lib_string_view)
 | |
| // If std::string_view is available, we add transparent support for std::string
 | |
| // keys. We use std::hash<std::string_view> as it supports the input types we
 | |
| // care about. The lookup functions accept arbitrary `K`. This will include any
 | |
| // key type that is convertible to std::string_view.
 | |
| template <>
 | |
| struct TransparentSupport<std::string> {
 | |
|   static std::string_view ImplicitConvert(std::string_view str) { return str; }
 | |
|   // If the element is not convertible to std::string_view, try to convert to
 | |
|   // std::string first.
 | |
|   // The template makes this overload lose resolution when both have the same
 | |
|   // rank otherwise.
 | |
|   template <typename = void>
 | |
|   static std::string_view ImplicitConvert(const std::string& str) {
 | |
|     return str;
 | |
|   }
 | |
| 
 | |
|   struct hash : private std::hash<std::string_view> {
 | |
|     using is_transparent = void;
 | |
| 
 | |
|     template <typename T>
 | |
|     size_t operator()(const T& str) const {
 | |
|       return base()(ImplicitConvert(str));
 | |
|     }
 | |
| 
 | |
|    private:
 | |
|     const std::hash<std::string_view>& base() const { return *this; }
 | |
|   };
 | |
|   struct less {
 | |
|     using is_transparent = void;
 | |
| 
 | |
|     template <typename T, typename U>
 | |
|     bool operator()(const T& t, const U& u) const {
 | |
|       return ImplicitConvert(t) < ImplicitConvert(u);
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   template <typename T, typename U>
 | |
|   static bool Equals(const T& t, const U& u) {
 | |
|     return ImplicitConvert(t) == ImplicitConvert(u);
 | |
|   }
 | |
| 
 | |
|   template <typename K>
 | |
|   using key_arg = K;
 | |
| };
 | |
| #endif  // defined(__cpp_lib_string_view)
 | |
| 
 | |
| template <typename Key>
 | |
| using TreeForMap =
 | |
|     std::map<KeyForTree<Key>, void*, typename TransparentSupport<Key>::less,
 | |
|              MapAllocator<std::pair<const KeyForTree<Key>, void*>>>;
 | |
| 
 | |
| inline bool TableEntryIsEmpty(void* const* table, size_t b) {
 | |
|   return table[b] == nullptr;
 | |
| }
 | |
| inline bool TableEntryIsNonEmptyList(void* const* table, size_t b) {
 | |
|   return table[b] != nullptr && table[b] != table[b ^ 1];
 | |
| }
 | |
| inline bool TableEntryIsTree(void* const* table, size_t b) {
 | |
|   return !TableEntryIsEmpty(table, b) && !TableEntryIsNonEmptyList(table, b);
 | |
| }
 | |
| inline bool TableEntryIsList(void* const* table, size_t b) {
 | |
|   return !TableEntryIsTree(table, b);
 | |
| }
 | |
| 
 | |
| // This captures all numeric types.
 | |
| inline size_t MapValueSpaceUsedExcludingSelfLong(bool) { return 0; }
 | |
| inline size_t MapValueSpaceUsedExcludingSelfLong(const std::string& str) {
 | |
|   return StringSpaceUsedExcludingSelfLong(str);
 | |
| }
 | |
| template <typename T,
 | |
|           typename = decltype(std::declval<const T&>().SpaceUsedLong())>
 | |
| size_t MapValueSpaceUsedExcludingSelfLong(const T& message) {
 | |
|   return message.SpaceUsedLong() - sizeof(T);
 | |
| }
 | |
| 
 | |
| constexpr size_t kGlobalEmptyTableSize = 1;
 | |
| PROTOBUF_EXPORT extern void* const kGlobalEmptyTable[kGlobalEmptyTableSize];
 | |
| 
 | |
| // Space used for the table, trees, and nodes.
 | |
| // Does not include the indirect space used. Eg the data of a std::string.
 | |
| template <typename Key>
 | |
| PROTOBUF_NOINLINE size_t SpaceUsedInTable(void** table, size_t num_buckets,
 | |
|                                           size_t num_elements,
 | |
|                                           size_t sizeof_node) {
 | |
|   size_t size = 0;
 | |
|   // The size of the table.
 | |
|   size += sizeof(void*) * num_buckets;
 | |
|   // All the nodes.
 | |
|   size += sizeof_node * num_elements;
 | |
|   // For each tree, count the overhead of the those nodes.
 | |
|   // Two buckets at a time because we only care about trees.
 | |
|   for (size_t b = 0; b < num_buckets; b += 2) {
 | |
|     if (internal::TableEntryIsTree(table, b)) {
 | |
|       using Tree = TreeForMap<Key>;
 | |
|       Tree* tree = static_cast<Tree*>(table[b]);
 | |
|       // Estimated cost of the red-black tree nodes, 3 pointers plus a
 | |
|       // bool (plus alignment, so 4 pointers).
 | |
|       size += tree->size() *
 | |
|               (sizeof(typename Tree::value_type) + sizeof(void*) * 4);
 | |
|     }
 | |
|   }
 | |
|   return size;
 | |
| }
 | |
| 
 | |
| template <typename Map,
 | |
|           typename = typename std::enable_if<
 | |
|               !std::is_scalar<typename Map::key_type>::value ||
 | |
|               !std::is_scalar<typename Map::mapped_type>::value>::type>
 | |
| size_t SpaceUsedInValues(const Map* map) {
 | |
|   size_t size = 0;
 | |
|   for (const auto& v : *map) {
 | |
|     size += internal::MapValueSpaceUsedExcludingSelfLong(v.first) +
 | |
|             internal::MapValueSpaceUsedExcludingSelfLong(v.second);
 | |
|   }
 | |
|   return size;
 | |
| }
 | |
| 
 | |
| inline size_t SpaceUsedInValues(const void*) { return 0; }
 | |
| 
 | |
| }  // namespace internal
 | |
| 
 | |
| // This is the class for Map's internal value_type. Instead of using
 | |
| // std::pair as value_type, we use this class which provides us more control of
 | |
| // its process of construction and destruction.
 | |
| template <typename Key, typename T>
 | |
| struct MapPair {
 | |
|   using first_type = const Key;
 | |
|   using second_type = T;
 | |
| 
 | |
|   MapPair(const Key& other_first, const T& other_second)
 | |
|       : first(other_first), second(other_second) {}
 | |
|   explicit MapPair(const Key& other_first) : first(other_first), second() {}
 | |
|   explicit MapPair(Key&& other_first)
 | |
|       : first(std::move(other_first)), second() {}
 | |
|   MapPair(const MapPair& other) : first(other.first), second(other.second) {}
 | |
| 
 | |
|   ~MapPair() {}
 | |
| 
 | |
|   // Implicitly convertible to std::pair of compatible types.
