1739 lines
		
	
	
		
			69 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1739 lines
		
	
	
		
			69 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Protocol Buffers - Google's data interchange format
 | |
| // Copyright 2008 Google Inc.  All rights reserved.
 | |
| // https://developers.google.com/protocol-buffers/
 | |
| //
 | |
| // Redistribution and use in source and binary forms, with or without
 | |
| // modification, are permitted provided that the following conditions are
 | |
| // met:
 | |
| //
 | |
| //     * Redistributions of source code must retain the above copyright
 | |
| // notice, this list of conditions and the following disclaimer.
 | |
| //     * Redistributions in binary form must reproduce the above
 | |
| // copyright notice, this list of conditions and the following disclaimer
 | |
| // in the documentation and/or other materials provided with the
 | |
| // distribution.
 | |
| //     * Neither the name of Google Inc. nor the names of its
 | |
| // contributors may be used to endorse or promote products derived from
 | |
| // this software without specific prior written permission.
 | |
| //
 | |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 | |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 | |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 | |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 | |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 | |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 | |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 | |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 | |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 | |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 | |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 | |
| 
 | |
| // Author: kenton@google.com (Kenton Varda)
 | |
| //  Based on original Protocol Buffers design by
 | |
| //  Sanjay Ghemawat, Jeff Dean, and others.
 | |
| //
 | |
| // This file contains the CodedInputStream and CodedOutputStream classes,
 | |
| // which wrap a ZeroCopyInputStream or ZeroCopyOutputStream, respectively,
 | |
| // and allow you to read or write individual pieces of data in various
 | |
| // formats.  In particular, these implement the varint encoding for
 | |
| // integers, a simple variable-length encoding in which smaller numbers
 | |
| // take fewer bytes.
 | |
| //
 | |
| // Typically these classes will only be used internally by the protocol
 | |
| // buffer library in order to encode and decode protocol buffers.  Clients
 | |
| // of the library only need to know about this class if they wish to write
 | |
| // custom message parsing or serialization procedures.
 | |
| //
 | |
| // CodedOutputStream example:
 | |
| //   // Write some data to "myfile".  First we write a 4-byte "magic number"
 | |
| //   // to identify the file type, then write a length-delimited string.  The
 | |
| //   // string is composed of a varint giving the length followed by the raw
 | |
| //   // bytes.
 | |
| //   int fd = open("myfile", O_CREAT | O_WRONLY);
 | |
| //   ZeroCopyOutputStream* raw_output = new FileOutputStream(fd);
 | |
| //   CodedOutputStream* coded_output = new CodedOutputStream(raw_output);
 | |
| //
 | |
| //   int magic_number = 1234;
 | |
| //   char text[] = "Hello world!";
 | |
| //   coded_output->WriteLittleEndian32(magic_number);
 | |
| //   coded_output->WriteVarint32(strlen(text));
 | |
| //   coded_output->WriteRaw(text, strlen(text));
 | |
| //
 | |
| //   delete coded_output;
 | |
| //   delete raw_output;
 | |
| //   close(fd);
 | |
| //
 | |
| // CodedInputStream example:
 | |
| //   // Read a file created by the above code.
 | |
| //   int fd = open("myfile", O_RDONLY);
 | |
| //   ZeroCopyInputStream* raw_input = new FileInputStream(fd);
 | |
| //   CodedInputStream* coded_input = new CodedInputStream(raw_input);
 | |
| //
 | |
| //   coded_input->ReadLittleEndian32(&magic_number);
 | |
| //   if (magic_number != 1234) {
 | |
| //     cerr << "File not in expected format." << endl;
 | |
| //     return;
 | |
| //   }
 | |
| //
 | |
| //   uint32 size;
 | |
| //   coded_input->ReadVarint32(&size);
 | |
| //
 | |
| //   char* text = new char[size + 1];
 | |
| //   coded_input->ReadRaw(buffer, size);
 | |
| //   text[size] = '\0';
 | |
| //
 | |
| //   delete coded_input;
 | |
| //   delete raw_input;
 | |
| //   close(fd);
 | |
| //
 | |
| //   cout << "Text is: " << text << endl;
 | |
| //   delete [] text;
 | |
| //
 | |
| // For those who are interested, varint encoding is defined as follows:
 | |
| //
 | |
| // The encoding operates on unsigned integers of up to 64 bits in length.
 | |
| // Each byte of the encoded value has the format:
 | |
| // * bits 0-6: Seven bits of the number being encoded.
 | |
| // * bit 7: Zero if this is the last byte in the encoding (in which
 | |
| //   case all remaining bits of the number are zero) or 1 if
 | |
| //   more bytes follow.
 | |
| // The first byte contains the least-significant 7 bits of the number, the
 | |
| // second byte (if present) contains the next-least-significant 7 bits,
 | |
| // and so on.  So, the binary number 1011000101011 would be encoded in two
 | |
| // bytes as "10101011 00101100".
 | |
| //
 | |
| // In theory, varint could be used to encode integers of any length.
 | |
| // However, for practicality we set a limit at 64 bits.  The maximum encoded
 | |
| // length of a number is thus 10 bytes.
 | |
| 
 | |
| #ifndef GOOGLE_PROTOBUF_IO_CODED_STREAM_H__
 | |
| #define GOOGLE_PROTOBUF_IO_CODED_STREAM_H__
 | |
| 
 | |
| 
 | |
| #include <assert.h>
 | |
| 
 | |
| #include <atomic>
 | |
| #include <climits>
 | |
| #include <cstddef>
 | |
| #include <cstring>
 | |
| #include <string>
 | |
| #include <type_traits>
 | |
| #include <utility>
 | |
| 
 | |
| #ifdef _WIN32
 | |
| // Assuming windows is always little-endian.
 | |
| #if !defined(PROTOBUF_DISABLE_LITTLE_ENDIAN_OPT_FOR_TEST)
 | |
| #define PROTOBUF_LITTLE_ENDIAN 1
 | |
| #endif
 | |
| #if defined(_MSC_VER) && _MSC_VER >= 1300 && !defined(__INTEL_COMPILER)
 | |
| // If MSVC has "/RTCc" set, it will complain about truncating casts at
 | |
| // runtime.  This file contains some intentional truncating casts.
 | |
| #pragma runtime_checks("c", off)
 | |
| #endif
 | |
| #else
 | |
| #ifdef __APPLE__
 | |
| #include <machine/endian.h>  // __BYTE_ORDER
 | |
| #elif defined(__FreeBSD__)
 | |
| #include <sys/endian.h>  // __BYTE_ORDER
 | |
| #else
 | |
| #if !defined(__QNX__)
 | |
| #include <endian.h>  // __BYTE_ORDER
 | |
| #endif
 | |
| #endif
 | |
| #if ((defined(__LITTLE_ENDIAN__) && !defined(__BIG_ENDIAN__)) ||    \
 | |
|      (defined(__BYTE_ORDER) && __BYTE_ORDER == __LITTLE_ENDIAN)) && \
 | |
|     !defined(PROTOBUF_DISABLE_LITTLE_ENDIAN_OPT_FOR_TEST)
 | |
| #define PROTOBUF_LITTLE_ENDIAN 1
 | |
| #endif
 | |
| #endif
 | |
| #include <google/protobuf/stubs/common.h>
 | |
| #include <google/protobuf/stubs/logging.h>
 | |
| #include <google/protobuf/stubs/strutil.h>
 | |
| #include <google/protobuf/port.h>
 | |
| #include <google/protobuf/stubs/port.h>
 | |
| 
 | |
| 
 | |
| #include <google/protobuf/port_def.inc>
 | |
| 
 | |
| namespace google {
 | |
| namespace protobuf {
 | |
| 
 | |
| class DescriptorPool;
 | |
| class MessageFactory;
 | |
| class ZeroCopyCodedInputStream;
 | |
| 
 | |
| namespace internal {
 | |
| void MapTestForceDeterministic();
 | |
| class EpsCopyByteStream;
 | |
| }  // namespace internal
 | |
| 
 | |
| namespace io {
 | |
| 
 | |
| // Defined in this file.
 | |
| class CodedInputStream;
 | |
| class CodedOutputStream;
 | |
| 
 | |
| // Defined in other files.
 | |
| class ZeroCopyInputStream;   // zero_copy_stream.h
 | |
| class ZeroCopyOutputStream;  // zero_copy_stream.h
 | |
| 
 | |
| // Class which reads and decodes binary data which is composed of varint-
 | |
| // encoded integers and fixed-width pieces.  Wraps a ZeroCopyInputStream.
 | |
| // Most users will not need to deal with CodedInputStream.
 | |
| //
 | |
| // Most methods of CodedInputStream that return a bool return false if an
 | |
| // underlying I/O error occurs or if the data is malformed.  Once such a
 | |
| // failure occurs, the CodedInputStream is broken and is no longer useful.
 | |
| // After a failure, callers also should assume writes to "out" args may have
 | |
| // occurred, though nothing useful can be determined from those writes.
 | |
| class PROTOBUF_EXPORT CodedInputStream {
 | |
|  public:
 | |
|   // Create a CodedInputStream that reads from the given ZeroCopyInputStream.
 | |
|   explicit CodedInputStream(ZeroCopyInputStream* input);
 | |
| 
 | |
|   // Create a CodedInputStream that reads from the given flat array.  This is
 | |
|   // faster than using an ArrayInputStream.  PushLimit(size) is implied by
 | |
|   // this constructor.
 | |
|   explicit CodedInputStream(const uint8* buffer, int size);
 | |
| 
 | |
|   // Destroy the CodedInputStream and position the underlying
 | |
|   // ZeroCopyInputStream at the first unread byte.  If an error occurred while
 | |
|   // reading (causing a method to return false), then the exact position of
 | |
|   // the input stream may be anywhere between the last value that was read
 | |
|   // successfully and the stream's byte limit.
 | |
|   ~CodedInputStream();
 | |
| 
 | |
|   // Return true if this CodedInputStream reads from a flat array instead of
 | |
|   // a ZeroCopyInputStream.
 | |
|   inline bool IsFlat() const;
 | |
| 
 | |
|   // Skips a number of bytes.  Returns false if an underlying read error
 | |
|   // occurs.
 | |
|   inline bool Skip(int count);
 | |
| 
 | |
|   // Sets *data to point directly at the unread part of the CodedInputStream's
 | |
|   // underlying buffer, and *size to the size of that buffer, but does not
 | |
|   // advance the stream's current position.  This will always either produce
 | |
|   // a non-empty buffer or return false.  If the caller consumes any of
 | |
|   // this data, it should then call Skip() to skip over the consumed bytes.
 | |
|   // This may be useful for implementing external fast parsing routines for
 | |
|   // types of data not covered by the CodedInputStream interface.
 | |
|   bool GetDirectBufferPointer(const void** data, int* size);
 | |
| 
 | |
|   // Like GetDirectBufferPointer, but this method is inlined, and does not
 | |
|   // attempt to Refresh() if the buffer is currently empty.
 | |
|   PROTOBUF_ALWAYS_INLINE
 | |
|   void GetDirectBufferPointerInline(const void** data, int* size);
 | |
| 
 | |
|   // Read raw bytes, copying them into the given buffer.
 | |
|   bool ReadRaw(void* buffer, int size);
 | |
| 
 | |
|   // Like ReadRaw, but reads into a string.
 | |
|   bool ReadString(std::string* buffer, int size);
 | |
| 
 | |
| 
 | |
|   // Read a 32-bit little-endian integer.
