1431 lines
		
	
	
		
			65 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1431 lines
		
	
	
		
			65 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Protocol Buffers - Google's data interchange format
 | |
| // Copyright 2008 Google Inc.  All rights reserved.
 | |
| // https://developers.google.com/protocol-buffers/
 | |
| //
 | |
| // Redistribution and use in source and binary forms, with or without
 | |
| // modification, are permitted provided that the following conditions are
 | |
| // met:
 | |
| //
 | |
| //     * Redistributions of source code must retain the above copyright
 | |
| // notice, this list of conditions and the following disclaimer.
 | |
| //     * Redistributions in binary form must reproduce the above
 | |
| // copyright notice, this list of conditions and the following disclaimer
 | |
| // in the documentation and/or other materials provided with the
 | |
| // distribution.
 | |
| //     * Neither the name of Google Inc. nor the names of its
 | |
| // contributors may be used to endorse or promote products derived from
 | |
| // this software without specific prior written permission.
 | |
| //
 | |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 | |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 | |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 | |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 | |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 | |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 | |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 | |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 | |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 | |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 | |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 | |
| 
 | |
| // Author: kenton@google.com (Kenton Varda)
 | |
| //  Based on original Protocol Buffers design by
 | |
| //  Sanjay Ghemawat, Jeff Dean, and others.
 | |
| //
 | |
| // Defines Message, the abstract interface implemented by non-lite
 | |
| // protocol message objects.  Although it's possible to implement this
 | |
| // interface manually, most users will use the protocol compiler to
 | |
| // generate implementations.
 | |
| //
 | |
| // Example usage:
 | |
| //
 | |
| // Say you have a message defined as:
 | |
| //
 | |
| //   message Foo {
 | |
| //     optional string text = 1;
 | |
| //     repeated int32 numbers = 2;
 | |
| //   }
 | |
| //
 | |
| // Then, if you used the protocol compiler to generate a class from the above
 | |
| // definition, you could use it like so:
 | |
| //
 | |
| //   std::string data;  // Will store a serialized version of the message.
 | |
| //
 | |
| //   {
 | |
| //     // Create a message and serialize it.
 | |
| //     Foo foo;
 | |
| //     foo.set_text("Hello World!");
 | |
| //     foo.add_numbers(1);
 | |
| //     foo.add_numbers(5);
 | |
| //     foo.add_numbers(42);
 | |
| //
 | |
| //     foo.SerializeToString(&data);
 | |
| //   }
 | |
| //
 | |
| //   {
 | |
| //     // Parse the serialized message and check that it contains the
 | |
| //     // correct data.
 | |
| //     Foo foo;
 | |
| //     foo.ParseFromString(data);
 | |
| //
 | |
| //     assert(foo.text() == "Hello World!");
 | |
| //     assert(foo.numbers_size() == 3);
 | |
| //     assert(foo.numbers(0) == 1);
 | |
| //     assert(foo.numbers(1) == 5);
 | |
| //     assert(foo.numbers(2) == 42);
 | |
| //   }
 | |
| //
 | |
| //   {
 | |
| //     // Same as the last block, but do it dynamically via the Message
 | |
| //     // reflection interface.
 | |
| //     Message* foo = new Foo;
 | |
| //     const Descriptor* descriptor = foo->GetDescriptor();
 | |
| //
 | |
| //     // Get the descriptors for the fields we're interested in and verify
 | |
| //     // their types.
 | |
| //     const FieldDescriptor* text_field = descriptor->FindFieldByName("text");
 | |
| //     assert(text_field != nullptr);
 | |
| //     assert(text_field->type() == FieldDescriptor::TYPE_STRING);
 | |
| //     assert(text_field->label() == FieldDescriptor::LABEL_OPTIONAL);
 | |
| //     const FieldDescriptor* numbers_field = descriptor->
 | |
| //                                            FindFieldByName("numbers");
 | |
| //     assert(numbers_field != nullptr);
 | |
| //     assert(numbers_field->type() == FieldDescriptor::TYPE_INT32);
 | |
| //     assert(numbers_field->label() == FieldDescriptor::LABEL_REPEATED);
 | |
| //
 | |
| //     // Parse the message.
 | |
| //     foo->ParseFromString(data);
 | |
| //
 | |
| //     // Use the reflection interface to examine the contents.