 | |
|   template <typename T1, typename T2>
 | |
|   operator std::pair<T1, T2>() const {  // NOLINT(runtime/explicit)
 | |
|     return std::pair<T1, T2>(first, second);
 | |
|   }
 | |
| 
 | |
|   const Key first;
 | |
|   T second;
 | |
| 
 | |
|  private:
 | |
|   friend class Arena;
 | |
|   friend class Map<Key, T>;
 | |
| };
 | |
| 
 | |
| // Map is an associative container type used to store protobuf map
 | |
| // fields.  Each Map instance may or may not use a different hash function, a
 | |
| // different iteration order, and so on.  E.g., please don't examine
 | |
| // implementation details to decide if the following would work:
 | |
| //  Map<int, int> m0, m1;
 | |
| //  m0[0] = m1[0] = m0[1] = m1[1] = 0;
 | |
| //  assert(m0.begin()->first == m1.begin()->first);  // Bug!
 | |
| //
 | |
| // Map's interface is similar to std::unordered_map, except that Map is not
 | |
| // designed to play well with exceptions.
 | |
| template <typename Key, typename T>
 | |
| class Map {
 | |
|  public:
 | |
|   using key_type = Key;
 | |
|   using mapped_type = T;
 | |
|   using value_type = MapPair<Key, T>;
 | |
| 
 | |
|   using pointer = value_type*;
 | |
|   using const_pointer = const value_type*;
 | |
|   using reference = value_type&;
 | |
|   using const_reference = const value_type&;
 | |
| 
 | |
|   using size_type = size_t;
 | |
|   using hasher = typename internal::TransparentSupport<Key>::hash;
 | |
| 
 | |
|   constexpr Map() : elements_(nullptr) {}
 | |
|   explicit Map(Arena* arena) : elements_(arena) {}
 | |
| 
 | |
|   Map(const Map& other) : Map() { insert(other.begin(), other.end()); }
 | |
| 
 | |
|   Map(Map&& other) noexcept : Map() {
 | |
|     if (other.arena() != nullptr) {
 | |
|       *this = other;
 | |
|     } else {
 | |
|       swap(other);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   Map& operator=(Map&& other) noexcept {
 | |
|     if (this != &other) {
 | |
|       if (arena() != other.arena()) {
 | |
|         *this = other;
 | |
|       } else {
 | |
|         swap(other);
 | |
|       }
 | |
|     }
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   template <class InputIt>
 | |
|   Map(const InputIt& first, const InputIt& last) : Map() {
 | |
|     insert(first, last);
 | |
|   }
 | |
| 
 | |
|   ~Map() {}
 | |
| 
 | |
|  private:
 | |
|   using Allocator = internal::MapAllocator<void*>;
 | |
| 
 | |
|   // InnerMap is a generic hash-based map.  It doesn't contain any
 | |
|   // protocol-buffer-specific logic.  It is a chaining hash map with the
 | |
|   // additional feature that some buckets can be converted to use an ordered
 | |
|   // container.  This ensures O(lg n) bounds on find, insert, and erase, while
 | |
|   // avoiding the overheads of ordered containers most of the time.
 | |
|   //
 | |
|   // The implementation doesn't need the full generality of unordered_map,
 | |
|   // and it doesn't have it.  More bells and whistles can be added as needed.
 | |
|   // Some implementation details:
 | |
|   // 1. The hash function has type hasher and the equality function
 | |
|   //    equal_to<Key>.  We inherit from hasher to save space
 | |
|   //    (empty-base-class optimization).
 | |
|   // 2. The number of buckets is a power of two.
 | |
|   // 3. Buckets are converted to trees in pairs: if we convert bucket b then
 | |
|   //    buckets b and b^1 will share a tree.  Invariant: buckets b and b^1 have
 | |
|   //    the same non-null value iff they are sharing a tree.  (An alternative
 | |
|   //    implementation strategy would be to have a tag bit per bucket.)
 | |
|   // 4. As is typical for hash_map and such, the Keys and Values are always
 | |
|   //    stored in linked list nodes.  Pointers to elements are never invalidated
 | |
|   //    until the element is deleted.
 | |
|   // 5. The trees' payload type is pointer to linked-list node.  Tree-converting
 | |
|   //    a bucket doesn't copy Key-Value pairs.
 | |
|   // 6. Once we've tree-converted a bucket, it is never converted back. However,
 | |
|   //    the items a tree contains may wind up assigned to trees or lists upon a
 | |
|   //    rehash.
 | |
|   // 7. The code requires no C++ features from C++14 or later.
 | |
|   // 8. Mutations to a map do not invalidate the map's iterators, pointers to
 | |
|   //    elements, or references to elements.
 | |
|   // 9. Except for erase(iterator), any non-const method can reorder iterators.
 | |
|   // 10. InnerMap uses KeyForTree<Key> when using the Tree representation, which
 | |
|   //    is either `Key`, if Key is a scalar, or `reference_wrapper<const Key>`
 | |
|   //    otherwise. This avoids unnecessary copies of string keys, for example.
 | |
|   class InnerMap : private hasher {
 | |
|    public:
 | |
|     explicit constexpr InnerMap(Arena* arena)
 | |
|         : hasher(),
 | |
|           num_elements_(0),
 | |
|           num_buckets_(internal::kGlobalEmptyTableSize),
 | |
|           seed_(0),
 | |
|           index_of_first_non_null_(internal::kGlobalEmptyTableSize),
 | |
|           table_(const_cast<void**>(internal::kGlobalEmptyTable)),
 | |
|           alloc_(arena) {}
 | |
| 
 | |
|     ~InnerMap() {
 | |
|       if (alloc_.arena() == nullptr &&
 | |
|           num_buckets_ != internal::kGlobalEmptyTableSize) {
 | |
|         clear();
 | |
|         Dealloc<void*>(table_, num_buckets_);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|    private:
 | |
|     enum { kMinTableSize = 8 };
 | |
| 
 | |
|     // Linked-list nodes, as one would expect for a chaining hash table.
 | |
|     struct Node {
 | |
|       value_type kv;
 | |
|       Node* next;
 | |
|     };
 | |
| 
 | |
|     // Trees. The payload type is a copy of Key, so that we can query the tree
 | |
|     // with Keys that are not in any particular data structure.
 | |
|     // The value is a void* pointing to Node. We use void* instead of Node* to
 | |
|     // avoid code bloat. That way there is only one instantiation of the tree
 | |
|     // class per key type.
 | |
|     using Tree = internal::TreeForMap<Key>;
 | |
|     using TreeIterator = typename Tree::iterator;
 | |
| 
 | |
|     static Node* NodeFromTreeIterator(TreeIterator it) {
 | |
|       return static_cast<Node*>(it->second);
 | |
|     }
 | |
| 
 | |
|     // iterator and const_iterator are instantiations of iterator_base.