 | |
|   bool ReadLittleEndian32(uint32* value);
 | |
|   // Read a 64-bit little-endian integer.
 | |
|   bool ReadLittleEndian64(uint64* value);
 | |
| 
 | |
|   // These methods read from an externally provided buffer. The caller is
 | |
|   // responsible for ensuring that the buffer has sufficient space.
 | |
|   // Read a 32-bit little-endian integer.
 | |
|   static const uint8* ReadLittleEndian32FromArray(const uint8* buffer,
 | |
|                                                   uint32* value);
 | |
|   // Read a 64-bit little-endian integer.
 | |
|   static const uint8* ReadLittleEndian64FromArray(const uint8* buffer,
 | |
|                                                   uint64* value);
 | |
| 
 | |
|   // Read an unsigned integer with Varint encoding, truncating to 32 bits.
 | |
|   // Reading a 32-bit value is equivalent to reading a 64-bit one and casting
 | |
|   // it to uint32, but may be more efficient.
 | |
|   bool ReadVarint32(uint32* value);
 | |
|   // Read an unsigned integer with Varint encoding.
 | |
|   bool ReadVarint64(uint64* value);
 | |
| 
 | |
|   // Reads a varint off the wire into an "int". This should be used for reading
 | |
|   // sizes off the wire (sizes of strings, submessages, bytes fields, etc).
 | |
|   //
 | |
|   // The value from the wire is interpreted as unsigned.  If its value exceeds
 | |
|   // the representable value of an integer on this platform, instead of
 | |
|   // truncating we return false. Truncating (as performed by ReadVarint32()
 | |
|   // above) is an acceptable approach for fields representing an integer, but
 | |
|   // when we are parsing a size from the wire, truncating the value would result
 | |
|   // in us misparsing the payload.
 | |
|   bool ReadVarintSizeAsInt(int* value);
 | |
| 
 | |
|   // Read a tag.  This calls ReadVarint32() and returns the result, or returns
 | |
|   // zero (which is not a valid tag) if ReadVarint32() fails.  Also, ReadTag
 | |
|   // (but not ReadTagNoLastTag) updates the last tag value, which can be checked
 | |
|   // with LastTagWas().
 | |
|   //
 | |
|   // Always inline because this is only called in one place per parse loop
 | |
|   // but it is called for every iteration of said loop, so it should be fast.
 | |
|   // GCC doesn't want to inline this by default.
 | |
|   PROTOBUF_ALWAYS_INLINE uint32 ReadTag() {
 | |
|     return last_tag_ = ReadTagNoLastTag();
 | |
|   }
 | |
| 
 | |
|   PROTOBUF_ALWAYS_INLINE uint32 ReadTagNoLastTag();
 | |
| 
 | |
|   // This usually a faster alternative to ReadTag() when cutoff is a manifest
 | |
|   // constant.  It does particularly well for cutoff >= 127.  The first part
 | |
|   // of the return value is the tag that was read, though it can also be 0 in
 | |
|   // the cases where ReadTag() would return 0.  If the second part is true
 | |
|   // then the tag is known to be in [0, cutoff].  If not, the tag either is
 | |
|   // above cutoff or is 0.  (There's intentional wiggle room when tag is 0,
 | |
|   // because that can arise in several ways, and for best performance we want
 | |
|   // to avoid an extra "is tag == 0?" check here.)
 | |
|   PROTOBUF_ALWAYS_INLINE
 | |
|   std::pair<uint32, bool> ReadTagWithCutoff(uint32 cutoff) {
 | |
|     std::pair<uint32, bool> result = ReadTagWithCutoffNoLastTag(cutoff);
 | |
|     last_tag_ = result.first;
 | |
|     return result;
 | |
|   }
 | |
| 
 | |
|   PROTOBUF_ALWAYS_INLINE
 | |
|   std::pair<uint32, bool> ReadTagWithCutoffNoLastTag(uint32 cutoff);
 | |
| 
 | |
|   // Usually returns true if calling ReadVarint32() now would produce the given
 | |
|   // value.  Will always return false if ReadVarint32() would not return the
 | |
|   // given value.  If ExpectTag() returns true, it also advances past
 | |
|   // the varint.  For best performance, use a compile-time constant as the
 | |
|   // parameter.
 | |
|   // Always inline because this collapses to a small number of instructions
 | |
|   // when given a constant parameter, but GCC doesn't want to inline by default.
 | |
|   PROTOBUF_ALWAYS_INLINE bool ExpectTag(uint32 expected);
 | |
| 
 | |
|   // Like above, except this reads from the specified buffer. The caller is
 | |
|   // responsible for ensuring that the buffer is large enough to read a varint
 | |
|   // of the expected size. For best performance, use a compile-time constant as
 | |
|   // the expected tag parameter.
 | |
|   //
 | |
|   // Returns a pointer beyond the expected tag if it was found, or NULL if it
 | |
|   // was not.
 | |
|   PROTOBUF_ALWAYS_INLINE
 | |
|   static const uint8* ExpectTagFromArray(const uint8* buffer, uint32 expected);
 | |
| 
 | |
|   // Usually returns true if no more bytes can be read.  Always returns false
 | |
|   // if more bytes can be read.  If ExpectAtEnd() returns true, a subsequent
 | |
|   // call to LastTagWas() will act as if ReadTag() had been called and returned
 | |
|   // zero, and ConsumedEntireMessage() will return true.
 | |
|   bool ExpectAtEnd();
 | |
| 
 | |
|   // If the last call to ReadTag() or ReadTagWithCutoff() returned the given
 | |
|   // value, returns true.  Otherwise, returns false.
 | |
|   // ReadTagNoLastTag/ReadTagWithCutoffNoLastTag do not preserve the last
 | |
|   // returned value.
 | |
|   //
 | |
|   // This is needed because parsers for some types of embedded messages
 | |
|   // (with field type TYPE_GROUP) don't actually know that they've reached the
 | |
|   // end of a message until they see an ENDGROUP tag, which was actually part
 | |
|   // of the enclosing message.  The enclosing message would like to check that
 | |
|   // tag to make sure it had the right number, so it calls LastTagWas() on
 | |
|   // return from the embedded parser to check.
 | |
|   bool LastTagWas(uint32 expected);
 | |
|   void SetLastTag(uint32 tag) { last_tag_ = tag; }
 | |
| 
 | |
|   // When parsing message (but NOT a group), this method must be called
 | |
|   // immediately after MergeFromCodedStream() returns (if it returns true)
 | |
|   // to further verify that the message ended in a legitimate way.  For
 | |
|   // example, this verifies that parsing did not end on an end-group tag.
 | |
|   // It also checks for some cases where, due to optimizations,
 | |
|   // MergeFromCodedStream() can incorrectly return true.
 | |
|   bool ConsumedEntireMessage();
 | |
|   void SetConsumed() { legitimate_message_end_ = true; }
 | |
| 
 | |
|   // Limits ----------------------------------------------------------
 | |
|   // Limits are used when parsing length-delimited embedded messages.
 | |
|   // After the message's length is read, PushLimit() is used to prevent
 | |
|   // the CodedInputStream from reading beyond that length.  Once the
 | |
|   // embedded message has been parsed, PopLimit() is called to undo the
 | |
|   // limit.
 | |
| 
 | |
|   // Opaque type used with PushLimit() and PopLimit().  Do not modify
 | |
|   // values of this type yourself.  The only reason that this isn't a
 | |
|   // struct with private internals is for efficiency.
 | |
|   typedef int Limit;
 | |
| 
 | |
|   // Places a limit on the number of bytes that the stream may read,
 | |
|   // starting from the current position.  Once the stream hits this limit,
 | |
|   // it will act like the end of the input has been reached until PopLimit()
 | |
|   // is called.
 | |
|   //
 | |
|   // As the names imply, the stream conceptually has a stack of limits.  The
 | |
|   // shortest limit on the stack is always enforced, even if it is not the
 | |
|   // top limit.
 | |
|   //
 | |
|   // The value returned by PushLimit() is opaque to the caller, and must
 | |
|   // be passed unchanged to the corresponding call to PopLimit().
 | |
|   Limit PushLimit(int byte_limit);
 | |
| 
 | |
|   // Pops the last limit pushed by PushLimit().  The input must be the value
 | |
|   // returned by that call to PushLimit().
 | |
|   void PopLimit(Limit limit);
 | |
| 
 | |
|   // Returns the number of bytes left until the nearest limit on the
 | |
|   // stack is hit, or -1 if no limits are in place.
 | |
|   int BytesUntilLimit() const;
 | |
| 
 | |
|   // Returns current position relative to the beginning of the input stream.
 | |
|   int CurrentPosition() const;
 | |
| 
 | |
|   // Total Bytes Limit -----------------------------------------------
 | |
|   // To prevent malicious users from sending excessively large messages
 | |
|   // and causing memory exhaustion, CodedInputStream imposes a hard limit on
 | |
|   // the total number of bytes it will read.
 | |
| 
 | |
|   // Sets the maximum number of bytes that this CodedInputStream will read
 | |
|   // before refusing to continue.  To prevent servers from allocating enormous
 | |
|   // amounts of memory to hold parsed messages, the maximum message length
 | |
|   // should be limited to the shortest length that will not harm usability.
 | |
|   // The default limit is INT_MAX (~2GB) and apps should set shorter limits
 | |
|   // if possible. An error will always be printed to stderr if the limit is
 | |
|   // reached.
 | |
|   //
 | |
|   // Note: setting a limit less than the current read position is interpreted
 | |
|   // as a limit on the current position.
 | |
|   //
 | |
|   // This is unrelated to PushLimit()/PopLimit().
 | |
|   void SetTotalBytesLimit(int total_bytes_limit);
 | |
| 
 | |
|   PROTOBUF_DEPRECATED_MSG(
 | |
|       "Please use the single parameter version of SetTotalBytesLimit(). The "
 | |
|       "second parameter is ignored.")
 | |
|   void SetTotalBytesLimit(int total_bytes_limit, int) {
 | |
|     SetTotalBytesLimit(total_bytes_limit);
 | |
|   }
 | |
| 
 | |
|   // The Total Bytes Limit minus the Current Position, or -1 if the total bytes
 | |
|   // limit is INT_MAX.
 | |
|   int BytesUntilTotalBytesLimit() const;
 | |
| 
 | |
|   // Recursion Limit -------------------------------------------------
 | |
|   // To prevent corrupt or malicious messages from causing stack overflows,
 | |
|   // we must keep track of the depth of recursion when parsing embedded
 | |
|   // messages and groups.  CodedInputStream keeps track of this because it
 | |
|   // is the only object that is passed down the stack during parsing.
 | |
| 
 | |
|   // Sets the maximum recursion depth.  The default is 100.
 | |
|   void SetRecursionLimit(int limit);
 | |
|   int RecursionBudget() { return recursion_budget_; }
 | |
| 
 | |
|   static int GetDefaultRecursionLimit() { return default_recursion_limit_; }
 | |
| 
 | |
|   // Increments the current recursion depth.  Returns true if the depth is
 | |
|   // under the limit, false if it has gone over.
 | |
|   bool IncrementRecursionDepth();
 | |
| 
 | |
|   // Decrements the recursion depth if possible.
 | |
|   void DecrementRecursionDepth();
 | |
| 
 | |
|   // Decrements the recursion depth blindly.  This is faster than
 | |
|   // DecrementRecursionDepth().  It should be used only if all previous
 | |
|   // increments to recursion depth were successful.
 | |
|   void UnsafeDecrementRecursionDepth();
 | |
| 
 | |
|   // Shorthand for make_pair(PushLimit(byte_limit), --recursion_budget_).