 | |
| //     const Reflection* reflection = foo->GetReflection();
 | |
| //     assert(reflection->GetString(*foo, text_field) == "Hello World!");
 | |
| //     assert(reflection->FieldSize(*foo, numbers_field) == 3);
 | |
| //     assert(reflection->GetRepeatedInt32(*foo, numbers_field, 0) == 1);
 | |
| //     assert(reflection->GetRepeatedInt32(*foo, numbers_field, 1) == 5);
 | |
| //     assert(reflection->GetRepeatedInt32(*foo, numbers_field, 2) == 42);
 | |
| //
 | |
| //     delete foo;
 | |
| //   }
 | |
| 
 | |
| #ifndef GOOGLE_PROTOBUF_MESSAGE_H__
 | |
| #define GOOGLE_PROTOBUF_MESSAGE_H__
 | |
| 
 | |
| #include <iosfwd>
 | |
| #include <string>
 | |
| #include <type_traits>
 | |
| #include <vector>
 | |
| 
 | |
| #include <google/protobuf/stubs/casts.h>
 | |
| #include <google/protobuf/stubs/common.h>
 | |
| #include <google/protobuf/arena.h>
 | |
| #include <google/protobuf/descriptor.h>
 | |
| #include <google/protobuf/generated_message_reflection.h>
 | |
| #include <google/protobuf/message_lite.h>
 | |
| #include <google/protobuf/port.h>
 | |
| 
 | |
| 
 | |
| #define GOOGLE_PROTOBUF_HAS_ONEOF
 | |
| #define GOOGLE_PROTOBUF_HAS_ARENAS
 | |
| 
 | |
| #include <google/protobuf/port_def.inc>
 | |
| 
 | |
| #ifdef SWIG
 | |
| #error "You cannot SWIG proto headers"
 | |
| #endif
 | |
| 
 | |
| namespace google {
 | |
| namespace protobuf {
 | |
| 
 | |
| // Defined in this file.
 | |
| class Message;
 | |
| class Reflection;
 | |
| class MessageFactory;
 | |
| 
 | |
| // Defined in other files.
 | |
| class AssignDescriptorsHelper;
 | |
| class DynamicMessageFactory;
 | |
| class GeneratedMessageReflectionTestHelper;
 | |
| class MapKey;
 | |
| class MapValueConstRef;
 | |
| class MapValueRef;
 | |
| class MapIterator;
 | |
| class MapReflectionTester;
 | |
| 
 | |
| namespace internal {
 | |
| struct DescriptorTable;
 | |
| class MapFieldBase;
 | |
| class SwapFieldHelper;
 | |
| }
 | |
| class UnknownFieldSet;  // unknown_field_set.h
 | |
| namespace io {
 | |
| class ZeroCopyInputStream;   // zero_copy_stream.h
 | |
| class ZeroCopyOutputStream;  // zero_copy_stream.h
 | |
| class CodedInputStream;      // coded_stream.h
 | |
| class CodedOutputStream;     // coded_stream.h
 | |
| }  // namespace io
 | |
| namespace python {
 | |
| class MapReflectionFriend;  // scalar_map_container.h
 | |
| class MessageReflectionFriend;
 | |
| }
 | |
| namespace expr {
 | |
| class CelMapReflectionFriend;  // field_backed_map_impl.cc
 | |
| }
 | |
| 
 | |
| namespace internal {
 | |
| class MapFieldPrinterHelper;  // text_format.cc
 | |
| }
 | |
| namespace util {
 | |
| class MessageDifferencer;
 | |
| }
 | |
| 
 | |
| 
 | |
| namespace internal {
 | |
| class ReflectionAccessor;      // message.cc
 | |
| class ReflectionOps;           // reflection_ops.h
 | |
| class MapKeySorter;            // wire_format.cc
 | |
| class WireFormat;              // wire_format.h
 | |
| class MapFieldReflectionTest;  // map_test.cc
 | |
| }  // namespace internal
 | |
| 
 | |
| template <typename T>
 | |
| class RepeatedField;  // repeated_field.h
 | |
| 
 | |
| template <typename T>
 | |
| class RepeatedPtrField;  // repeated_field.h
 | |
| 
 | |
| // A container to hold message metadata.
 | |
| struct Metadata {
 | |
|   const Descriptor* descriptor;
 | |
|   const Reflection* reflection;
 | |
| };
 | |
| 
 | |
| namespace internal {
 | |
| template <class To>
 | |
| inline To* GetPointerAtOffset(Message* message, uint32 offset) {
 | |
|   return reinterpret_cast<To*>(reinterpret_cast<char*>(message) + offset);
 | |
| }
 | |
| 
 | |
| template <class To>
 | |
| const To* GetConstPointerAtOffset(const Message* message, uint32 offset) {
 | |
|   return reinterpret_cast<const To*>(reinterpret_cast<const char*>(message) +
 | |
|                                      offset);
 | |
| }
 | |
| 
 | |
| template <class To>
 | |
| const To& GetConstRefAtOffset(const Message& message, uint32 offset) {
 | |
|   return *GetConstPointerAtOffset<To>(&message, offset);
 | |
| }
 | |
| 
 | |
| bool CreateUnknownEnumValues(const FieldDescriptor* field);
 | |
| }  // namespace internal
 | |
| 
 | |
| // Abstract interface for protocol messages.