 | |
|     template <typename KeyValueType>
 | |
|     class iterator_base {
 | |
|      public:
 | |
|       using reference = KeyValueType&;
 | |
|       using pointer = KeyValueType*;
 | |
| 
 | |
|       // Invariants:
 | |
|       // node_ is always correct. This is handy because the most common
 | |
|       // operations are operator* and operator-> and they only use node_.
 | |
|       // When node_ is set to a non-null value, all the other non-const fields
 | |
|       // are updated to be correct also, but those fields can become stale
 | |
|       // if the underlying map is modified.  When those fields are needed they
 | |
|       // are rechecked, and updated if necessary.
 | |
|       iterator_base() : node_(nullptr), m_(nullptr), bucket_index_(0) {}
 | |
| 
 | |
|       explicit iterator_base(const InnerMap* m) : m_(m) {
 | |
|         SearchFrom(m->index_of_first_non_null_);
 | |
|       }
 | |
| 
 | |
|       // Any iterator_base can convert to any other.  This is overkill, and we
 | |
|       // rely on the enclosing class to use it wisely.  The standard "iterator
 | |
|       // can convert to const_iterator" is OK but the reverse direction is not.
 | |
|       template <typename U>
 | |
|       explicit iterator_base(const iterator_base<U>& it)
 | |
|           : node_(it.node_), m_(it.m_), bucket_index_(it.bucket_index_) {}
 | |
| 
 | |
|       iterator_base(Node* n, const InnerMap* m, size_type index)
 | |
|           : node_(n), m_(m), bucket_index_(index) {}
 | |
| 
 | |
|       iterator_base(TreeIterator tree_it, const InnerMap* m, size_type index)
 | |
|           : node_(NodeFromTreeIterator(tree_it)), m_(m), bucket_index_(index) {
 | |
|         // Invariant: iterators that use buckets with trees have an even
 | |
|         // bucket_index_.
 | |
|         GOOGLE_DCHECK_EQ(bucket_index_ % 2, 0u);
 | |
|       }
 | |
| 
 | |
|       // Advance through buckets, looking for the first that isn't empty.
 | |
|       // If nothing non-empty is found then leave node_ == nullptr.
 | |
|       void SearchFrom(size_type start_bucket) {
 | |
|         GOOGLE_DCHECK(m_->index_of_first_non_null_ == m_->num_buckets_ ||
 | |
|                m_->table_[m_->index_of_first_non_null_] != nullptr);
 | |
|         node_ = nullptr;
 | |
|         for (bucket_index_ = start_bucket; bucket_index_ < m_->num_buckets_;
 | |
|              bucket_index_++) {
 | |
|           if (m_->TableEntryIsNonEmptyList(bucket_index_)) {
 | |
|             node_ = static_cast<Node*>(m_->table_[bucket_index_]);
 | |
|             break;
 | |
|           } else if (m_->TableEntryIsTree(bucket_index_)) {
 | |
|             Tree* tree = static_cast<Tree*>(m_->table_[bucket_index_]);
 | |
|             GOOGLE_DCHECK(!tree->empty());
 | |
|             node_ = NodeFromTreeIterator(tree->begin());
 | |
|             break;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       reference operator*() const { return node_->kv; }
 | |
|       pointer operator->() const { return &(operator*()); }
 | |
| 
 | |
|       friend bool operator==(const iterator_base& a, const iterator_base& b) {
 | |
|         return a.node_ == b.node_;
 | |
|       }
 | |
|       friend bool operator!=(const iterator_base& a, const iterator_base& b) {
 | |
|         return a.node_ != b.node_;
 | |
|       }
 | |
| 
 | |
|       iterator_base& operator++() {
 | |
|         if (node_->next == nullptr) {
 | |
|           TreeIterator tree_it;
 | |
|           const bool is_list = revalidate_if_necessary(&tree_it);
 | |
|           if (is_list) {
 | |
|             SearchFrom(bucket_index_ + 1);
 | |
|           } else {
 | |
|             GOOGLE_DCHECK_EQ(bucket_index_ & 1, 0u);
 | |
|             Tree* tree = static_cast<Tree*>(m_->table_[bucket_index_]);
 | |
|             if (++tree_it == tree->end()) {
 | |
|               SearchFrom(bucket_index_ + 2);
 | |
|             } else {
 | |
|               node_ = NodeFromTreeIterator(tree_it);
 | |
|             }
 | |
|           }
 | |
|         } else {
 | |
|           node_ = node_->next;
 | |
|         }
 | |
|         return *this;
 | |
|       }
 | |
| 
 | |
|       iterator_base operator++(int /* unused */) {
 | |
|         iterator_base tmp = *this;
 | |
|         ++*this;
 | |
|         return tmp;
 | |
|       }
 | |
| 
 | |
|       // Assumes node_ and m_ are correct and non-null, but other fields may be
 | |
|       // stale.  Fix them as needed.  Then return true iff node_ points to a
 | |
|       // Node in a list.  If false is returned then *it is modified to be
 | |
|       // a valid iterator for node_.
 | |
|       bool revalidate_if_necessary(TreeIterator* it) {
 | |
|         GOOGLE_DCHECK(node_ != nullptr && m_ != nullptr);
 | |
|         // Force bucket_index_ to be in range.
 | |
|         bucket_index_ &= (m_->num_buckets_ - 1);
 | |
|         // Common case: the bucket we think is relevant points to node_.
 | |
|         if (m_->table_[bucket_index_] == static_cast<void*>(node_)) return true;
 | |
|         // Less common: the bucket is a linked list with node_ somewhere in it,
 | |
|         // but not at the head.
 | |
|         if (m_->TableEntryIsNonEmptyList(bucket_index_)) {
 | |
|           Node* l = static_cast<Node*>(m_->table_[bucket_index_]);
 | |
|           while ((l = l->next) != nullptr) {
 | |
|             if (l == node_) {
 | |
|               return true;
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|         // Well, bucket_index_ still might be correct, but probably
 | |
|         // not.  Revalidate just to be sure.  This case is rare enough that we
 | |
|         // don't worry about potential optimizations, such as having a custom
 | |
|         // find-like method that compares Node* instead of the key.