 | |
|   // Using this can reduce code size and complexity in some cases.  The caller
 | |
|   // is expected to check that the second part of the result is non-negative (to
 | |
|   // bail out if the depth of recursion is too high) and, if all is well, to
 | |
|   // later pass the first part of the result to PopLimit() or similar.
 | |
|   std::pair<CodedInputStream::Limit, int> IncrementRecursionDepthAndPushLimit(
 | |
|       int byte_limit);
 | |
| 
 | |
|   // Shorthand for PushLimit(ReadVarint32(&length) ? length : 0).
 | |
|   Limit ReadLengthAndPushLimit();
 | |
| 
 | |
|   // Helper that is equivalent to: {
 | |
|   //  bool result = ConsumedEntireMessage();
 | |
|   //  PopLimit(limit);
 | |
|   //  UnsafeDecrementRecursionDepth();
 | |
|   //  return result; }
 | |
|   // Using this can reduce code size and complexity in some cases.
 | |
|   // Do not use unless the current recursion depth is greater than zero.
 | |
|   bool DecrementRecursionDepthAndPopLimit(Limit limit);
 | |
| 
 | |
|   // Helper that is equivalent to: {
 | |
|   //  bool result = ConsumedEntireMessage();
 | |
|   //  PopLimit(limit);
 | |
|   //  return result; }
 | |
|   // Using this can reduce code size and complexity in some cases.
 | |
|   bool CheckEntireMessageConsumedAndPopLimit(Limit limit);
 | |
| 
 | |
|   // Extension Registry ----------------------------------------------
 | |
|   // ADVANCED USAGE:  99.9% of people can ignore this section.
 | |
|   //
 | |
|   // By default, when parsing extensions, the parser looks for extension
 | |
|   // definitions in the pool which owns the outer message's Descriptor.
 | |
|   // However, you may call SetExtensionRegistry() to provide an alternative
 | |
|   // pool instead.  This makes it possible, for example, to parse a message
 | |
|   // using a generated class, but represent some extensions using
 | |
|   // DynamicMessage.
 | |
| 
 | |
|   // Set the pool used to look up extensions.  Most users do not need to call
 | |
|   // this as the correct pool will be chosen automatically.
 | |
|   //
 | |
|   // WARNING:  It is very easy to misuse this.  Carefully read the requirements
 | |
|   //   below.  Do not use this unless you are sure you need it.  Almost no one
 | |
|   //   does.
 | |
|   //
 | |
|   // Let's say you are parsing a message into message object m, and you want
 | |
|   // to take advantage of SetExtensionRegistry().  You must follow these
 | |
|   // requirements:
 | |
|   //
 | |
|   // The given DescriptorPool must contain m->GetDescriptor().  It is not
 | |
|   // sufficient for it to simply contain a descriptor that has the same name
 | |
|   // and content -- it must be the *exact object*.  In other words:
 | |
|   //   assert(pool->FindMessageTypeByName(m->GetDescriptor()->full_name()) ==
 | |
|   //          m->GetDescriptor());
 | |
|   // There are two ways to satisfy this requirement:
 | |
|   // 1) Use m->GetDescriptor()->pool() as the pool.  This is generally useless
 | |
|   //    because this is the pool that would be used anyway if you didn't call
 | |
|   //    SetExtensionRegistry() at all.
 | |
|   // 2) Use a DescriptorPool which has m->GetDescriptor()->pool() as an
 | |
|   //    "underlay".  Read the documentation for DescriptorPool for more
 | |
|   //    information about underlays.
 | |
|   //
 | |
|   // You must also provide a MessageFactory.  This factory will be used to
 | |
|   // construct Message objects representing extensions.  The factory's
 | |
|   // GetPrototype() MUST return non-NULL for any Descriptor which can be found
 | |
|   // through the provided pool.
 | |
|   //
 | |
|   // If the provided factory might return instances of protocol-compiler-
 | |
|   // generated (i.e. compiled-in) types, or if the outer message object m is
 | |
|   // a generated type, then the given factory MUST have this property:  If
 | |
|   // GetPrototype() is given a Descriptor which resides in
 | |
|   // DescriptorPool::generated_pool(), the factory MUST return the same
 | |
|   // prototype which MessageFactory::generated_factory() would return.  That
 | |
|   // is, given a descriptor for a generated type, the factory must return an
 | |
|   // instance of the generated class (NOT DynamicMessage).  However, when
 | |
|   // given a descriptor for a type that is NOT in generated_pool, the factory
 | |
|   // is free to return any implementation.
 | |
|   //
 | |
|   // The reason for this requirement is that generated sub-objects may be
 | |
|   // accessed via the standard (non-reflection) extension accessor methods,
 | |
|   // and these methods will down-cast the object to the generated class type.
 | |
|   // If the object is not actually of that type, the results would be undefined.
 | |
|   // On the other hand, if an extension is not compiled in, then there is no
 | |
|   // way the code could end up accessing it via the standard accessors -- the
 | |
|   // only way to access the extension is via reflection.  When using reflection,
 | |
|   // DynamicMessage and generated messages are indistinguishable, so it's fine
 | |
|   // if these objects are represented using DynamicMessage.
 | |
|   //
 | |
|   // Using DynamicMessageFactory on which you have called
 | |
|   // SetDelegateToGeneratedFactory(true) should be sufficient to satisfy the
 | |
|   // above requirement.
 | |
|   //
 | |
|   // If either pool or factory is NULL, both must be NULL.
 | |
|   //
 | |
|   // Note that this feature is ignored when parsing "lite" messages as they do
 | |
|   // not have descriptors.
 | |
|   void SetExtensionRegistry(const DescriptorPool* pool,
 | |
|                             MessageFactory* factory);
 | |
| 
 | |
|   // Get the DescriptorPool set via SetExtensionRegistry(), or NULL if no pool
 | |
|   // has been provided.
 | |
|   const DescriptorPool* GetExtensionPool();
 | |
| 
 | |
|   // Get the MessageFactory set via SetExtensionRegistry(), or NULL if no
 | |
|   // factory has been provided.
 | |
|   MessageFactory* GetExtensionFactory();
 | |
| 
 | |
|  private:
 | |
|   GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(CodedInputStream);
 | |
| 
 | |
|   const uint8* buffer_;
 | |
|   const uint8* buffer_end_;  // pointer to the end of the buffer.
 | |
|   ZeroCopyInputStream* input_;
 | |
|   int total_bytes_read_;  // total bytes read from input_, including
 | |
|                           // the current buffer
 | |
| 
 | |
|   // If total_bytes_read_ surpasses INT_MAX, we record the extra bytes here
 | |
|   // so that we can BackUp() on destruction.
 | |
|   int overflow_bytes_;
 | |
| 
 | |
|   // LastTagWas() stuff.
 | |
|   uint32 last_tag_;  // result of last ReadTag() or ReadTagWithCutoff().
 | |
| 
 | |
|   // This is set true by ReadTag{Fallback/Slow}() if it is called when exactly
 | |
|   // at EOF, or by ExpectAtEnd() when it returns true.  This happens when we
 | |
|   // reach the end of a message and attempt to read another tag.
 | |
|   bool legitimate_message_end_;
 | |
| 
 | |
|   // See EnableAliasing().
 | |
|   bool aliasing_enabled_;
 | |
| 
 | |
|   // Limits
 | |
|   Limit current_limit_;  // if position = -1, no limit is applied
 | |
| 
 | |
|   // For simplicity, if the current buffer crosses a limit (either a normal
 | |
|   // limit created by PushLimit() or the total bytes limit), buffer_size_
 | |
|   // only tracks the number of bytes before that limit.  This field
 | |
|   // contains the number of bytes after it.  Note that this implies that if
 | |
|   // buffer_size_ == 0 and buffer_size_after_limit_ > 0, we know we've
 | |
|   // hit a limit.  However, if both are zero, it doesn't necessarily mean
 | |
|   // we aren't at a limit -- the buffer may have ended exactly at the limit.
 | |
|   int buffer_size_after_limit_;
 | |
| 
 | |
|   // Maximum number of bytes to read, period.  This is unrelated to
 | |
|   // current_limit_.  Set using SetTotalBytesLimit().
 | |
|   int total_bytes_limit_;
 | |
| 
 | |
|   // Current recursion budget, controlled by IncrementRecursionDepth() and
 | |
|   // similar.  Starts at recursion_limit_ and goes down: if this reaches
 | |
|   // -1 we are over budget.
 | |
|   int recursion_budget_;
 | |
|   // Recursion depth limit, set by SetRecursionLimit().
 | |
|   int recursion_limit_;
 | |
| 
 | |
|   // See SetExtensionRegistry().
 | |
|   const DescriptorPool* extension_pool_;
 | |
|   MessageFactory* extension_factory_;
 | |
| 
 | |
|   // Private member functions.
 | |
| 
 | |
|   // Fallback when Skip() goes past the end of the current buffer.
 | |
|   bool SkipFallback(int count, int original_buffer_size);
 | |
| 
 | |
|   // Advance the buffer by a given number of bytes.
 | |
|   void Advance(int amount);
 | |
| 
 | |
|   // Back up input_ to the current buffer position.
 | |
|   void BackUpInputToCurrentPosition();
 | |
| 
 | |
|   // Recomputes the value of buffer_size_after_limit_.  Must be called after
 | |
|   // current_limit_ or total_bytes_limit_ changes.
 | |
|   void RecomputeBufferLimits();
 | |
| 
 | |
|   // Writes an error message saying that we hit total_bytes_limit_.
 | |
|   void PrintTotalBytesLimitError();
 | |
| 
 | |
|   // Called when the buffer runs out to request more data.  Implies an
 | |
|   // Advance(BufferSize()).
 | |
|   bool Refresh();
 | |
| 
 | |
|   // When parsing varints, we optimize for the common case of small values, and
 | |
|   // then optimize for the case when the varint fits within the current buffer
 | |
|   // piece. The Fallback method is used when we can't use the one-byte
 | |
|   // optimization. The Slow method is yet another fallback when the buffer is
 | |
|   // not large enough. Making the slow path out-of-line speeds up the common
 | |
|   // case by 10-15%. The slow path is fairly uncommon: it only triggers when a
 | |
|   // message crosses multiple buffers.  Note: ReadVarint32Fallback() and
 | |
|   // ReadVarint64Fallback() are called frequently and generally not inlined, so
 | |
|   // they have been optimized to avoid "out" parameters.  The former returns -1
 | |
|   // if it fails and the uint32 it read otherwise.  The latter has a bool
 | |
|   // indicating success or failure as part of its return type.
 | |
|   int64 ReadVarint32Fallback(uint32 first_byte_or_zero);
 | |
|   int ReadVarintSizeAsIntFallback();
 | |
|   std::pair<uint64, bool> ReadVarint64Fallback();
 | |
|   bool ReadVarint32Slow(uint32* value);
 | |
|   bool ReadVarint64Slow(uint64* value);
 | |
|   int ReadVarintSizeAsIntSlow();
 | |
|   bool ReadLittleEndian32Fallback(uint32* value);
 | |
|   bool ReadLittleEndian64Fallback(uint64* value);
 | |
| 
 | |
|   // Fallback/slow methods for reading tags. These do not update last_tag_,
 | |
|   // but will set legitimate_message_end_ if we are at the end of the input
 | |
|   // stream.