 | |
| //
 | |
| // See also MessageLite, which contains most every-day operations.  Message
 | |
| // adds descriptors and reflection on top of that.
 | |
| //
 | |
| // The methods of this class that are virtual but not pure-virtual have
 | |
| // default implementations based on reflection.  Message classes which are
 | |
| // optimized for speed will want to override these with faster implementations,
 | |
| // but classes optimized for code size may be happy with keeping them.  See
 | |
| // the optimize_for option in descriptor.proto.
 | |
| //
 | |
| // Users must not derive from this class. Only the protocol compiler and
 | |
| // the internal library are allowed to create subclasses.
 | |
| class PROTOBUF_EXPORT Message : public MessageLite {
 | |
|  public:
 | |
|   constexpr Message() {}
 | |
| 
 | |
|   // Basic Operations ------------------------------------------------
 | |
| 
 | |
|   // Construct a new instance of the same type.  Ownership is passed to the
 | |
|   // caller.  (This is also defined in MessageLite, but is defined again here
 | |
|   // for return-type covariance.)
 | |
|   Message* New() const override = 0;
 | |
| 
 | |
|   // Construct a new instance on the arena. Ownership is passed to the caller
 | |
|   // if arena is a nullptr. Default implementation allows for API compatibility
 | |
|   // during the Arena transition.
 | |
|   Message* New(Arena* arena) const override {
 | |
|     Message* message = New();
 | |
|     if (arena != nullptr) {
 | |
|       arena->Own(message);
 | |
|     }
 | |
|     return message;
 | |
|   }
 | |
| 
 | |
|   // Make this message into a copy of the given message.  The given message
 | |
|   // must have the same descriptor, but need not necessarily be the same class.
 | |
|   // By default this is just implemented as "Clear(); MergeFrom(from);".
 | |
|   virtual void CopyFrom(const Message& from);
 | |
| 
 | |
|   // Merge the fields from the given message into this message.  Singular
 | |
|   // fields will be overwritten, if specified in from, except for embedded
 | |
|   // messages which will be merged.  Repeated fields will be concatenated.
 | |
|   // The given message must be of the same type as this message (i.e. the
 | |
|   // exact same class).
 | |
|   virtual void MergeFrom(const Message& from);
 | |
| 
 | |
|   // Verifies that IsInitialized() returns true.  GOOGLE_CHECK-fails otherwise, with
 | |
|   // a nice error message.
 | |
|   void CheckInitialized() const;
 | |
| 
 | |
|   // Slowly build a list of all required fields that are not set.
 | |
|   // This is much, much slower than IsInitialized() as it is implemented
 | |
|   // purely via reflection.  Generally, you should not call this unless you
 | |
|   // have already determined that an error exists by calling IsInitialized().
 | |
|   void FindInitializationErrors(std::vector<std::string>* errors) const;
 | |
| 
 | |
|   // Like FindInitializationErrors, but joins all the strings, delimited by
 | |
|   // commas, and returns them.
 | |
|   std::string InitializationErrorString() const override;
 | |
| 
 | |
|   // Clears all unknown fields from this message and all embedded messages.
 | |
|   // Normally, if unknown tag numbers are encountered when parsing a message,
 | |
|   // the tag and value are stored in the message's UnknownFieldSet and
 | |
|   // then written back out when the message is serialized.  This allows servers
 | |
|   // which simply route messages to other servers to pass through messages
 | |
|   // that have new field definitions which they don't yet know about.  However,
 | |
|   // this behavior can have security implications.  To avoid it, call this
 | |
|   // method after parsing.
 | |
|   //
 | |
|   // See Reflection::GetUnknownFields() for more on unknown fields.
 | |
|   virtual void DiscardUnknownFields();
 | |
| 
 | |
|   // Computes (an estimate of) the total number of bytes currently used for
 | |
|   // storing the message in memory.  The default implementation calls the
 | |
|   // Reflection object's SpaceUsed() method.
 | |
|   //
 | |
|   // SpaceUsed() is noticeably slower than ByteSize(), as it is implemented
 | |
|   // using reflection (rather than the generated code implementation for
 | |
|   // ByteSize()). Like ByteSize(), its CPU time is linear in the number of
 | |
|   // fields defined for the proto.
 | |
|   virtual size_t SpaceUsedLong() const;
 | |
| 
 | |
|   PROTOBUF_DEPRECATED_MSG("Please use SpaceUsedLong() instead")
 | |
|   int SpaceUsed() const { return internal::ToIntSize(SpaceUsedLong()); }
 | |
| 
 | |
|   // Debugging & Testing----------------------------------------------
 | |
| 
 | |
|   // Generates a human readable form of this message, useful for debugging
 | |
|   // and other purposes.