 | |
|         iterator_base i(m_->find(node_->kv.first, it));
 | |
|         bucket_index_ = i.bucket_index_;
 | |
|         return m_->TableEntryIsList(bucket_index_);
 | |
|       }
 | |
| 
 | |
|       Node* node_;
 | |
|       const InnerMap* m_;
 | |
|       size_type bucket_index_;
 | |
|     };
 | |
| 
 | |
|    public:
 | |
|     using iterator = iterator_base<value_type>;
 | |
|     using const_iterator = iterator_base<const value_type>;
 | |
| 
 | |
|     Arena* arena() const { return alloc_.arena(); }
 | |
| 
 | |
|     void Swap(InnerMap* other) {
 | |
|       std::swap(num_elements_, other->num_elements_);
 | |
|       std::swap(num_buckets_, other->num_buckets_);
 | |
|       std::swap(seed_, other->seed_);
 | |
|       std::swap(index_of_first_non_null_, other->index_of_first_non_null_);
 | |
|       std::swap(table_, other->table_);
 | |
|       std::swap(alloc_, other->alloc_);
 | |
|     }
 | |
| 
 | |
|     iterator begin() { return iterator(this); }
 | |
|     iterator end() { return iterator(); }
 | |
|     const_iterator begin() const { return const_iterator(this); }
 | |
|     const_iterator end() const { return const_iterator(); }
 | |
| 
 | |
|     void clear() {
 | |
|       for (size_type b = 0; b < num_buckets_; b++) {
 | |
|         if (TableEntryIsNonEmptyList(b)) {
 | |
|           Node* node = static_cast<Node*>(table_[b]);
 | |
|           table_[b] = nullptr;
 | |
|           do {
 | |
|             Node* next = node->next;
 | |
|             DestroyNode(node);
 | |
|             node = next;
 | |
|           } while (node != nullptr);
 | |
|         } else if (TableEntryIsTree(b)) {
 | |
|           Tree* tree = static_cast<Tree*>(table_[b]);
 | |
|           GOOGLE_DCHECK(table_[b] == table_[b + 1] && (b & 1) == 0);
 | |
|           table_[b] = table_[b + 1] = nullptr;
 | |
|           typename Tree::iterator tree_it = tree->begin();
 | |
|           do {
 | |
|             Node* node = NodeFromTreeIterator(tree_it);
 | |
|             typename Tree::iterator next = tree_it;
 | |
|             ++next;
 | |
|             tree->erase(tree_it);
 | |
|             DestroyNode(node);
 | |
|             tree_it = next;
 | |
|           } while (tree_it != tree->end());
 | |
|           DestroyTree(tree);
 | |
|           b++;
 | |
|         }
 | |
|       }
 | |
|       num_elements_ = 0;
 | |
|       index_of_first_non_null_ = num_buckets_;
 | |
|     }
 | |
| 
 | |
|     const hasher& hash_function() const { return *this; }
 | |
| 
 | |
|     static size_type max_size() {
 | |
|       return static_cast<size_type>(1) << (sizeof(void**) >= 8 ? 60 : 28);
 | |
|     }
 | |
|     size_type size() const { return num_elements_; }
 | |
|     bool empty() const { return size() == 0; }
 | |
| 
 | |
|     template <typename K>
 | |
|     iterator find(const K& k) {
 | |
|       return iterator(FindHelper(k).first);
 | |
|     }
 | |
| 
 | |
|     template <typename K>
 | |
|     const_iterator find(const K& k) const {
 | |
|       return FindHelper(k).first;
 | |
|     }
 | |
| 
 | |
|     // Insert the key into the map, if not present. In that case, the value will
 | |
|     // be value initialized.
 | |
|     template <typename K>
 | |
|     std::pair<iterator, bool> insert(K&& k) {
 | |
|       std::pair<const_iterator, size_type> p = FindHelper(k);
 | |
|       // Case 1: key was already present.
 | |
|       if (p.first.node_ != nullptr)
 | |
|         return std::make_pair(iterator(p.first), false);
 | |
|       // Case 2: insert.
 | |
|       if (ResizeIfLoadIsOutOfRange(num_elements_ + 1)) {
 | |
|         p = FindHelper(k);
 | |
|       }
 | |
|       const size_type b = p.second;  // bucket number
 | |
|       // If K is not key_type, make the conversion to key_type explicit.
 | |
|       using TypeToInit = typename std::conditional<
 | |
|           std::is_same<typename std::decay<K>::type, key_type>::value, K&&,
 | |
|           key_type>::type;
 | |
|       Node* node = Alloc<Node>(1);
 | |
|       // Even when arena is nullptr, CreateInArenaStorage is still used to
 | |
|       // ensure the arena of submessage will be consistent. Otherwise,
 | |
|       // submessage may have its own arena when message-owned arena is enabled.
 | |
|       Arena::CreateInArenaStorage(const_cast<Key*>(&node->kv.first),
 | |
|                                   alloc_.arena(),
 | |
|                                   static_cast<TypeToInit>(std::forward<K>(k)));
 | |
|       Arena::CreateInArenaStorage(&node->kv.second, alloc_.arena());
 | |
| 
 | |
|       iterator result = InsertUnique(b, node);
 | |
|       ++num_elements_;
 | |
|       return std::make_pair(result, true);
 | |
|     }
 | |
| 
 | |
|     template <typename K>
 | |
|     value_type& operator[](K&& k) {
 | |
|       return *insert(std::forward<K>(k)).first;
 | |
|     }
 | |
| 
 | |
|     void erase(iterator it) {
 | |
|       GOOGLE_DCHECK_EQ(it.m_, this);
 | |
|       typename Tree::iterator tree_it;
 | |
|       const bool is_list = it.revalidate_if_necessary(&tree_it);
 | |
|       size_type b = it.bucket_index_;
 | |
|       Node* const item = it.node_;
 | |
|       if (is_list) {
 | |
|         GOOGLE_DCHECK(TableEntryIsNonEmptyList(b));
 | |
|         Node* head = static_cast<Node*>(table_[b]);
 | |
|         head = EraseFromLinkedList(item, head);
 | |
|         table_[b] = static_cast<void*>(head);
 | |
|       } else {
 | |
|         GOOGLE_DCHECK(TableEntryIsTree(b));
 | |
|         Tree* tree = static_cast<Tree*>(table_[b]);
 | |
|         tree->erase(tree_it);
 | |
|         if (tree->empty()) {
 | |
|           // Force b to be the minimum of b and b ^ 1.  This is important
 | |
|           // only because we want index_of_first_non_null_ to be correct.