 | |
|   uint32 ReadTagFallback(uint32 first_byte_or_zero);
 | |
|   uint32 ReadTagSlow();
 | |
|   bool ReadStringFallback(std::string* buffer, int size);
 | |
| 
 | |
|   // Return the size of the buffer.
 | |
|   int BufferSize() const;
 | |
| 
 | |
|   static const int kDefaultTotalBytesLimit = INT_MAX;
 | |
| 
 | |
|   static int default_recursion_limit_;  // 100 by default.
 | |
| 
 | |
|   friend class google::protobuf::ZeroCopyCodedInputStream;
 | |
|   friend class google::protobuf::internal::EpsCopyByteStream;
 | |
| };
 | |
| 
 | |
| // EpsCopyOutputStream wraps a ZeroCopyOutputStream and exposes a new stream,
 | |
| // which has the property you can write kSlopBytes (16 bytes) from the current
 | |
| // position without bounds checks. The cursor into the stream is managed by
 | |
| // the user of the class and is an explicit parameter in the methods. Careful
 | |
| // use of this class, ie. keep ptr a local variable, eliminates the need to
 | |
| // for the compiler to sync the ptr value between register and memory.
 | |
| class PROTOBUF_EXPORT EpsCopyOutputStream {
 | |
|  public:
 | |
|   enum { kSlopBytes = 16 };
 | |
| 
 | |
|   // Initialize from a stream.
 | |
|   EpsCopyOutputStream(ZeroCopyOutputStream* stream, bool deterministic,
 | |
|                       uint8** pp)
 | |
|       : end_(buffer_),
 | |
|         stream_(stream),
 | |
|         is_serialization_deterministic_(deterministic) {
 | |
|     *pp = buffer_;
 | |
|   }
 | |
| 
 | |
|   // Only for array serialization. No overflow protection, end_ will be the
 | |
|   // pointed to the end of the array. When using this the total size is already
 | |
|   // known, so no need to maintain the slop region.
 | |
|   EpsCopyOutputStream(void* data, int size, bool deterministic)
 | |
|       : end_(static_cast<uint8*>(data) + size),
 | |
|         buffer_end_(nullptr),
 | |
|         stream_(nullptr),
 | |
|         is_serialization_deterministic_(deterministic) {}
 | |
| 
 | |
|   // Initialize from stream but with the first buffer already given (eager).
 | |
|   EpsCopyOutputStream(void* data, int size, ZeroCopyOutputStream* stream,
 | |
|                       bool deterministic, uint8** pp)
 | |
|       : stream_(stream), is_serialization_deterministic_(deterministic) {
 | |
|     *pp = SetInitialBuffer(data, size);
 | |
|   }
 | |
| 
 | |
|   // Flush everything that's written into the underlying ZeroCopyOutputStream
 | |
|   // and trims the underlying stream to the location of ptr.
 | |
|   uint8* Trim(uint8* ptr);
 | |
| 
 | |
|   // After this it's guaranteed you can safely write kSlopBytes to ptr. This
 | |
|   // will never fail! The underlying stream can produce an error. Use HadError
 | |
|   // to check for errors.
 | |
|   PROTOBUF_MUST_USE_RESULT uint8* EnsureSpace(uint8* ptr) {
 | |
|     if (PROTOBUF_PREDICT_FALSE(ptr >= end_)) {
 | |
|       return EnsureSpaceFallback(ptr);
 | |
|     }
 | |
|     return ptr;
 | |
|   }
 | |
| 
 | |
|   uint8* WriteRaw(const void* data, int size, uint8* ptr) {
 | |
|     if (PROTOBUF_PREDICT_FALSE(end_ - ptr < size)) {
 | |
|       return WriteRawFallback(data, size, ptr);
 | |
|     }
 | |
|     std::memcpy(ptr, data, size);
 | |
|     return ptr + size;
 | |
|   }
 | |
|   // Writes the buffer specified by data, size to the stream. Possibly by
 | |
|   // aliasing the buffer (ie. not copying the data). The caller is responsible
 | |
|   // to make sure the buffer is alive for the duration of the
 | |
|   // ZeroCopyOutputStream.
 | |
|   uint8* WriteRawMaybeAliased(const void* data, int size, uint8* ptr) {
 | |
|     if (aliasing_enabled_) {
 | |
|       return WriteAliasedRaw(data, size, ptr);
 | |
|     } else {
 | |
|       return WriteRaw(data, size, ptr);
 | |
|     }
 | |
|   }
 | |
| 
 | |
| 
 | |
|   uint8* WriteStringMaybeAliased(uint32 num, const std::string& s, uint8* ptr) {
 | |
|     std::ptrdiff_t size = s.size();
 | |
|     if (PROTOBUF_PREDICT_FALSE(
 | |
|             size >= 128 || end_ - ptr + 16 - TagSize(num << 3) - 1 < size)) {
 | |
|       return WriteStringMaybeAliasedOutline(num, s, ptr);
 | |
|     }
 | |
|     ptr = UnsafeVarint((num << 3) | 2, ptr);
 | |
|     *ptr++ = static_cast<uint8>(size);
 | |
|     std::memcpy(ptr, s.data(), size);
 | |
|     return ptr + size;
 | |
|   }
 | |
|   uint8* WriteBytesMaybeAliased(uint32 num, const std::string& s, uint8* ptr) {
 | |
|     return WriteStringMaybeAliased(num, s, ptr);
 | |
|   }
 | |
| 
 | |
|   template <typename T>
 | |
|   PROTOBUF_ALWAYS_INLINE uint8* WriteString(uint32 num, const T& s,
 | |
|                                             uint8* ptr) {
 | |
|     std::ptrdiff_t size = s.size();
 | |
|     if (PROTOBUF_PREDICT_FALSE(
 | |
|             size >= 128 || end_ - ptr + 16 - TagSize(num << 3) - 1 < size)) {
 | |
|       return WriteStringOutline(num, s, ptr);
 | |
|     }
 | |
|     ptr = UnsafeVarint((num << 3) | 2, ptr);
 | |
|     *ptr++ = static_cast<uint8>(size);
 | |
|     std::memcpy(ptr, s.data(), size);
 | |
|     return ptr + size;
 | |
|   }
 | |
|   template <typename T>
 | |
|   uint8* WriteBytes(uint32 num, const T& s, uint8* ptr) {
 | |
|     return WriteString(num, s, ptr);
 | |
|   }
 | |
| 
 | |
|   template <typename T>
 | |
|   PROTOBUF_ALWAYS_INLINE uint8* WriteInt32Packed(int num, const T& r, int size,
 | |
|                                                  uint8* ptr) {
 | |
|     return WriteVarintPacked(num, r, size, ptr, Encode64);
 | |
|   }
 | |
|   template <typename T>
 | |
|   PROTOBUF_ALWAYS_INLINE uint8* WriteUInt32Packed(int num, const T& r, int size,
 | |
|                                                   uint8* ptr) {
 | |
|     return WriteVarintPacked(num, r, size, ptr, Encode32);
 | |
|   }
 | |
|   template <typename T>
 | |
|   PROTOBUF_ALWAYS_INLINE uint8* WriteSInt32Packed(int num, const T& r, int size,
 | |
|                                                   uint8* ptr) {
 | |
|     return WriteVarintPacked(num, r, size, ptr, ZigZagEncode32);
 | |
|   }
 | |
|   template <typename T>
 | |
|   PROTOBUF_ALWAYS_INLINE uint8* WriteInt64Packed(int num, const T& r, int size,
 | |
|                                                  uint8* ptr) {
 | |
|     return WriteVarintPacked(num, r, size, ptr, Encode64);
 | |
|   }
 | |
|   template <typename T>
 | |
|   PROTOBUF_ALWAYS_INLINE uint8* WriteUInt64Packed(int num, const T& r, int size,
 | |
|                                                   uint8* ptr) {
 | |
|     return WriteVarintPacked(num, r, size, ptr, Encode64);
 | |
|   }
 | |
|   template <typename T>
 | |
|   PROTOBUF_ALWAYS_INLINE uint8* WriteSInt64Packed(int num, const T& r, int size,
 | |
|                                                   uint8* ptr) {
 | |
|     return WriteVarintPacked(num, r, size, ptr, ZigZagEncode64);
 | |
|   }
 | |
|   template <typename T>
 | |
|   PROTOBUF_ALWAYS_INLINE uint8* WriteEnumPacked(int num, const T& r, int size,
 | |
|                                                 uint8* ptr) {
 | |
|     return WriteVarintPacked(num, r, size, ptr, Encode64);
 | |
|   }
 | |
| 
 | |
|   template <typename T>
 | |
|   PROTOBUF_ALWAYS_INLINE uint8* WriteFixedPacked(int num, const T& r,
 | |
|                                                  uint8* ptr) {
 | |
|     ptr = EnsureSpace(ptr);
 | |
|     constexpr auto element_size = sizeof(typename T::value_type);
 | |
|     auto size = r.size() * element_size;
 | |
|     ptr = WriteLengthDelim(num, size, ptr);
 | |
|     return WriteRawLittleEndian<element_size>(r.data(), static_cast<int>(size),
 | |
|                                               ptr);
 | |
|   }
 | |
| 
 | |
|   // Returns true if there was an underlying I/O error since this object was
 | |
|   // created.
 | |
|   bool HadError() const { return had_error_; }
 | |
| 
 | |
|   // Instructs the EpsCopyOutputStream to allow the underlying
 | |
|   // ZeroCopyOutputStream to hold pointers to the original structure instead of
 | |
|   // copying, if it supports it (i.e. output->AllowsAliasing() is true).  If the
 | |
|   // underlying stream does not support aliasing, then enabling it has no
 | |
|   // affect.  For now, this only affects the behavior of
 | |
|   // WriteRawMaybeAliased().
 | |
|   //
 | |
|   // NOTE: It is caller's responsibility to ensure that the chunk of memory
 | |
|   // remains live until all of the data has been consumed from the stream.
 | |
|   void EnableAliasing(bool enabled);
 | |
| 
 | |
|   // See documentation on CodedOutputStream::SetSerializationDeterministic.
 | |
|   void SetSerializationDeterministic(bool value) {
 | |
|     is_serialization_deterministic_ = value;
 | |
|   }
 | |
| 
 | |
|   // See documentation on CodedOutputStream::IsSerializationDeterministic.
 | |
|   bool IsSerializationDeterministic() const {
 | |
|     return is_serialization_deterministic_;
 | |
|   }
 | |
| 
 | |
|   // The number of bytes written to the stream at position ptr, relative to the
 | |
|   // stream's overall position.
 | |
|   int64 ByteCount(uint8* ptr) const;
 | |
| 
 | |
| 
 | |
|  private:
 | |
|   uint8* end_;
 | |
|   uint8* buffer_end_ = buffer_;
 | |
|   uint8 buffer_[2 * kSlopBytes];
 | |
|   ZeroCopyOutputStream* stream_;
 | |
|   bool had_error_ = false;
 | |
|   bool aliasing_enabled_ = false;  // See EnableAliasing().
 | |
|   bool is_serialization_deterministic_;
 | |
| 
 | |
|   uint8* EnsureSpaceFallback(uint8* ptr);
 | |
|   inline uint8* Next();
 | |
|   int Flush(uint8* ptr);
 | |
|   std::ptrdiff_t GetSize(uint8* ptr) const {
 | |
|     GOOGLE_DCHECK(ptr <= end_ + kSlopBytes);  // NOLINT
 | |
|     return end_ + kSlopBytes - ptr;
 | |
|   }
 | |
| 
 | |
|   uint8* Error() {
 | |
|     had_error_ = true;
 | |
|     // We use the patch buffer to always guarantee space to write to.