 | |
|   std::string DebugString() const;
 | |
|   // Like DebugString(), but with less whitespace.
 | |
|   std::string ShortDebugString() const;
 | |
|   // Like DebugString(), but do not escape UTF-8 byte sequences.
 | |
|   std::string Utf8DebugString() const;
 | |
|   // Convenience function useful in GDB.  Prints DebugString() to stdout.
 | |
|   void PrintDebugString() const;
 | |
| 
 | |
|   // Reflection-based methods ----------------------------------------
 | |
|   // These methods are pure-virtual in MessageLite, but Message provides
 | |
|   // reflection-based default implementations.
 | |
| 
 | |
|   std::string GetTypeName() const override;
 | |
|   void Clear() override;
 | |
| 
 | |
|   // Returns whether all required fields have been set. Note that required
 | |
|   // fields no longer exist starting in proto3.
 | |
|   bool IsInitialized() const override;
 | |
| 
 | |
|   void CheckTypeAndMergeFrom(const MessageLite& other) override;
 | |
|   // Reflective parser
 | |
|   const char* _InternalParse(const char* ptr,
 | |
|                              internal::ParseContext* ctx) override;
 | |
|   size_t ByteSizeLong() const override;
 | |
|   uint8* _InternalSerialize(uint8* target,
 | |
|                             io::EpsCopyOutputStream* stream) const override;
 | |
| 
 | |
|  private:
 | |
|   // This is called only by the default implementation of ByteSize(), to
 | |
|   // update the cached size.  If you override ByteSize(), you do not need
 | |
|   // to override this.  If you do not override ByteSize(), you MUST override
 | |
|   // this; the default implementation will crash.
 | |
|   //
 | |
|   // The method is private because subclasses should never call it; only
 | |
|   // override it.  Yes, C++ lets you do that.  Crazy, huh?
 | |
|   virtual void SetCachedSize(int size) const;
 | |
| 
 | |
|  public:
 | |
|   // Introspection ---------------------------------------------------
 | |
| 
 | |
| 
 | |
|   // Get a non-owning pointer to a Descriptor for this message's type.  This
 | |
|   // describes what fields the message contains, the types of those fields, etc.
 | |
|   // This object remains property of the Message.
 | |
|   const Descriptor* GetDescriptor() const { return GetMetadata().descriptor; }
 | |
| 
 | |
|   // Get a non-owning pointer to the Reflection interface for this Message,
 | |
|   // which can be used to read and modify the fields of the Message dynamically
 | |
|   // (in other words, without knowing the message type at compile time).  This
 | |
|   // object remains property of the Message.
 | |
|   const Reflection* GetReflection() const { return GetMetadata().reflection; }
 | |
| 
 | |
|  protected:
 | |
|   // Get a struct containing the metadata for the Message, which is used in turn
 | |
|   // to implement GetDescriptor() and GetReflection() above.
 | |
|   virtual Metadata GetMetadata() const = 0;
 | |
| 
 | |
|   struct ClassData {
 | |
|     // Note: The order of arguments (to, then from) is chosen so that the ABI
 | |
|     // of this function is the same as the CopyFrom method.  That is, the
 | |
|     // hidden "this" parameter comes first.
 | |
|     void (*copy_to_from)(Message* to, const Message& from_msg);
 | |
|     void (*merge_to_from)(Message* to, const Message& from_msg);
 | |
|   };
 | |
|   // GetClassData() returns a pointer to a ClassData struct which
 | |
|   // exists in global memory and is unique to each subclass.  This uniqueness
 | |
|   // property is used in order to quickly determine whether two messages are
 | |
|   // of the same type.
 | |
|   // TODO(jorg): change to pure virtual
 | |
|   virtual const ClassData* GetClassData() const { return nullptr; }
 | |
| 
 | |
|   // CopyWithSizeCheck calls Clear() and then MergeFrom(), and in debug
 | |
|   // builds, checks that calling Clear() on the destination message doesn't
 | |
|   // alter the size of the source.  It assumes the messages are known to be
 | |
|   // of the same type, and thus uses GetClassData().
 | |
|   static void CopyWithSizeCheck(Message* to, const Message& from);
 | |
| 
 | |
|   inline explicit Message(Arena* arena, bool is_message_owned = false)
 | |
|       : MessageLite(arena, is_message_owned) {}
 | |
| 
 | |
| 
 | |
|  protected:
 | |
|   static uint64 GetInvariantPerBuild(uint64 salt);
 | |
| 
 | |
|  private:
 | |
|   GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(Message);
 | |
| };
 | |
| 
 | |
| namespace internal {
 | |
| // Forward-declare interfaces used to implement RepeatedFieldRef.
 | |
| // These are protobuf internals that users shouldn't care about.