 | |
|           b &= ~static_cast<size_type>(1);
 | |
|           DestroyTree(tree);
 | |
|           table_[b] = table_[b + 1] = nullptr;
 | |
|         }
 | |
|       }
 | |
|       DestroyNode(item);
 | |
|       --num_elements_;
 | |
|       if (PROTOBUF_PREDICT_FALSE(b == index_of_first_non_null_)) {
 | |
|         while (index_of_first_non_null_ < num_buckets_ &&
 | |
|                table_[index_of_first_non_null_] == nullptr) {
 | |
|           ++index_of_first_non_null_;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     size_t SpaceUsedInternal() const {
 | |
|       return internal::SpaceUsedInTable<Key>(table_, num_buckets_,
 | |
|                                              num_elements_, sizeof(Node));
 | |
|     }
 | |
| 
 | |
|    private:
 | |
|     const_iterator find(const Key& k, TreeIterator* it) const {
 | |
|       return FindHelper(k, it).first;
 | |
|     }
 | |
|     template <typename K>
 | |
|     std::pair<const_iterator, size_type> FindHelper(const K& k) const {
 | |
|       return FindHelper(k, nullptr);
 | |
|     }
 | |
|     template <typename K>
 | |
|     std::pair<const_iterator, size_type> FindHelper(const K& k,
 | |
|                                                     TreeIterator* it) const {
 | |
|       size_type b = BucketNumber(k);
 | |
|       if (TableEntryIsNonEmptyList(b)) {
 | |
|         Node* node = static_cast<Node*>(table_[b]);
 | |
|         do {
 | |
|           if (internal::TransparentSupport<Key>::Equals(node->kv.first, k)) {
 | |
|             return std::make_pair(const_iterator(node, this, b), b);
 | |
|           } else {
 | |
|             node = node->next;
 | |
|           }
 | |
|         } while (node != nullptr);
 | |
|       } else if (TableEntryIsTree(b)) {
 | |
|         GOOGLE_DCHECK_EQ(table_[b], table_[b ^ 1]);
 | |
|         b &= ~static_cast<size_t>(1);
 | |
|         Tree* tree = static_cast<Tree*>(table_[b]);
 | |
|         auto tree_it = tree->find(k);
 | |
|         if (tree_it != tree->end()) {
 | |
|           if (it != nullptr) *it = tree_it;
 | |
|           return std::make_pair(const_iterator(tree_it, this, b), b);
 | |
|         }
 | |
|       }
 | |
|       return std::make_pair(end(), b);
 | |
|     }
 | |
| 
 | |
|     // Insert the given Node in bucket b.  If that would make bucket b too big,
 | |
|     // and bucket b is not a tree, create a tree for buckets b and b^1 to share.
 | |
|     // Requires count(*KeyPtrFromNodePtr(node)) == 0 and that b is the correct
 | |
|     // bucket.  num_elements_ is not modified.
 | |
|     iterator InsertUnique(size_type b, Node* node) {
 | |
|       GOOGLE_DCHECK(index_of_first_non_null_ == num_buckets_ ||
 | |
|              table_[index_of_first_non_null_] != nullptr);
 | |
|       // In practice, the code that led to this point may have already
 | |
|       // determined whether we are inserting into an empty list, a short list,
 | |
|       // or whatever.  But it's probably cheap enough to recompute that here;
 | |
|       // it's likely that we're inserting into an empty or short list.
 | |
|       iterator result;
 | |
|       GOOGLE_DCHECK(find(node->kv.first) == end());
 | |
|       if (TableEntryIsEmpty(b)) {
 | |
|         result = InsertUniqueInList(b, node);
 | |
|       } else if (TableEntryIsNonEmptyList(b)) {
 | |
|         if (PROTOBUF_PREDICT_FALSE(TableEntryIsTooLong(b))) {
 | |
|           TreeConvert(b);
 | |
|           result = InsertUniqueInTree(b, node);
 | |
|           GOOGLE_DCHECK_EQ(result.bucket_index_, b & ~static_cast<size_type>(1));
 | |
|         } else {
 | |
|           // Insert into a pre-existing list.  This case cannot modify
 | |
|           // index_of_first_non_null_, so we skip the code to update it.
 | |
|           return InsertUniqueInList(b, node);
 | |
|         }
 | |
|       } else {
 | |
|         // Insert into a pre-existing tree.  This case cannot modify
 | |
|         // index_of_first_non_null_, so we skip the code to update it.
 | |
|         return InsertUniqueInTree(b, node);
 | |
|       }
 | |
|       // parentheses around (std::min) prevents macro expansion of min(...)
 | |
|       index_of_first_non_null_ =
 | |
|           (std::min)(index_of_first_non_null_, result.bucket_index_);
 | |
|       return result;
 | |
|     }
 | |
| 
 | |
|     // Returns whether we should insert after the head of the list. For
 | |
|     // non-optimized builds, we randomly decide whether to insert right at the
 | |
|     // head of the list or just after the head. This helps add a little bit of
 | |
|     // non-determinism to the map ordering.
 | |
|     bool ShouldInsertAfterHead(void* node) {
 | |
| #ifdef NDEBUG
 | |
|       (void)node;
 | |
|       return false;
 | |
| #else
 | |
|       // Doing modulo with a prime mixes the bits more.
 | |
|       return (reinterpret_cast<uintptr_t>(node) ^ seed_) % 13 > 6;
 | |
| #endif
 | |
|     }
 | |
| 
 | |
|     // Helper for InsertUnique.  Handles the case where bucket b is a
 | |
|     // not-too-long linked list.
 | |
|     iterator InsertUniqueInList(size_type b, Node* node) {
 | |
|       if (table_[b] != nullptr && ShouldInsertAfterHead(node)) {
 | |
|         Node* first = static_cast<Node*>(table_[b]);
 | |
|         node->next = first->next;
 | |
|         first->next = node;
 | |
|         return iterator(node, this, b);
 | |
|       }
 | |
| 
 | |
|       node->next = static_cast<Node*>(table_[b]);
 | |
|       table_[b] = static_cast<void*>(node);
 | |
|       return iterator(node, this, b);
 | |
|     }
 | |
| 
 | |
|     // Helper for InsertUnique.  Handles the case where bucket b points to a
 | |
|     // Tree.
 | |
|     iterator InsertUniqueInTree(size_type b, Node* node) {
 | |
|       GOOGLE_DCHECK_EQ(table_[b], table_[b ^ 1]);
 | |
|       // Maintain the invariant that node->next is null for all Nodes in Trees.
 | |
|       node->next = nullptr;
 | |
|       return iterator(
 | |
|           static_cast<Tree*>(table_[b])->insert({node->kv.first, node}).first,
 | |
|           this, b & ~static_cast<size_t>(1));
 | |
|     }
 | |
| 
 | |
|     // Returns whether it did resize.  Currently this is only used when
 | |
|     // num_elements_ increases, though it could be used in other situations.
 | |
|     // It checks for load too low as well as load too high: because any number
 | |
|     // of erases can occur between inserts, the load could be as low as 0 here.
 | |
|     // Resizing to a lower size is not always helpful, but failing to do so can
 | |
|     // destroy the expected big-O bounds for some operations. By having the
 | |
|     // policy that sometimes we resize down as well as up, clients can easily
 | |
|     // keep O(size()) = O(number of buckets) if they want that.
 | |
|     bool ResizeIfLoadIsOutOfRange(size_type new_size) {
 | |
|       const size_type kMaxMapLoadTimes16 = 12;  // controls RAM vs CPU tradeoff
 | |
|       const size_type hi_cutoff = num_buckets_ * kMaxMapLoadTimes16 / 16;
 | |
|       const size_type lo_cutoff = hi_cutoff / 4;
 | |
|       // We don't care how many elements are in trees.  If a lot are,
 | |
|       // we may resize even though there are many empty buckets.  In
 | |
|       // practice, this seems fine.