 | |
|     end_ = buffer_ + kSlopBytes;
 | |
|     return buffer_;
 | |
|   }
 | |
| 
 | |
|   static constexpr int TagSize(uint32 tag) {
 | |
|     return (tag < (1 << 7))    ? 1
 | |
|            : (tag < (1 << 14)) ? 2
 | |
|            : (tag < (1 << 21)) ? 3
 | |
|            : (tag < (1 << 28)) ? 4
 | |
|                                : 5;
 | |
|   }
 | |
| 
 | |
|   PROTOBUF_ALWAYS_INLINE uint8* WriteTag(uint32 num, uint32 wt, uint8* ptr) {
 | |
|     GOOGLE_DCHECK(ptr < end_);  // NOLINT
 | |
|     return UnsafeVarint((num << 3) | wt, ptr);
 | |
|   }
 | |
| 
 | |
|   PROTOBUF_ALWAYS_INLINE uint8* WriteLengthDelim(int num, uint32 size,
 | |
|                                                  uint8* ptr) {
 | |
|     ptr = WriteTag(num, 2, ptr);
 | |
|     return UnsafeWriteSize(size, ptr);
 | |
|   }
 | |
| 
 | |
|   uint8* WriteRawFallback(const void* data, int size, uint8* ptr);
 | |
| 
 | |
|   uint8* WriteAliasedRaw(const void* data, int size, uint8* ptr);
 | |
| 
 | |
|   uint8* WriteStringMaybeAliasedOutline(uint32 num, const std::string& s,
 | |
|                                         uint8* ptr);
 | |
|   uint8* WriteStringOutline(uint32 num, const std::string& s, uint8* ptr);
 | |
| 
 | |
|   template <typename T, typename E>
 | |
|   PROTOBUF_ALWAYS_INLINE uint8* WriteVarintPacked(int num, const T& r, int size,
 | |
|                                                   uint8* ptr, const E& encode) {
 | |
|     ptr = EnsureSpace(ptr);
 | |
|     ptr = WriteLengthDelim(num, size, ptr);
 | |
|     auto it = r.data();
 | |
|     auto end = it + r.size();
 | |
|     do {
 | |
|       ptr = EnsureSpace(ptr);
 | |
|       ptr = UnsafeVarint(encode(*it++), ptr);
 | |
|     } while (it < end);
 | |
|     return ptr;
 | |
|   }
 | |
| 
 | |
|   static uint32 Encode32(uint32 v) { return v; }
 | |
|   static uint64 Encode64(uint64 v) { return v; }
 | |
|   static uint32 ZigZagEncode32(int32 v) {
 | |
|     return (static_cast<uint32>(v) << 1) ^ static_cast<uint32>(v >> 31);
 | |
|   }
 | |
|   static uint64 ZigZagEncode64(int64 v) {
 | |
|     return (static_cast<uint64>(v) << 1) ^ static_cast<uint64>(v >> 63);
 | |
|   }
 | |
| 
 | |
|   template <typename T>
 | |
|   PROTOBUF_ALWAYS_INLINE static uint8* UnsafeVarint(T value, uint8* ptr) {
 | |
|     static_assert(std::is_unsigned<T>::value,
 | |
|                   "Varint serialization must be unsigned");
 | |
|     ptr[0] = static_cast<uint8>(value);
 | |
|     if (value < 0x80) {
 | |
|       return ptr + 1;
 | |
|     }
 | |
|     // Turn on continuation bit in the byte we just wrote.
 | |
|     ptr[0] |= static_cast<uint8>(0x80);
 | |
|     value >>= 7;
 | |
|     ptr[1] = static_cast<uint8>(value);
 | |
|     if (value < 0x80) {
 | |
|       return ptr + 2;
 | |
|     }
 | |
|     ptr += 2;
 | |
|     do {
 | |
|       // Turn on continuation bit in the byte we just wrote.
 | |
|       ptr[-1] |= static_cast<uint8>(0x80);
 | |
|       value >>= 7;
 | |
|       *ptr = static_cast<uint8>(value);
 | |
|       ++ptr;
 | |
|     } while (value >= 0x80);
 | |
|     return ptr;
 | |
|   }
 | |
| 
 | |
|   PROTOBUF_ALWAYS_INLINE static uint8* UnsafeWriteSize(uint32 value,
 | |
|                                                        uint8* ptr) {
 | |
|     while (PROTOBUF_PREDICT_FALSE(value >= 0x80)) {
 | |
|       *ptr = static_cast<uint8>(value | 0x80);
 | |
|       value >>= 7;
 | |
|       ++ptr;
 | |
|     }
 | |
|     *ptr++ = static_cast<uint8>(value);
 | |
|     return ptr;
 | |
|   }
 | |
| 
 | |
|   template <int S>
 | |
|   uint8* WriteRawLittleEndian(const void* data, int size, uint8* ptr);
 | |
| #ifndef PROTOBUF_LITTLE_ENDIAN
 | |
|   uint8* WriteRawLittleEndian32(const void* data, int size, uint8* ptr);
 | |
|   uint8* WriteRawLittleEndian64(const void* data, int size, uint8* ptr);
 | |
| #endif
 | |
| 
 | |
|   // These methods are for CodedOutputStream. Ideally they should be private
 | |
|   // but to match current behavior of CodedOutputStream as close as possible
 | |
|   // we allow it some functionality.
 | |
|  public:
 | |
|   uint8* SetInitialBuffer(void* data, int size) {
 | |
|     auto ptr = static_cast<uint8*>(data);
 | |
|     if (size > kSlopBytes) {
 | |
|       end_ = ptr + size - kSlopBytes;
 | |
|       buffer_end_ = nullptr;
 | |
|       return ptr;
 | |
|     } else {
 | |
|       end_ = buffer_ + size;
 | |
|       buffer_end_ = ptr;
 | |
|       return buffer_;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   // Needed by CodedOutputStream HadError. HadError needs to flush the patch
 | |
|   // buffers to ensure there is no error as of yet.
 | |
|   uint8* FlushAndResetBuffer(uint8*);
 | |
| 
 | |
|   // The following functions mimic the old CodedOutputStream behavior as close
 | |
|   // as possible. They flush the current state to the stream, behave as
 | |
|   // the old CodedOutputStream and then return to normal operation.
 | |
|   bool Skip(int count, uint8** pp);
 | |
|   bool GetDirectBufferPointer(void** data, int* size, uint8** pp);
 | |
|   uint8* GetDirectBufferForNBytesAndAdvance(int size, uint8** pp);
 | |
| 
 | |
|   friend class CodedOutputStream;
 | |
| };
 | |
| 
 | |
| template <>
 | |
| inline uint8* EpsCopyOutputStream::WriteRawLittleEndian<1>(const void* data,
 | |
|                                                            int size,
 | |
|                                                            uint8* ptr) {
 | |
|   return WriteRaw(data, size, ptr);
 | |
| }
 | |
| template <>
 | |
| inline uint8* EpsCopyOutputStream::WriteRawLittleEndian<4>(const void* data,
 | |
|                                                            int size,
 | |
|                                                            uint8* ptr) {
 | |
| #ifdef PROTOBUF_LITTLE_ENDIAN
 | |
|   return WriteRaw(data, size, ptr);
 | |
| #else
 | |
|   return WriteRawLittleEndian32(data, size, ptr);
 | |
| #endif
 | |
| }
 | |
| template <>
 | |
| inline uint8* EpsCopyOutputStream::WriteRawLittleEndian<8>(const void* data,
 | |
|                                                            int size,
 | |
|                                                            uint8* ptr) {
 | |
| #ifdef PROTOBUF_LITTLE_ENDIAN
 | |
|   return WriteRaw(data, size, ptr);
 | |
| #else
 | |
|   return WriteRawLittleEndian64(data, size, ptr);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Class which encodes and writes binary data which is composed of varint-
 | |
| // encoded integers and fixed-width pieces.  Wraps a ZeroCopyOutputStream.
 | |
| // Most users will not need to deal with CodedOutputStream.
 | |
| //
 | |
| // Most methods of CodedOutputStream which return a bool return false if an
 | |
| // underlying I/O error occurs.  Once such a failure occurs, the
 | |
| // CodedOutputStream is broken and is no longer useful. The Write* methods do
 | |
| // not return the stream status, but will invalidate the stream if an error
 | |
| // occurs. The client can probe HadError() to determine the status.
 | |
| //
 | |
| // Note that every method of CodedOutputStream which writes some data has
 | |
| // a corresponding static "ToArray" version. These versions write directly
 | |
| // to the provided buffer, returning a pointer past the last written byte.
 | |
| // They require that the buffer has sufficient capacity for the encoded data.
 | |
| // This allows an optimization where we check if an output stream has enough
 | |
| // space for an entire message before we start writing and, if there is, we
 | |
| // call only the ToArray methods to avoid doing bound checks for each
 | |
| // individual value.
 | |
| // i.e., in the example above:
 | |
| //
 | |
| //   CodedOutputStream* coded_output = new CodedOutputStream(raw_output);
 | |
| //   int magic_number = 1234;
 | |
| //   char text[] = "Hello world!";
 | |
| //
 | |
| //   int coded_size = sizeof(magic_number) +
 | |
| //                    CodedOutputStream::VarintSize32(strlen(text)) +
 | |
| //                    strlen(text);
 | |
| //
 | |
| //   uint8* buffer =
 | |
| //       coded_output->GetDirectBufferForNBytesAndAdvance(coded_size);
 | |
| //   if (buffer != nullptr) {
 | |
| //     // The output stream has enough space in the buffer: write directly to
 | |
| //     // the array.
 | |
| //     buffer = CodedOutputStream::WriteLittleEndian32ToArray(magic_number,
 | |
| //                                                            buffer);
 | |
| //     buffer = CodedOutputStream::WriteVarint32ToArray(strlen(text), buffer);
 | |
| //     buffer = CodedOutputStream::WriteRawToArray(text, strlen(text), buffer);
 | |
| //   } else {
 | |
| //     // Make bound-checked writes, which will ask the underlying stream for
 | |
| //     // more space as needed.
 | |
| //     coded_output->WriteLittleEndian32(magic_number);
 | |
| //     coded_output->WriteVarint32(strlen(text));
 | |
| //     coded_output->WriteRaw(text, strlen(text));
 | |
| //   }
 | |
| //
 | |
| //   delete coded_output;
 | |
| class PROTOBUF_EXPORT CodedOutputStream {
 | |
|  public:
 | |
|   // Create an CodedOutputStream that writes to the given ZeroCopyOutputStream.
 | |
|   explicit CodedOutputStream(ZeroCopyOutputStream* stream)
 | |
|       : CodedOutputStream(stream, true) {}
 | |
|   CodedOutputStream(ZeroCopyOutputStream* stream, bool do_eager_refresh);
 | |
| 
 | |
|   // Destroy the CodedOutputStream and position the underlying
 | |
|   // ZeroCopyOutputStream immediately after the last byte written.
 | |
|   ~CodedOutputStream();
 | |
| 
 | |
|   // Returns true if there was an underlying I/O error since this object was
 | |
|   // created. On should call Trim before this function in order to catch all
 | |
|   // errors.
 | |
|   bool HadError() {
 | |
|     cur_ = impl_.FlushAndResetBuffer(cur_);
 | |
|     GOOGLE_DCHECK(cur_);
 | |
|     return impl_.HadError();
 | |
|   }
 | |
| 
 | |
|   // Trims any unused space in the underlying buffer so that its size matches
 | |
|   // the number of bytes written by this stream. The underlying buffer will
 | |
|   // automatically be trimmed when this stream is destroyed; this call is only
 | |
|   // necessary if the underlying buffer is accessed *before* the stream is
 | |
|   // destroyed.