 | |
| class RepeatedFieldAccessor;
 | |
| }  // namespace internal
 | |
| 
 | |
| // Forward-declare RepeatedFieldRef templates. The second type parameter is
 | |
| // used for SFINAE tricks. Users should ignore it.
 | |
| template <typename T, typename Enable = void>
 | |
| class RepeatedFieldRef;
 | |
| 
 | |
| template <typename T, typename Enable = void>
 | |
| class MutableRepeatedFieldRef;
 | |
| 
 | |
| // This interface contains methods that can be used to dynamically access
 | |
| // and modify the fields of a protocol message.  Their semantics are
 | |
| // similar to the accessors the protocol compiler generates.
 | |
| //
 | |
| // To get the Reflection for a given Message, call Message::GetReflection().
 | |
| //
 | |
| // This interface is separate from Message only for efficiency reasons;
 | |
| // the vast majority of implementations of Message will share the same
 | |
| // implementation of Reflection (GeneratedMessageReflection,
 | |
| // defined in generated_message.h), and all Messages of a particular class
 | |
| // should share the same Reflection object (though you should not rely on
 | |
| // the latter fact).
 | |
| //
 | |
| // There are several ways that these methods can be used incorrectly.  For
 | |
| // example, any of the following conditions will lead to undefined
 | |
| // results (probably assertion failures):
 | |
| // - The FieldDescriptor is not a field of this message type.
 | |
| // - The method called is not appropriate for the field's type.  For
 | |
| //   each field type in FieldDescriptor::TYPE_*, there is only one
 | |
| //   Get*() method, one Set*() method, and one Add*() method that is
 | |
| //   valid for that type.  It should be obvious which (except maybe
 | |
| //   for TYPE_BYTES, which are represented using strings in C++).
 | |
| // - A Get*() or Set*() method for singular fields is called on a repeated
 | |
| //   field.
 | |
| // - GetRepeated*(), SetRepeated*(), or Add*() is called on a non-repeated
 | |
| //   field.
 | |
| // - The Message object passed to any method is not of the right type for
 | |
| //   this Reflection object (i.e. message.GetReflection() != reflection).
 | |
| //
 | |
| // You might wonder why there is not any abstract representation for a field
 | |
| // of arbitrary type.  E.g., why isn't there just a "GetField()" method that
 | |
| // returns "const Field&", where "Field" is some class with accessors like
 | |
| // "GetInt32Value()".  The problem is that someone would have to deal with
 | |
| // allocating these Field objects.  For generated message classes, having to
 | |
| // allocate space for an additional object to wrap every field would at least
 | |
| // double the message's memory footprint, probably worse.  Allocating the
 | |
| // objects on-demand, on the other hand, would be expensive and prone to
 | |
| // memory leaks.  So, instead we ended up with this flat interface.
 | |
| class PROTOBUF_EXPORT Reflection final {
 | |
|  public:
 | |
|   // Get the UnknownFieldSet for the message.  This contains fields which
 | |
|   // were seen when the Message was parsed but were not recognized according
 | |
|   // to the Message's definition.
 | |
|   const UnknownFieldSet& GetUnknownFields(const Message& message) const;
 | |
|   // Get a mutable pointer to the UnknownFieldSet for the message.  This
 | |
|   // contains fields which were seen when the Message was parsed but were not
 | |
|   // recognized according to the Message's definition.
 | |
|   UnknownFieldSet* MutableUnknownFields(Message* message) const;
 | |
| 
 | |
|   // Estimate the amount of memory used by the message object.
 | |
|   size_t SpaceUsedLong(const Message& message) const;
 | |
| 
 | |
|   PROTOBUF_DEPRECATED_MSG("Please use SpaceUsedLong() instead")
 | |
|   int SpaceUsed(const Message& message) const {
 | |
|     return internal::ToIntSize(SpaceUsedLong(message));
 | |
|   }
 | |
| 
 | |
|   // Check if the given non-repeated field is set.
 | |
|   bool HasField(const Message& message, const FieldDescriptor* field) const;
 | |
| 
 | |
|   // Get the number of elements of a repeated field.
 | |
|   int FieldSize(const Message& message, const FieldDescriptor* field) const;
 | |
| 
 | |
|   // Clear the value of a field, so that HasField() returns false or
 | |
|   // FieldSize() returns zero.
 | |
|   void ClearField(Message* message, const FieldDescriptor* field) const;
 | |
| 
 | |
|   // Check if the oneof is set. Returns true if any field in oneof
 | |
|   // is set, false otherwise.
 | |
|   bool HasOneof(const Message& message,
 | |
|                 const OneofDescriptor* oneof_descriptor) const;
 | |
| 
 | |
|   void ClearOneof(Message* message,
 | |
|                   const OneofDescriptor* oneof_descriptor) const;
 | |
| 
 | |
|   // Returns the field descriptor if the oneof is set. nullptr otherwise.