 | |
|       if (PROTOBUF_PREDICT_FALSE(new_size >= hi_cutoff)) {
 | |
|         if (num_buckets_ <= max_size() / 2) {
 | |
|           Resize(num_buckets_ * 2);
 | |
|           return true;
 | |
|         }
 | |
|       } else if (PROTOBUF_PREDICT_FALSE(new_size <= lo_cutoff &&
 | |
|                                         num_buckets_ > kMinTableSize)) {
 | |
|         size_type lg2_of_size_reduction_factor = 1;
 | |
|         // It's possible we want to shrink a lot here... size() could even be 0.
 | |
|         // So, estimate how much to shrink by making sure we don't shrink so
 | |
|         // much that we would need to grow the table after a few inserts.
 | |
|         const size_type hypothetical_size = new_size * 5 / 4 + 1;
 | |
|         while ((hypothetical_size << lg2_of_size_reduction_factor) <
 | |
|                hi_cutoff) {
 | |
|           ++lg2_of_size_reduction_factor;
 | |
|         }
 | |
|         size_type new_num_buckets = std::max<size_type>(
 | |
|             kMinTableSize, num_buckets_ >> lg2_of_size_reduction_factor);
 | |
|         if (new_num_buckets != num_buckets_) {
 | |
|           Resize(new_num_buckets);
 | |
|           return true;
 | |
|         }
 | |
|       }
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     // Resize to the given number of buckets.
 | |
|     void Resize(size_t new_num_buckets) {
 | |
|       if (num_buckets_ == internal::kGlobalEmptyTableSize) {
 | |
|         // This is the global empty array.
 | |
|         // Just overwrite with a new one. No need to transfer or free anything.
 | |
|         num_buckets_ = index_of_first_non_null_ = kMinTableSize;
 | |
|         table_ = CreateEmptyTable(num_buckets_);
 | |
|         seed_ = Seed();
 | |
|         return;
 | |
|       }
 | |
| 
 | |
|       GOOGLE_DCHECK_GE(new_num_buckets, kMinTableSize);
 | |
|       void** const old_table = table_;
 | |
|       const size_type old_table_size = num_buckets_;
 | |
|       num_buckets_ = new_num_buckets;
 | |
|       table_ = CreateEmptyTable(num_buckets_);
 | |
|       const size_type start = index_of_first_non_null_;
 | |
|       index_of_first_non_null_ = num_buckets_;
 | |
|       for (size_type i = start; i < old_table_size; i++) {
 | |
|         if (internal::TableEntryIsNonEmptyList(old_table, i)) {
 | |
|           TransferList(old_table, i);
 | |
|         } else if (internal::TableEntryIsTree(old_table, i)) {
 | |
|           TransferTree(old_table, i++);
 | |
|         }
 | |
|       }
 | |
|       Dealloc<void*>(old_table, old_table_size);
 | |
|     }
 | |
| 
 | |
|     void TransferList(void* const* table, size_type index) {
 | |
|       Node* node = static_cast<Node*>(table[index]);
 | |
|       do {
 | |
|         Node* next = node->next;
 | |
|         InsertUnique(BucketNumber(node->kv.first), node);
 | |
|         node = next;
 | |
|       } while (node != nullptr);
 | |
|     }
 | |
| 
 | |
|     void TransferTree(void* const* table, size_type index) {
 | |
|       Tree* tree = static_cast<Tree*>(table[index]);
 | |
|       typename Tree::iterator tree_it = tree->begin();
 | |
|       do {
 | |
|         InsertUnique(BucketNumber(std::cref(tree_it->first).get()),
 | |
|                      NodeFromTreeIterator(tree_it));
 | |
|       } while (++tree_it != tree->end());
 | |
|       DestroyTree(tree);
 | |
|     }
 | |
| 
 | |
|     Node* EraseFromLinkedList(Node* item, Node* head) {
 | |
|       if (head == item) {
 | |
|         return head->next;
 | |
|       } else {
 | |
|         head->next = EraseFromLinkedList(item, head->next);
 | |
|         return head;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     bool TableEntryIsEmpty(size_type b) const {
 | |
|       return internal::TableEntryIsEmpty(table_, b);
 | |
|     }
 | |
|     bool TableEntryIsNonEmptyList(size_type b) const {
 | |
|       return internal::TableEntryIsNonEmptyList(table_, b);
 | |
|     }
 | |
|     bool TableEntryIsTree(size_type b) const {
 | |
|       return internal::TableEntryIsTree(table_, b);
 | |
|     }
 | |
|     bool TableEntryIsList(size_type b) const {
 | |
|       return internal::TableEntryIsList(table_, b);
 | |
|     }
 | |
| 
 | |
|     void TreeConvert(size_type b) {
 | |
|       GOOGLE_DCHECK(!TableEntryIsTree(b) && !TableEntryIsTree(b ^ 1));
 | |
|       Tree* tree =
 | |
|           Arena::Create<Tree>(alloc_.arena(), typename Tree::key_compare(),
 | |
|                               typename Tree::allocator_type(alloc_));
 | |
|       size_type count = CopyListToTree(b, tree) + CopyListToTree(b ^ 1, tree);
 | |
|       GOOGLE_DCHECK_EQ(count, tree->size());
 | |
|       table_[b] = table_[b ^ 1] = static_cast<void*>(tree);
 | |
|     }
 | |
| 
 | |
|     // Copy a linked list in the given bucket to a tree.
 | |
|     // Returns the number of things it copied.
 | |
|     size_type CopyListToTree(size_type b, Tree* tree) {
 | |
|       size_type count = 0;
 | |
|       Node* node = static_cast<Node*>(table_[b]);
 | |
|       while (node != nullptr) {
 | |
|         tree->insert({node->kv.first, node});
 | |
|         ++count;
 | |
|         Node* next = node->next;
 | |
|         node->next = nullptr;
 | |
|         node = next;
 | |
|       }
 | |
|       return count;
 | |
|     }
 | |
| 
 | |
|     // Return whether table_[b] is a linked list that seems awfully long.
 | |
|     // Requires table_[b] to point to a non-empty linked list.
 | |
|     bool TableEntryIsTooLong(size_type b) {
 | |
|       const size_type kMaxLength = 8;
 | |
|       size_type count = 0;
 | |
|       Node* node = static_cast<Node*>(table_[b]);
 | |
|       do {
 | |
|         ++count;
 | |
|         node = node->next;
 | |
|       } while (node != nullptr);
 | |
|       // Invariant: no linked list ever is more than kMaxLength in length.
 | |
|       GOOGLE_DCHECK_LE(count, kMaxLength);
 | |
|       return count >= kMaxLength;
 | |
|     }
 | |
| 
 | |
|     template <typename K>
 | |
|     size_type BucketNumber(const K& k) const {
 | |
|       // We xor the hash value against the random seed so that we effectively
 | |
|       // have a random hash function.