 | |
|   void Trim() { cur_ = impl_.Trim(cur_); }
 | |
| 
 | |
|   // Skips a number of bytes, leaving the bytes unmodified in the underlying
 | |
|   // buffer.  Returns false if an underlying write error occurs.  This is
 | |
|   // mainly useful with GetDirectBufferPointer().
 | |
|   // Note of caution, the skipped bytes may contain uninitialized data. The
 | |
|   // caller must make sure that the skipped bytes are properly initialized,
 | |
|   // otherwise you might leak bytes from your heap.
 | |
|   bool Skip(int count) { return impl_.Skip(count, &cur_); }
 | |
| 
 | |
|   // Sets *data to point directly at the unwritten part of the
 | |
|   // CodedOutputStream's underlying buffer, and *size to the size of that
 | |
|   // buffer, but does not advance the stream's current position.  This will
 | |
|   // always either produce a non-empty buffer or return false.  If the caller
 | |
|   // writes any data to this buffer, it should then call Skip() to skip over
 | |
|   // the consumed bytes.  This may be useful for implementing external fast
 | |
|   // serialization routines for types of data not covered by the
 | |
|   // CodedOutputStream interface.
 | |
|   bool GetDirectBufferPointer(void** data, int* size) {
 | |
|     return impl_.GetDirectBufferPointer(data, size, &cur_);
 | |
|   }
 | |
| 
 | |
|   // If there are at least "size" bytes available in the current buffer,
 | |
|   // returns a pointer directly into the buffer and advances over these bytes.
 | |
|   // The caller may then write directly into this buffer (e.g. using the
 | |
|   // *ToArray static methods) rather than go through CodedOutputStream.  If
 | |
|   // there are not enough bytes available, returns NULL.  The return pointer is
 | |
|   // invalidated as soon as any other non-const method of CodedOutputStream
 | |
|   // is called.
 | |
|   inline uint8* GetDirectBufferForNBytesAndAdvance(int size) {
 | |
|     return impl_.GetDirectBufferForNBytesAndAdvance(size, &cur_);
 | |
|   }
 | |
| 
 | |
|   // Write raw bytes, copying them from the given buffer.
 | |
|   void WriteRaw(const void* buffer, int size) {
 | |
|     cur_ = impl_.WriteRaw(buffer, size, cur_);
 | |
|   }
 | |
|   // Like WriteRaw()  but will try to write aliased data if aliasing is
 | |
|   // turned on.
 | |
|   void WriteRawMaybeAliased(const void* data, int size);
 | |
|   // Like WriteRaw()  but writing directly to the target array.
 | |
|   // This is _not_ inlined, as the compiler often optimizes memcpy into inline
 | |
|   // copy loops. Since this gets called by every field with string or bytes
 | |
|   // type, inlining may lead to a significant amount of code bloat, with only a
 | |
|   // minor performance gain.
 | |
|   static uint8* WriteRawToArray(const void* buffer, int size, uint8* target);
 | |
| 
 | |
|   // Equivalent to WriteRaw(str.data(), str.size()).
 | |
|   void WriteString(const std::string& str);
 | |
|   // Like WriteString()  but writing directly to the target array.
 | |
|   static uint8* WriteStringToArray(const std::string& str, uint8* target);
 | |
|   // Write the varint-encoded size of str followed by str.
 | |
|   static uint8* WriteStringWithSizeToArray(const std::string& str,
 | |
|                                            uint8* target);
 | |
| 
 | |
| 
 | |
|   // Write a 32-bit little-endian integer.
 | |
|   void WriteLittleEndian32(uint32 value) {
 | |
|     cur_ = impl_.EnsureSpace(cur_);
 | |
|     SetCur(WriteLittleEndian32ToArray(value, Cur()));
 | |
|   }
 | |
|   // Like WriteLittleEndian32()  but writing directly to the target array.
 | |
|   static uint8* WriteLittleEndian32ToArray(uint32 value, uint8* target);
 | |
|   // Write a 64-bit little-endian integer.
 | |
|   void WriteLittleEndian64(uint64 value) {
 | |
|     cur_ = impl_.EnsureSpace(cur_);
 | |
|     SetCur(WriteLittleEndian64ToArray(value, Cur()));
 | |
|   }
 | |
|   // Like WriteLittleEndian64()  but writing directly to the target array.
 | |
|   static uint8* WriteLittleEndian64ToArray(uint64 value, uint8* target);
 | |
| 
 | |
|   // Write an unsigned integer with Varint encoding.  Writing a 32-bit value
 | |
|   // is equivalent to casting it to uint64 and writing it as a 64-bit value,
 | |
|   // but may be more efficient.
 | |
|   void WriteVarint32(uint32 value);
 | |
|   // Like WriteVarint32()  but writing directly to the target array.
 | |
|   static uint8* WriteVarint32ToArray(uint32 value, uint8* target);
 | |
|   // Like WriteVarint32()  but writing directly to the target array, and with the
 | |
|   // less common-case paths being out of line rather than inlined.
 | |
|   static uint8* WriteVarint32ToArrayOutOfLine(uint32 value, uint8* target);
 | |
|   // Write an unsigned integer with Varint encoding.
 | |
|   void WriteVarint64(uint64 value);
 | |
|   // Like WriteVarint64()  but writing directly to the target array.
 | |
|   static uint8* WriteVarint64ToArray(uint64 value, uint8* target);
 | |
| 
 | |
|   // Equivalent to WriteVarint32() except when the value is negative,
 | |
|   // in which case it must be sign-extended to a full 10 bytes.
 | |
|   void WriteVarint32SignExtended(int32 value);
 | |
|   // Like WriteVarint32SignExtended()  but writing directly to the target array.
 | |
|   static uint8* WriteVarint32SignExtendedToArray(int32 value, uint8* target);
 | |
| 
 | |
|   // This is identical to WriteVarint32(), but optimized for writing tags.
 | |
|   // In particular, if the input is a compile-time constant, this method
 | |
|   // compiles down to a couple instructions.
 | |
|   // Always inline because otherwise the aforementioned optimization can't work,
 | |
|   // but GCC by default doesn't want to inline this.
 | |
|   void WriteTag(uint32 value);
 | |
|   // Like WriteTag()  but writing directly to the target array.
 | |
|   PROTOBUF_ALWAYS_INLINE
 | |
|   static uint8* WriteTagToArray(uint32 value, uint8* target);
 | |
| 
 | |
|   // Returns the number of bytes needed to encode the given value as a varint.
 | |
|   static size_t VarintSize32(uint32 value);
 | |
|   // Returns the number of bytes needed to encode the given value as a varint.
 | |
|   static size_t VarintSize64(uint64 value);
 | |
| 
 | |
|   // If negative, 10 bytes.  Otherwise, same as VarintSize32().
 | |
|   static size_t VarintSize32SignExtended(int32 value);
 | |
| 
 | |
|   // Compile-time equivalent of VarintSize32().
 | |
|   template <uint32 Value>
 | |
|   struct StaticVarintSize32 {
 | |
|     static const size_t value = (Value < (1 << 7))    ? 1
 | |
|                                 : (Value < (1 << 14)) ? 2
 | |
|                                 : (Value < (1 << 21)) ? 3
 | |
|                                 : (Value < (1 << 28)) ? 4
 | |
|                                                       : 5;
 | |
|   };
 | |
| 
 | |
|   // Returns the total number of bytes written since this object was created.
 | |
|   int ByteCount() const {
 | |
|     return static_cast<int>(impl_.ByteCount(cur_) - start_count_);
 | |
|   }
 | |
| 
 | |
|   // Instructs the CodedOutputStream to allow the underlying
 | |
|   // ZeroCopyOutputStream to hold pointers to the original structure instead of
 | |
|   // copying, if it supports it (i.e. output->AllowsAliasing() is true).  If the
 | |
|   // underlying stream does not support aliasing, then enabling it has no
 | |
|   // affect.  For now, this only affects the behavior of
 | |
|   // WriteRawMaybeAliased().
 | |
|   //
 | |
|   // NOTE: It is caller's responsibility to ensure that the chunk of memory
 | |
|   // remains live until all of the data has been consumed from the stream.
 | |
|   void EnableAliasing(bool enabled) { impl_.EnableAliasing(enabled); }
 | |
| 
 | |
|   // Indicate to the serializer whether the user wants derministic
 | |
|   // serialization. The default when this is not called comes from the global
 | |
|   // default, controlled by SetDefaultSerializationDeterministic.
 | |
|   //
 | |
|   // What deterministic serialization means is entirely up to the driver of the
 | |
|   // serialization process (i.e. the caller of methods like WriteVarint32). In
 | |
|   // the case of serializing a proto buffer message using one of the methods of
 | |
|   // MessageLite, this means that for a given binary equal messages will always
 | |
|   // be serialized to the same bytes. This implies:
 | |
|   //
 | |
|   //   * Repeated serialization of a message will return the same bytes.
 | |
|   //
 | |
|   //   * Different processes running the same binary (including on different
 | |
|   //     machines) will serialize equal messages to the same bytes.
 | |
|   //
 | |
|   // Note that this is *not* canonical across languages. It is also unstable
 | |
|   // across different builds with intervening message definition changes, due to
 | |
|   // unknown fields. Users who need canonical serialization (e.g. persistent
 | |
|   // storage in a canonical form, fingerprinting) should define their own
 | |
|   // canonicalization specification and implement the serializer using
 | |
|   // reflection APIs rather than relying on this API.
 | |
|   void SetSerializationDeterministic(bool value) {
 | |
|     impl_.SetSerializationDeterministic(value);
 | |
|   }
 | |
| 
 | |
|   // Return whether the user wants deterministic serialization. See above.
 | |
|   bool IsSerializationDeterministic() const {
 | |
|     return impl_.IsSerializationDeterministic();
 | |
|   }
 | |
| 
 | |
|   static bool IsDefaultSerializationDeterministic() {
 | |
|     return default_serialization_deterministic_.load(
 | |
|                std::memory_order_relaxed) != 0;
 | |
|   }
 | |
| 
 | |
|   template <typename Func>
 | |
|   void Serialize(const Func& func);
 | |
| 
 | |
|   uint8* Cur() const { return cur_; }
 | |
|   void SetCur(uint8* ptr) { cur_ = ptr; }
 | |
|   EpsCopyOutputStream* EpsCopy() { return &impl_; }
 | |
| 
 | |
|  private:
 | |
|   EpsCopyOutputStream impl_;
 | |
|   uint8* cur_;
 | |
|   int64 start_count_;
 | |
|   static std::atomic<bool> default_serialization_deterministic_;
 | |
| 
 | |
|   // See above.  Other projects may use "friend" to allow them to call this.
 | |
|   // After SetDefaultSerializationDeterministic() completes, all protocol
 | |
|   // buffer serializations will be deterministic by default.  Thread safe.
 | |
|   // However, the meaning of "after" is subtle here: to be safe, each thread
 | |
|   // that wants deterministic serialization by default needs to call
 | |
|   // SetDefaultSerializationDeterministic() or ensure on its own that another
 | |
|   // thread has done so.
 | |
|   friend void internal::MapTestForceDeterministic();
 | |
|   static void SetDefaultSerializationDeterministic() {
 | |
|     default_serialization_deterministic_.store(true, std::memory_order_relaxed);
 | |
|   }
 | |
|   // REQUIRES: value >= 0x80, and that (value & 7f) has been written to *target.