 | |
|   const FieldDescriptor* GetOneofFieldDescriptor(
 | |
|       const Message& message, const OneofDescriptor* oneof_descriptor) const;
 | |
| 
 | |
|   // Removes the last element of a repeated field.
 | |
|   // We don't provide a way to remove any element other than the last
 | |
|   // because it invites inefficient use, such as O(n^2) filtering loops
 | |
|   // that should have been O(n).  If you want to remove an element other
 | |
|   // than the last, the best way to do it is to re-arrange the elements
 | |
|   // (using Swap()) so that the one you want removed is at the end, then
 | |
|   // call RemoveLast().
 | |
|   void RemoveLast(Message* message, const FieldDescriptor* field) const;
 | |
|   // Removes the last element of a repeated message field, and returns the
 | |
|   // pointer to the caller.  Caller takes ownership of the returned pointer.
 | |
|   PROTOBUF_MUST_USE_RESULT Message* ReleaseLast(
 | |
|       Message* message, const FieldDescriptor* field) const;
 | |
| 
 | |
|   // Swap the complete contents of two messages.
 | |
|   void Swap(Message* message1, Message* message2) const;
 | |
| 
 | |
|   // Swap fields listed in fields vector of two messages.
 | |
|   void SwapFields(Message* message1, Message* message2,
 | |
|                   const std::vector<const FieldDescriptor*>& fields) const;
 | |
| 
 | |
|   // Swap two elements of a repeated field.
 | |
|   void SwapElements(Message* message, const FieldDescriptor* field, int index1,
 | |
|                     int index2) const;
 | |
| 
 | |
|   // List all fields of the message which are currently set, except for unknown
 | |
|   // fields, but including extension known to the parser (i.e. compiled in).
 | |
|   // Singular fields will only be listed if HasField(field) would return true
 | |
|   // and repeated fields will only be listed if FieldSize(field) would return
 | |
|   // non-zero.  Fields (both normal fields and extension fields) will be listed
 | |
|   // ordered by field number.
 | |
|   // Use Reflection::GetUnknownFields() or message.unknown_fields() to also get
 | |
|   // access to fields/extensions unknown to the parser.
 | |
|   void ListFields(const Message& message,
 | |
|                   std::vector<const FieldDescriptor*>* output) const;
 | |
| 
 | |
|   // Singular field getters ------------------------------------------
 | |
|   // These get the value of a non-repeated field.  They return the default
 | |
|   // value for fields that aren't set.
 | |
| 
 | |
|   int32 GetInt32(const Message& message, const FieldDescriptor* field) const;
 | |
|   int64 GetInt64(const Message& message, const FieldDescriptor* field) const;
 | |
|   uint32 GetUInt32(const Message& message, const FieldDescriptor* field) const;
 | |
|   uint64 GetUInt64(const Message& message, const FieldDescriptor* field) const;
 | |
|   float GetFloat(const Message& message, const FieldDescriptor* field) const;
 | |
|   double GetDouble(const Message& message, const FieldDescriptor* field) const;
 | |
|   bool GetBool(const Message& message, const FieldDescriptor* field) const;
 | |
|   std::string GetString(const Message& message,
 | |
|                         const FieldDescriptor* field) const;
 | |
|   const EnumValueDescriptor* GetEnum(const Message& message,
 | |
|                                      const FieldDescriptor* field) const;
 | |
| 
 | |
|   // GetEnumValue() returns an enum field's value as an integer rather than
 | |
|   // an EnumValueDescriptor*. If the integer value does not correspond to a
 | |
|   // known value descriptor, a new value descriptor is created. (Such a value
 | |
|   // will only be present when the new unknown-enum-value semantics are enabled
 | |
|   // for a message.)
 | |
|   int GetEnumValue(const Message& message, const FieldDescriptor* field) const;
 | |
| 
 | |
|   // See MutableMessage() for the meaning of the "factory" parameter.
 | |
|   const Message& GetMessage(const Message& message,
 | |
|                             const FieldDescriptor* field,
 | |
|                             MessageFactory* factory = nullptr) const;
 | |
| 
 | |
|   // Get a string value without copying, if possible.
 | |
|   //
 | |
|   // GetString() necessarily returns a copy of the string.  This can be
 | |
|   // inefficient when the std::string is already stored in a std::string object
 | |
|   // in the underlying message.  GetStringReference() will return a reference to
 | |
|   // the underlying std::string in this case.  Otherwise, it will copy the
 | |
|   // string into *scratch and return that.