 | |
|       uint64_t h = hash_function()(k) ^ seed_;
 | |
| 
 | |
|       // We use the multiplication method to determine the bucket number from
 | |
|       // the hash value. The constant kPhi (suggested by Knuth) is roughly
 | |
|       // (sqrt(5) - 1) / 2 * 2^64.
 | |
|       constexpr uint64_t kPhi = uint64_t{0x9e3779b97f4a7c15};
 | |
|       return ((kPhi * h) >> 32) & (num_buckets_ - 1);
 | |
|     }
 | |
| 
 | |
|     // Return a power of two no less than max(kMinTableSize, n).
 | |
|     // Assumes either n < kMinTableSize or n is a power of two.
 | |
|     size_type TableSize(size_type n) {
 | |
|       return n < static_cast<size_type>(kMinTableSize)
 | |
|                  ? static_cast<size_type>(kMinTableSize)
 | |
|                  : n;
 | |
|     }
 | |
| 
 | |
|     // Use alloc_ to allocate an array of n objects of type U.
 | |
|     template <typename U>
 | |
|     U* Alloc(size_type n) {
 | |
|       using alloc_type = typename Allocator::template rebind<U>::other;
 | |
|       return alloc_type(alloc_).allocate(n);
 | |
|     }
 | |
| 
 | |
|     // Use alloc_ to deallocate an array of n objects of type U.
 | |
|     template <typename U>
 | |
|     void Dealloc(U* t, size_type n) {
 | |
|       using alloc_type = typename Allocator::template rebind<U>::other;
 | |
|       alloc_type(alloc_).deallocate(t, n);
 | |
|     }
 | |
| 
 | |
|     void DestroyNode(Node* node) {
 | |
|       if (alloc_.arena() == nullptr) {
 | |
|         delete node;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     void DestroyTree(Tree* tree) {
 | |
|       if (alloc_.arena() == nullptr) {
 | |
|         delete tree;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     void** CreateEmptyTable(size_type n) {
 | |
|       GOOGLE_DCHECK(n >= kMinTableSize);
 | |
|       GOOGLE_DCHECK_EQ(n & (n - 1), 0u);
 | |
|       void** result = Alloc<void*>(n);
 | |
|       memset(result, 0, n * sizeof(result[0]));
 | |
|       return result;
 | |
|     }
 | |
| 
 | |
|     // Return a randomish value.
 | |
|     size_type Seed() const {
 | |
|       // We get a little bit of randomness from the address of the map. The
 | |
|       // lower bits are not very random, due to alignment, so we discard them
 | |
|       // and shift the higher bits into their place.
 | |
|       size_type s = reinterpret_cast<uintptr_t>(this) >> 4;
 | |
| #if defined(__x86_64__) && defined(__GNUC__) && \
 | |
|     !defined(GOOGLE_PROTOBUF_NO_RDTSC)
 | |
|       uint32_t hi, lo;
 | |
|       asm volatile("rdtsc" : "=a"(lo), "=d"(hi));
 | |
|       s += ((static_cast<uint64_t>(hi) << 32) | lo);
 | |
| #endif
 | |
|       return s;
 | |
|     }
 | |
| 
 | |
|     friend class Arena;
 | |
|     using InternalArenaConstructable_ = void;
 | |
|     using DestructorSkippable_ = void;
 | |
| 
 | |
|     size_type num_elements_;
 | |
|     size_type num_buckets_;
 | |
|     size_type seed_;
 | |
|     size_type index_of_first_non_null_;
 | |
|     void** table_;  // an array with num_buckets_ entries
 | |
|     Allocator alloc_;
 | |
|     GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(InnerMap);
 | |
|   };  // end of class InnerMap
 | |
| 
 | |
|   template <typename LookupKey>
 | |
|   using key_arg = typename internal::TransparentSupport<
 | |
|       key_type>::template key_arg<LookupKey>;
 | |
| 
 | |
|  public:
 | |
|   // Iterators
 | |
|   class const_iterator {
 | |
|     using InnerIt = typename InnerMap::const_iterator;
 | |
| 
 | |
|    public:
 | |
|     using iterator_category = std::forward_iterator_tag;
 | |
|     using value_type = typename Map::value_type;
 | |
|     using difference_type = ptrdiff_t;
 | |
|     using pointer = const value_type*;
 | |
|     using reference = const value_type&;
 | |
| 
 | |
|     const_iterator() {}
 | |
|     explicit const_iterator(const InnerIt& it) : it_(it) {}
 | |
| 
 | |
|     const_reference operator*() const { return *it_; }
 | |
|     const_pointer operator->() const { return &(operator*()); }
 | |
| 
 | |
|     const_iterator& operator++() {
 | |
|       ++it_;
 | |
|       return *this;
 | |
|     }
 | |
|     const_iterator operator++(int) { return const_iterator(it_++); }
 | |
| 
 | |
|     friend bool operator==(const const_iterator& a, const const_iterator& b) {
 | |
|       return a.it_ == b.it_;
 | |
|     }
 | |
|     friend bool operator!=(const const_iterator& a, const const_iterator& b) {
 | |
|       return !(a == b);
 | |
|     }
 | |
| 
 | |
|    private:
 | |
|     InnerIt it_;
 | |
|   };
 | |
| 
 | |
|   class iterator {
 | |
|     using InnerIt = typename InnerMap::iterator;
 | |
| 
 | |
|    public:
 | |
|     using iterator_category = std::forward_iterator_tag;
 | |
|     using value_type = typename Map::value_type;
 | |
|     using difference_type = ptrdiff_t;
 | |
|     using pointer = value_type*;
 | |
|     using reference = value_type&;
 | |
| 
 | |
|     iterator() {}
 | |
|     explicit iterator(const InnerIt& it) : it_(it) {}
 | |
| 
 | |
|     reference operator*() const { return *it_; }
 | |
|     pointer operator->() const { return &(operator*()); }
 | |
| 
 | |
|     iterator& operator++() {
 | |
|       ++it_;
 | |
|       return *this;
 | |
|     }
 | |
|     iterator operator++(int) { return iterator(it_++); }
 | |
| 
 | |
|     // Allow implicit conversion to const_iterator.
 | |
|     operator const_iterator() const {  // NOLINT(runtime/explicit)
 | |
|       return const_iterator(typename InnerMap::const_iterator(it_));
 | |
|     }
 | |
| 
 | |
|     friend bool operator==(const iterator& a, const iterator& b) {
 | |
|       return a.it_ == b.it_;
 | |
|     }
 | |
|     friend bool operator!=(const iterator& a, const iterator& b) {
 | |
|       return !(a == b);
 | |
|     }
 | |
| 
 | |
|    private:
 | |
|     friend class Map;
 | |
| 
 | |
|     InnerIt it_;
 | |
|   };
 | |
| 
 | |
|   iterator begin() { return iterator(elements_.begin()); }
 | |
|   iterator end() { return iterator(elements_.end()); }
 | |
|   const_iterator begin() const { return const_iterator(elements_.begin()); }
 | |
|   const_iterator end() const { return const_iterator(elements_.end()); }
 | |
|   const_iterator cbegin() const { return begin(); }
 | |
|   const_iterator cend() const { return end(); }
 | |
| 
 | |
|   // Capacity
 | |
|   size_type size() const { return elements_.size(); }
 | |
|   bool empty() const { return size() == 0; }
 | |
| 
 | |
|   // Element access
 | |
|   template <typename K = key_type>
 | |
|   T& operator[](const key_arg<K>& key) {
 | |
|     return elements_[key].second;
 | |
|   }
 | |
|   template <
 | |
|       typename K = key_type,
 | |
|       // Disable for integral types to reduce code bloat.