 | |
|   static uint8* WriteVarint32ToArrayOutOfLineHelper(uint32 value, uint8* target);
 | |
|   GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(CodedOutputStream);
 | |
| };
 | |
| 
 | |
| // inline methods ====================================================
 | |
| // The vast majority of varints are only one byte.  These inline
 | |
| // methods optimize for that case.
 | |
| 
 | |
| inline bool CodedInputStream::ReadVarint32(uint32* value) {
 | |
|   uint32 v = 0;
 | |
|   if (PROTOBUF_PREDICT_TRUE(buffer_ < buffer_end_)) {
 | |
|     v = *buffer_;
 | |
|     if (v < 0x80) {
 | |
|       *value = v;
 | |
|       Advance(1);
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
|   int64 result = ReadVarint32Fallback(v);
 | |
|   *value = static_cast<uint32>(result);
 | |
|   return result >= 0;
 | |
| }
 | |
| 
 | |
| inline bool CodedInputStream::ReadVarint64(uint64* value) {
 | |
|   if (PROTOBUF_PREDICT_TRUE(buffer_ < buffer_end_) && *buffer_ < 0x80) {
 | |
|     *value = *buffer_;
 | |
|     Advance(1);
 | |
|     return true;
 | |
|   }
 | |
|   std::pair<uint64, bool> p = ReadVarint64Fallback();
 | |
|   *value = p.first;
 | |
|   return p.second;
 | |
| }
 | |
| 
 | |
| inline bool CodedInputStream::ReadVarintSizeAsInt(int* value) {
 | |
|   if (PROTOBUF_PREDICT_TRUE(buffer_ < buffer_end_)) {
 | |
|     int v = *buffer_;
 | |
|     if (v < 0x80) {
 | |
|       *value = v;
 | |
|       Advance(1);
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
|   *value = ReadVarintSizeAsIntFallback();
 | |
|   return *value >= 0;
 | |
| }
 | |
| 
 | |
| // static
 | |
| inline const uint8* CodedInputStream::ReadLittleEndian32FromArray(
 | |
|     const uint8* buffer, uint32* value) {
 | |
| #if defined(PROTOBUF_LITTLE_ENDIAN)
 | |
|   memcpy(value, buffer, sizeof(*value));
 | |
|   return buffer + sizeof(*value);
 | |
| #else
 | |
|   *value = (static_cast<uint32>(buffer[0])) |
 | |
|            (static_cast<uint32>(buffer[1]) << 8) |
 | |
|            (static_cast<uint32>(buffer[2]) << 16) |
 | |
|            (static_cast<uint32>(buffer[3]) << 24);
 | |
|   return buffer + sizeof(*value);
 | |
| #endif
 | |
| }
 | |
| // static
 | |
| inline const uint8* CodedInputStream::ReadLittleEndian64FromArray(
 | |
|     const uint8* buffer, uint64* value) {
 | |
| #if defined(PROTOBUF_LITTLE_ENDIAN)
 | |
|   memcpy(value, buffer, sizeof(*value));
 | |
|   return buffer + sizeof(*value);
 | |
| #else
 | |
|   uint32 part0 = (static_cast<uint32>(buffer[0])) |
 | |
|                  (static_cast<uint32>(buffer[1]) << 8) |
 | |
|                  (static_cast<uint32>(buffer[2]) << 16) |
 | |
|                  (static_cast<uint32>(buffer[3]) << 24);
 | |
|   uint32 part1 = (static_cast<uint32>(buffer[4])) |
 | |
|                  (static_cast<uint32>(buffer[5]) << 8) |
 | |
|                  (static_cast<uint32>(buffer[6]) << 16) |
 | |
|                  (static_cast<uint32>(buffer[7]) << 24);
 | |
|   *value = static_cast<uint64>(part0) | (static_cast<uint64>(part1) << 32);
 | |
|   return buffer + sizeof(*value);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| inline bool CodedInputStream::ReadLittleEndian32(uint32* value) {
 | |
| #if defined(PROTOBUF_LITTLE_ENDIAN)
 | |
|   if (PROTOBUF_PREDICT_TRUE(BufferSize() >= static_cast<int>(sizeof(*value)))) {
 | |
|     buffer_ = ReadLittleEndian32FromArray(buffer_, value);
 | |
|     return true;
 | |
|   } else {
 | |
|     return ReadLittleEndian32Fallback(value);
 | |
|   }
 | |
| #else
 | |
|   return ReadLittleEndian32Fallback(value);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| inline bool CodedInputStream::ReadLittleEndian64(uint64* value) {
 | |
| #if defined(PROTOBUF_LITTLE_ENDIAN)
 | |
|   if (PROTOBUF_PREDICT_TRUE(BufferSize() >= static_cast<int>(sizeof(*value)))) {
 | |
|     buffer_ = ReadLittleEndian64FromArray(buffer_, value);
 | |
|     return true;
 | |
|   } else {
 | |
|     return ReadLittleEndian64Fallback(value);
 | |
|   }
 | |
| #else
 | |
|   return ReadLittleEndian64Fallback(value);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| inline uint32 CodedInputStream::ReadTagNoLastTag() {
 | |
|   uint32 v = 0;
 | |
|   if (PROTOBUF_PREDICT_TRUE(buffer_ < buffer_end_)) {
 | |
|     v = *buffer_;
 | |
|     if (v < 0x80) {
 | |
|       Advance(1);
 | |
|       return v;
 | |
|     }
 | |
|   }
 | |
|   v = ReadTagFallback(v);
 | |
|   return v;
 | |
| }
 | |
| 
 | |
| inline std::pair<uint32, bool> CodedInputStream::ReadTagWithCutoffNoLastTag(
 | |
|     uint32 cutoff) {
 | |
|   // In performance-sensitive code we can expect cutoff to be a compile-time
 | |
|   // constant, and things like "cutoff >= kMax1ByteVarint" to be evaluated at
 | |
|   // compile time.
 | |
|   uint32 first_byte_or_zero = 0;
 | |
|   if (PROTOBUF_PREDICT_TRUE(buffer_ < buffer_end_)) {
 | |
|     // Hot case: buffer_ non_empty, buffer_[0] in [1, 128).
 | |
|     // TODO(gpike): Is it worth rearranging this? E.g., if the number of fields
 | |
|     // is large enough then is it better to check for the two-byte case first?
 | |
|     first_byte_or_zero = buffer_[0];
 | |
|     if (static_cast<int8>(buffer_[0]) > 0) {
 | |
|       const uint32 kMax1ByteVarint = 0x7f;
 | |
|       uint32 tag = buffer_[0];
 | |
|       Advance(1);
 | |
|       return std::make_pair(tag, cutoff >= kMax1ByteVarint || tag <= cutoff);
 | |
|     }
 | |
|     // Other hot case: cutoff >= 0x80, buffer_ has at least two bytes available,
 | |
|     // and tag is two bytes.  The latter is tested by bitwise-and-not of the
 | |
|     // first byte and the second byte.
 | |
|     if (cutoff >= 0x80 && PROTOBUF_PREDICT_TRUE(buffer_ + 1 < buffer_end_) &&
 | |
|         PROTOBUF_PREDICT_TRUE((buffer_[0] & ~buffer_[1]) >= 0x80)) {
 | |
|       const uint32 kMax2ByteVarint = (0x7f << 7) + 0x7f;
 | |
|       uint32 tag = (1u << 7) * buffer_[1] + (buffer_[0] - 0x80);
 | |
|       Advance(2);
 | |
|       // It might make sense to test for tag == 0 now, but it is so rare that
 | |
|       // that we don't bother.  A varint-encoded 0 should be one byte unless
 | |
|       // the encoder lost its mind.  The second part of the return value of
 | |
|       // this function is allowed to be either true or false if the tag is 0,
 | |
|       // so we don't have to check for tag == 0.  We may need to check whether
 | |
|       // it exceeds cutoff.
 | |
|       bool at_or_below_cutoff = cutoff >= kMax2ByteVarint || tag <= cutoff;
 | |
|       return std::make_pair(tag, at_or_below_cutoff);
 | |
|     }
 | |
|   }
 | |
|   // Slow path
 | |
|   const uint32 tag = ReadTagFallback(first_byte_or_zero);
 | |
|   return std::make_pair(tag, static_cast<uint32>(tag - 1) < cutoff);
 | |
| }
 | |
| 
 | |
| inline bool CodedInputStream::LastTagWas(uint32 expected) {
 | |
|   return last_tag_ == expected;
 | |
| }
 | |
| 
 | |
| inline bool CodedInputStream::ConsumedEntireMessage() {
 | |
|   return legitimate_message_end_;
 | |
| }
 | |
| 
 | |
| inline bool CodedInputStream::ExpectTag(uint32 expected) {
 | |
|   if (expected < (1 << 7)) {
 | |
|     if (PROTOBUF_PREDICT_TRUE(buffer_ < buffer_end_) &&
 | |
|         buffer_[0] == expected) {
 | |
|       Advance(1);
 | |
|       return true;
 | |
|     } else {
 | |
|       return false;
 | |
|     }
 | |
|   } else if (expected < (1 << 14)) {
 | |
|     if (PROTOBUF_PREDICT_TRUE(BufferSize() >= 2) &&
 | |
|         buffer_[0] == static_cast<uint8>(expected | 0x80) &&
 | |
|         buffer_[1] == static_cast<uint8>(expected >> 7)) {
 | |
|       Advance(2);
 | |
|       return true;
 | |
|     } else {
 | |
|       return false;
 | |
|     }
 | |
|   } else {
 | |
|     // Don't bother optimizing for larger values.
 | |
|     return false;
 | |
|   }
 | |
| }
 | |
| 
 | |
| inline const uint8* CodedInputStream::ExpectTagFromArray(const uint8* buffer,
 | |
|                                                          uint32 expected) {
 | |
|   if (expected < (1 << 7)) {
 | |
|     if (buffer[0] == expected) {
 | |
|       return buffer + 1;
 | |
|     }
 | |
|   } else if (expected < (1 << 14)) {
 | |
|     if (buffer[0] == static_cast<uint8>(expected | 0x80) &&
 | |
|         buffer[1] == static_cast<uint8>(expected >> 7)) {
 | |
|       return buffer + 2;
 | |
|     }
 | |
|   }
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| inline void CodedInputStream::GetDirectBufferPointerInline(const void** data,
 | |
|                                                            int* size) {
 | |
|   *data = buffer_;
 | |
|   *size = static_cast<int>(buffer_end_ - buffer_);
 | |
| }
 | |
| 
 | |
| inline bool CodedInputStream::ExpectAtEnd() {
 | |
|   // If we are at a limit we know no more bytes can be read.  Otherwise, it's
 | |
|   // hard to say without calling Refresh(), and we'd rather not do that.
 | |
| 
 | |
|   if (buffer_ == buffer_end_ && ((buffer_size_after_limit_ != 0) ||
 | |
|                                  (total_bytes_read_ == current_limit_))) {
 | |
|     last_tag_ = 0;                   // Pretend we called ReadTag()...
 | |
|     legitimate_message_end_ = true;  // ... and it hit EOF.