 | |
|   //
 | |
|   // Note:  It is perfectly reasonable and useful to write code like:
 | |
|   //     str = reflection->GetStringReference(message, field, &str);
 | |
|   //   This line would ensure that only one copy of the string is made
 | |
|   //   regardless of the field's underlying representation.  When initializing
 | |
|   //   a newly-constructed string, though, it's just as fast and more
 | |
|   //   readable to use code like:
 | |
|   //     std::string str = reflection->GetString(message, field);
 | |
|   const std::string& GetStringReference(const Message& message,
 | |
|                                         const FieldDescriptor* field,
 | |
|                                         std::string* scratch) const;
 | |
| 
 | |
| 
 | |
|   // Singular field mutators -----------------------------------------
 | |
|   // These mutate the value of a non-repeated field.
 | |
| 
 | |
|   void SetInt32(Message* message, const FieldDescriptor* field,
 | |
|                 int32 value) const;
 | |
|   void SetInt64(Message* message, const FieldDescriptor* field,
 | |
|                 int64 value) const;
 | |
|   void SetUInt32(Message* message, const FieldDescriptor* field,
 | |
|                  uint32 value) const;
 | |
|   void SetUInt64(Message* message, const FieldDescriptor* field,
 | |
|                  uint64 value) const;
 | |
|   void SetFloat(Message* message, const FieldDescriptor* field,
 | |
|                 float value) const;
 | |
|   void SetDouble(Message* message, const FieldDescriptor* field,
 | |
|                  double value) const;
 | |
|   void SetBool(Message* message, const FieldDescriptor* field,
 | |
|                bool value) const;
 | |
|   void SetString(Message* message, const FieldDescriptor* field,
 | |
|                  std::string value) const;
 | |
|   void SetEnum(Message* message, const FieldDescriptor* field,
 | |
|                const EnumValueDescriptor* value) const;
 | |
|   // Set an enum field's value with an integer rather than EnumValueDescriptor.
 | |
|   // For proto3 this is just setting the enum field to the value specified, for
 | |
|   // proto2 it's more complicated. If value is a known enum value the field is
 | |
|   // set as usual. If the value is unknown then it is added to the unknown field
 | |
|   // set. Note this matches the behavior of parsing unknown enum values.
 | |
|   // If multiple calls with unknown values happen than they are all added to the
 | |
|   // unknown field set in order of the calls.
 | |
|   void SetEnumValue(Message* message, const FieldDescriptor* field,
 | |
|                     int value) const;
 | |
| 
 | |
|   // Get a mutable pointer to a field with a message type.  If a MessageFactory
 | |
|   // is provided, it will be used to construct instances of the sub-message;
 | |
|   // otherwise, the default factory is used.  If the field is an extension that
 | |
|   // does not live in the same pool as the containing message's descriptor (e.g.
 | |
|   // it lives in an overlay pool), then a MessageFactory must be provided.
 | |
|   // If you have no idea what that meant, then you probably don't need to worry
 | |
|   // about it (don't provide a MessageFactory).  WARNING:  If the
 | |
|   // FieldDescriptor is for a compiled-in extension, then
 | |
|   // factory->GetPrototype(field->message_type()) MUST return an instance of
 | |
|   // the compiled-in class for this type, NOT DynamicMessage.
 | |
|   Message* MutableMessage(Message* message, const FieldDescriptor* field,
 | |
|                           MessageFactory* factory = nullptr) const;
 | |
| 
 | |
|   // Replaces the message specified by 'field' with the already-allocated object
 | |
|   // sub_message, passing ownership to the message.  If the field contained a
 | |
|   // message, that message is deleted.  If sub_message is nullptr, the field is
 | |
|   // cleared.
 | |
|   void SetAllocatedMessage(Message* message, Message* sub_message,
 | |
|                            const FieldDescriptor* field) const;
 | |
| 
 | |
|   // Similar to `SetAllocatedMessage`, but omits all internal safety and
 | |
|   // ownership checks.  This method should only be used when the objects are on
 | |
|   // the same arena or paired with a call to `UnsafeArenaReleaseMessage`.
 | |
|   void UnsafeArenaSetAllocatedMessage(Message* message, Message* sub_message,
 | |
|                                       const FieldDescriptor* field) const;
 | |
| 
 | |
|   // Releases the message specified by 'field' and returns the pointer,
 | |
|   // ReleaseMessage() will return the message the message object if it exists.
 | |
|   // Otherwise, it may or may not return nullptr.  In any case, if the return
 | |
|   // value is non-null, the caller takes ownership of the pointer.
 | |
|   // If the field existed (HasField() is true), then the returned pointer will
 | |
|   // be the same as the pointer returned by MutableMessage().
 | |
|   // This function has the same effect as ClearField().
 | |
|   PROTOBUF_MUST_USE_RESULT Message* ReleaseMessage(
 | |
|       Message* message, const FieldDescriptor* field,
 | |
|       MessageFactory* factory = nullptr) const;
 | |
| 
 | |
|   // Similar to `ReleaseMessage`, but omits all internal safety and ownership
 | |
|   // checks.  This method should only be used when the objects are on the same
 | |
|   // arena or paired with a call to `UnsafeArenaSetAllocatedMessage`.