 | |
|       typename = typename std::enable_if<!std::is_integral<K>::value>::type>
 | |
|   T& operator[](key_arg<K>&& key) {
 | |
|     return elements_[std::forward<K>(key)].second;
 | |
|   }
 | |
| 
 | |
|   template <typename K = key_type>
 | |
|   const T& at(const key_arg<K>& key) const {
 | |
|     const_iterator it = find(key);
 | |
|     GOOGLE_CHECK(it != end()) << "key not found: " << static_cast<Key>(key);
 | |
|     return it->second;
 | |
|   }
 | |
| 
 | |
|   template <typename K = key_type>
 | |
|   T& at(const key_arg<K>& key) {
 | |
|     iterator it = find(key);
 | |
|     GOOGLE_CHECK(it != end()) << "key not found: " << static_cast<Key>(key);
 | |
|     return it->second;
 | |
|   }
 | |
| 
 | |
|   // Lookup
 | |
|   template <typename K = key_type>
 | |
|   size_type count(const key_arg<K>& key) const {
 | |
|     return find(key) == end() ? 0 : 1;
 | |
|   }
 | |
| 
 | |
|   template <typename K = key_type>
 | |
|   const_iterator find(const key_arg<K>& key) const {
 | |
|     return const_iterator(elements_.find(key));
 | |
|   }
 | |
|   template <typename K = key_type>
 | |
|   iterator find(const key_arg<K>& key) {
 | |
|     return iterator(elements_.find(key));
 | |
|   }
 | |
| 
 | |
|   template <typename K = key_type>
 | |
|   bool contains(const key_arg<K>& key) const {
 | |
|     return find(key) != end();
 | |
|   }
 | |
| 
 | |
|   template <typename K = key_type>
 | |
|   std::pair<const_iterator, const_iterator> equal_range(
 | |
|       const key_arg<K>& key) const {
 | |
|     const_iterator it = find(key);
 | |
|     if (it == end()) {
 | |
|       return std::pair<const_iterator, const_iterator>(it, it);
 | |
|     } else {
 | |
|       const_iterator begin = it++;
 | |
|       return std::pair<const_iterator, const_iterator>(begin, it);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   template <typename K = key_type>
 | |
|   std::pair<iterator, iterator> equal_range(const key_arg<K>& key) {
 | |
|     iterator it = find(key);
 | |
|     if (it == end()) {
 | |
|       return std::pair<iterator, iterator>(it, it);
 | |
|     } else {
 | |
|       iterator begin = it++;
 | |
|       return std::pair<iterator, iterator>(begin, it);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // insert
 | |
|   std::pair<iterator, bool> insert(const value_type& value) {
 | |
|     std::pair<typename InnerMap::iterator, bool> p =
 | |
|         elements_.insert(value.first);
 | |
|     if (p.second) {
 | |
|       p.first->second = value.second;
 | |
|     }
 | |
|     return std::pair<iterator, bool>(iterator(p.first), p.second);
 | |
|   }
 | |
|   template <class InputIt>
 | |
|   void insert(InputIt first, InputIt last) {
 | |
|     for (InputIt it = first; it != last; ++it) {
 | |
|       iterator exist_it = find(it->first);
 | |
|       if (exist_it == end()) {
 | |
|         operator[](it->first) = it->second;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   void insert(std::initializer_list<value_type> values) {
 | |
|     insert(values.begin(), values.end());
 | |
|   }
 | |
| 
 | |
|   // Erase and clear
 | |
|   template <typename K = key_type>
 | |
|   size_type erase(const key_arg<K>& key) {
 | |
|     iterator it = find(key);
 | |
|     if (it == end()) {
 | |
|       return 0;
 | |
|     } else {
 | |
|       erase(it);
 | |
|       return 1;
 | |
|     }
 | |
|   }
 | |
|   iterator erase(iterator pos) {
 | |
|     iterator i = pos++;
 | |
|     elements_.erase(i.it_);
 | |
|     return pos;
 | |
|   }
 | |
|   void erase(iterator first, iterator last) {
 | |
|     while (first != last) {
 | |
|       first = erase(first);
 | |
|     }
 | |
|   }
 | |
|   void clear() { elements_.clear(); }
 | |
| 
 | |
|   // Assign
 | |
|   Map& operator=(const Map& other) {
 | |
|     if (this != &other) {
 | |
|       clear();
 | |
|       insert(other.begin(), other.end());
 | |
|     }
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   void swap(Map& other) {
 | |
|     if (arena() == other.arena()) {
 | |
|       InternalSwap(other);
 | |
|     } else {
 | |
|       // TODO(zuguang): optimize this. The temporary copy can be allocated
 | |
|       // in the same arena as the other message, and the "other = copy" can
 | |
|       // be replaced with the fast-path swap above.
 | |
|       Map copy = *this;
 | |
|       *this = other;
 | |
|       other = copy;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void InternalSwap(Map& other) { elements_.Swap(&other.elements_); }
 | |
| 
 | |
|   // Access to hasher.  Currently this returns a copy, but it may
 | |
|   // be modified to return a const reference in the future.
 | |
|   hasher hash_function() const { return elements_.hash_function(); }
 | |
| 
 | |
|   size_t SpaceUsedExcludingSelfLong() const {
 | |
|     if (empty()) return 0;
 | |
|     return elements_.SpaceUsedInternal() + internal::SpaceUsedInValues(this);
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   Arena* arena() const { return elements_.arena(); }
 | |
|   InnerMap elements_;
 | |
| 
 | |
|   friend class Arena;
 | |
|   using InternalArenaConstructable_ = void;
 | |
|   using DestructorSkippable_ = void;
 | |
|   template <typename Derived, typename K, typename V,
 | |
|             internal::WireFormatLite::FieldType key_wire_type,
 | |
|             internal::WireFormatLite::FieldType value_wire_type>
 | |
|   friend class internal::MapFieldLite;
 | |
| };
 | |
| 
 | |
| }  // namespace protobuf
 | |
| }  // namespace google
 | |
| 
 | |
| #include <google/protobuf/port_undef.inc>
 | |
| 
 | |
| #endif  // GOOGLE_PROTOBUF_MAP_H__
 |