 | |
|     return true;
 | |
|   } else {
 | |
|     return false;
 | |
|   }
 | |
| }
 | |
| 
 | |
| inline int CodedInputStream::CurrentPosition() const {
 | |
|   return total_bytes_read_ - (BufferSize() + buffer_size_after_limit_);
 | |
| }
 | |
| 
 | |
| inline void CodedInputStream::Advance(int amount) { buffer_ += amount; }
 | |
| 
 | |
| inline void CodedInputStream::SetRecursionLimit(int limit) {
 | |
|   recursion_budget_ += limit - recursion_limit_;
 | |
|   recursion_limit_ = limit;
 | |
| }
 | |
| 
 | |
| inline bool CodedInputStream::IncrementRecursionDepth() {
 | |
|   --recursion_budget_;
 | |
|   return recursion_budget_ >= 0;
 | |
| }
 | |
| 
 | |
| inline void CodedInputStream::DecrementRecursionDepth() {
 | |
|   if (recursion_budget_ < recursion_limit_) ++recursion_budget_;
 | |
| }
 | |
| 
 | |
| inline void CodedInputStream::UnsafeDecrementRecursionDepth() {
 | |
|   assert(recursion_budget_ < recursion_limit_);
 | |
|   ++recursion_budget_;
 | |
| }
 | |
| 
 | |
| inline void CodedInputStream::SetExtensionRegistry(const DescriptorPool* pool,
 | |
|                                                    MessageFactory* factory) {
 | |
|   extension_pool_ = pool;
 | |
|   extension_factory_ = factory;
 | |
| }
 | |
| 
 | |
| inline const DescriptorPool* CodedInputStream::GetExtensionPool() {
 | |
|   return extension_pool_;
 | |
| }
 | |
| 
 | |
| inline MessageFactory* CodedInputStream::GetExtensionFactory() {
 | |
|   return extension_factory_;
 | |
| }
 | |
| 
 | |
| inline int CodedInputStream::BufferSize() const {
 | |
|   return static_cast<int>(buffer_end_ - buffer_);
 | |
| }
 | |
| 
 | |
| inline CodedInputStream::CodedInputStream(ZeroCopyInputStream* input)
 | |
|     : buffer_(nullptr),
 | |
|       buffer_end_(nullptr),
 | |
|       input_(input),
 | |
|       total_bytes_read_(0),
 | |
|       overflow_bytes_(0),
 | |
|       last_tag_(0),
 | |
|       legitimate_message_end_(false),
 | |
|       aliasing_enabled_(false),
 | |
|       current_limit_(kint32max),
 | |
|       buffer_size_after_limit_(0),
 | |
|       total_bytes_limit_(kDefaultTotalBytesLimit),
 | |
|       recursion_budget_(default_recursion_limit_),
 | |
|       recursion_limit_(default_recursion_limit_),
 | |
|       extension_pool_(nullptr),
 | |
|       extension_factory_(nullptr) {
 | |
|   // Eagerly Refresh() so buffer space is immediately available.
 | |
|   Refresh();
 | |
| }
 | |
| 
 | |
| inline CodedInputStream::CodedInputStream(const uint8* buffer, int size)
 | |
|     : buffer_(buffer),
 | |
|       buffer_end_(buffer + size),
 | |
|       input_(nullptr),
 | |
|       total_bytes_read_(size),
 | |
|       overflow_bytes_(0),
 | |
|       last_tag_(0),
 | |
|       legitimate_message_end_(false),
 | |
|       aliasing_enabled_(false),
 | |
|       current_limit_(size),
 | |
|       buffer_size_after_limit_(0),
 | |
|       total_bytes_limit_(kDefaultTotalBytesLimit),
 | |
|       recursion_budget_(default_recursion_limit_),
 | |
|       recursion_limit_(default_recursion_limit_),
 | |
|       extension_pool_(nullptr),
 | |
|       extension_factory_(nullptr) {
 | |
|   // Note that setting current_limit_ == size is important to prevent some
 | |
|   // code paths from trying to access input_ and segfaulting.
 | |
| }
 | |
| 
 | |
| inline bool CodedInputStream::IsFlat() const { return input_ == nullptr; }
 | |
| 
 | |
| inline bool CodedInputStream::Skip(int count) {
 | |
|   if (count < 0) return false;  // security: count is often user-supplied
 | |
| 
 | |
|   const int original_buffer_size = BufferSize();
 | |
| 
 | |
|   if (count <= original_buffer_size) {
 | |
|     // Just skipping within the current buffer.  Easy.
 | |
|     Advance(count);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   return SkipFallback(count, original_buffer_size);
 | |
| }
 | |
| 
 | |
| inline uint8* CodedOutputStream::WriteVarint32ToArray(uint32 value,
 | |
|                                                       uint8* target) {
 | |
|   return EpsCopyOutputStream::UnsafeVarint(value, target);
 | |
| }
 | |
| 
 | |
| inline uint8* CodedOutputStream::WriteVarint32ToArrayOutOfLine(uint32 value,
 | |
|                                                                uint8* target) {
 | |
|   target[0] = static_cast<uint8>(value);
 | |
|   if (value < 0x80) {
 | |
|     return target + 1;
 | |
|   } else {
 | |
|     return WriteVarint32ToArrayOutOfLineHelper(value, target);
 | |
|   }
 | |
| }
 | |
| 
 | |
| inline uint8* CodedOutputStream::WriteVarint64ToArray(uint64 value,
 | |
|                                                       uint8* target) {
 | |
|   return EpsCopyOutputStream::UnsafeVarint(value, target);
 | |
| }
 | |
| 
 | |
| inline void CodedOutputStream::WriteVarint32SignExtended(int32 value) {
 | |
|   WriteVarint64(static_cast<uint64>(value));
 | |
| }
 | |
| 
 | |
| inline uint8* CodedOutputStream::WriteVarint32SignExtendedToArray(
 | |
|     int32 value, uint8* target) {
 | |
|   return WriteVarint64ToArray(static_cast<uint64>(value), target);
 | |
| }
 | |
| 
 | |
| inline uint8* CodedOutputStream::WriteLittleEndian32ToArray(uint32 value,
 | |
|                                                             uint8* target) {
 | |
| #if defined(PROTOBUF_LITTLE_ENDIAN)
 | |
|   memcpy(target, &value, sizeof(value));
 | |
| #else
 | |
|   target[0] = static_cast<uint8>(value);
 | |
|   target[1] = static_cast<uint8>(value >> 8);
 | |
|   target[2] = static_cast<uint8>(value >> 16);
 | |
|   target[3] = static_cast<uint8>(value >> 24);
 | |
| #endif
 | |
|   return target + sizeof(value);
 | |
| }
 | |
| 
 | |
| inline uint8* CodedOutputStream::WriteLittleEndian64ToArray(uint64 value,
 | |
|                                                             uint8* target) {
 | |
| #if defined(PROTOBUF_LITTLE_ENDIAN)
 | |
|   memcpy(target, &value, sizeof(value));
 | |
| #else
 | |
|   uint32 part0 = static_cast<uint32>(value);
 | |
|   uint32 part1 = static_cast<uint32>(value >> 32);
 | |
| 
 | |
|   target[0] = static_cast<uint8>(part0);
 | |
|   target[1] = static_cast<uint8>(part0 >> 8);
 | |
|   target[2] = static_cast<uint8>(part0 >> 16);
 | |
|   target[3] = static_cast<uint8>(part0 >> 24);
 | |
|   target[4] = static_cast<uint8>(part1);
 | |
|   target[5] = static_cast<uint8>(part1 >> 8);
 | |
|   target[6] = static_cast<uint8>(part1 >> 16);
 | |
|   target[7] = static_cast<uint8>(part1 >> 24);
 | |
| #endif
 | |
|   return target + sizeof(value);
 | |
| }
 | |
| 
 | |
| inline void CodedOutputStream::WriteVarint32(uint32 value) {
 | |
|   cur_ = impl_.EnsureSpace(cur_);
 | |
|   SetCur(WriteVarint32ToArray(value, Cur()));
 | |
| }
 | |
| 
 | |
| inline void CodedOutputStream::WriteVarint64(uint64 value) {
 | |
|   cur_ = impl_.EnsureSpace(cur_);
 | |
|   SetCur(WriteVarint64ToArray(value, Cur()));
 | |
| }
 | |
| 
 | |
| inline void CodedOutputStream::WriteTag(uint32 value) { WriteVarint32(value); }
 | |
| 
 | |
| inline uint8* CodedOutputStream::WriteTagToArray(uint32 value, uint8* target) {
 | |
|   return WriteVarint32ToArray(value, target);
 | |
| }
 | |
| 
 | |
| inline size_t CodedOutputStream::VarintSize32(uint32 value) {
 | |
|   // This computes value == 0 ? 1 : floor(log2(value)) / 7 + 1
 | |
|   // Use an explicit multiplication to implement the divide of
 | |
|   // a number in the 1..31 range.
 | |
|   // Explicit OR 0x1 to avoid calling Bits::Log2FloorNonZero(0), which is
 | |
|   // undefined.
 | |
|   uint32 log2value = Bits::Log2FloorNonZero(value | 0x1);
 | |
|   return static_cast<size_t>((log2value * 9 + 73) / 64);
 | |
| }
 | |
| 
 | |
| inline size_t CodedOutputStream::VarintSize64(uint64 value) {
 | |
|   // This computes value == 0 ? 1 : floor(log2(value)) / 7 + 1
 | |
|   // Use an explicit multiplication to implement the divide of
 | |
|   // a number in the 1..63 range.
 | |
|   // Explicit OR 0x1 to avoid calling Bits::Log2FloorNonZero(0), which is
 | |
|   // undefined.
 | |
|   uint32 log2value = Bits::Log2FloorNonZero64(value | 0x1);
 | |
|   return static_cast<size_t>((log2value * 9 + 73) / 64);
 | |
| }
 | |
| 
 | |
| inline size_t CodedOutputStream::VarintSize32SignExtended(int32 value) {
 | |
|   if (value < 0) {
 | |
|     return 10;  // TODO(kenton):  Make this a symbolic constant.
 | |
|   } else {
 | |
|     return VarintSize32(static_cast<uint32>(value));
 | |
|   }
 | |
| }
 | |
| 
 | |
| inline void CodedOutputStream::WriteString(const std::string& str) {
 | |
|   WriteRaw(str.data(), static_cast<int>(str.size()));
 | |
| }
 | |
| 
 | |
| inline void CodedOutputStream::WriteRawMaybeAliased(const void* data,
 | |
|                                                     int size) {
 | |
|   cur_ = impl_.WriteRawMaybeAliased(data, size, cur_);
 | |
| }
 | |
| 
 | |
| inline uint8* CodedOutputStream::WriteRawToArray(const void* data, int size,
 | |
|                                                  uint8* target) {
 | |
|   memcpy(target, data, size);
 | |
|   return target + size;
 | |
| }
 | |
| 
 | |
| inline uint8* CodedOutputStream::WriteStringToArray(const std::string& str,
 | |
|                                                     uint8* target) {
 | |
|   return WriteRawToArray(str.data(), static_cast<int>(str.size()), target);
 | |
| }
 | |
| 
 | |
| }  // namespace io
 | |
| }  // namespace protobuf
 | |
| }  // namespace google
 | |
| 
 | |
| #if defined(_MSC_VER) && _MSC_VER >= 1300 && !defined(__INTEL_COMPILER)
 | |
| #pragma runtime_checks("c", restore)
 | |
| #endif  // _MSC_VER && !defined(__INTEL_COMPILER)
 | |
| 
 | |
| #include <google/protobuf/port_undef.inc>
 | |
| 
 | |
| #endif  // GOOGLE_PROTOBUF_IO_CODED_STREAM_H__
 |