 | |
|   Message* UnsafeArenaReleaseMessage(Message* message,
 | |
|                                      const FieldDescriptor* field,
 | |
|                                      MessageFactory* factory = nullptr) const;
 | |
| 
 | |
| 
 | |
|   // Repeated field getters ------------------------------------------
 | |
|   // These get the value of one element of a repeated field.
 | |
| 
 | |
|   int32 GetRepeatedInt32(const Message& message, const FieldDescriptor* field,
 | |
|                          int index) const;
 | |
|   int64 GetRepeatedInt64(const Message& message, const FieldDescriptor* field,
 | |
|                          int index) const;
 | |
|   uint32 GetRepeatedUInt32(const Message& message, const FieldDescriptor* field,
 | |
|                            int index) const;
 | |
|   uint64 GetRepeatedUInt64(const Message& message, const FieldDescriptor* field,
 | |
|                            int index) const;
 | |
|   float GetRepeatedFloat(const Message& message, const FieldDescriptor* field,
 | |
|                          int index) const;
 | |
|   double GetRepeatedDouble(const Message& message, const FieldDescriptor* field,
 | |
|                            int index) const;
 | |
|   bool GetRepeatedBool(const Message& message, const FieldDescriptor* field,
 | |
|                        int index) const;
 | |
|   std::string GetRepeatedString(const Message& message,
 | |
|                                 const FieldDescriptor* field, int index) const;
 | |
|   const EnumValueDescriptor* GetRepeatedEnum(const Message& message,
 | |
|                                              const FieldDescriptor* field,
 | |
|                                              int index) const;
 | |
|   // GetRepeatedEnumValue() returns an enum field's value as an integer rather
 | |
|   // than an EnumValueDescriptor*. If the integer value does not correspond to a
 | |
|   // known value descriptor, a new value descriptor is created. (Such a value
 | |
|   // will only be present when the new unknown-enum-value semantics are enabled
 | |
|   // for a message.)
 | |
|   int GetRepeatedEnumValue(const Message& message, const FieldDescriptor* field,
 | |
|                            int index) const;
 | |
|   const Message& GetRepeatedMessage(const Message& message,
 | |
|                                     const FieldDescriptor* field,
 | |
|                                     int index) const;
 | |
| 
 | |
|   // See GetStringReference(), above.
 | |
|   const std::string& GetRepeatedStringReference(const Message& message,
 | |
|                                                 const FieldDescriptor* field,
 | |
|                                                 int index,
 | |
|                                                 std::string* scratch) const;
 | |
| 
 | |
| 
 | |
|   // Repeated field mutators -----------------------------------------
 | |
|   // These mutate the value of one element of a repeated field.
 | |
| 
 | |
|   void SetRepeatedInt32(Message* message, const FieldDescriptor* field,
 | |
|                         int index, int32 value) const;
 | |
|   void SetRepeatedInt64(Message* message, const FieldDescriptor* field,
 | |
|                         int index, int64 value) const;
 | |
|   void SetRepeatedUInt32(Message* message, const FieldDescriptor* field,
 | |
|                          int index, uint32 value) const;
 | |
|   void SetRepeatedUInt64(Message* message, const FieldDescriptor* field,
 | |
|                          int index, uint64 value) const;
 | |
|   void SetRepeatedFloat(Message* message, const FieldDescriptor* field,
 | |
|                         int index, float value) const;
 | |
|   void SetRepeatedDouble(Message* message, const FieldDescriptor* field,
 | |
|                          int index, double value) const;
 | |
|   void SetRepeatedBool(Message* message, const FieldDescriptor* field,
 | |
|                        int index, bool value) const;
 | |
|   void SetRepeatedString(Message* message, const FieldDescriptor* field,
 | |
|                          int index, std::string value) const;
 | |
|   void SetRepeatedEnum(Message* message, const FieldDescriptor* field,
 | |
|                        int index, const EnumValueDescriptor* value) const;
 | |
|   // Set an enum field's value with an integer rather than EnumValueDescriptor.
 | |
|   // For proto3 this is just setting the enum field to the value specified, for
 | |
|   // proto2 it's more complicated. If value is a known enum value the field is
 | |
|   // set as usual. If the value is unknown then it is added to the unknown field
 | |
|   // set. Note this matches the behavior of parsing unknown enum values.
 | |
|   // If multiple calls with unknown values happen than they are all added to the
 | |
|   // unknown field set in order of the calls.
 | |
|   void SetRepeatedEnumValue(Message* message, const FieldDescriptor* field,
 | |
|                             int index, int value) const;
 | |
|   // Get a mutable pointer to an element of a repeated field with a message
 | |
|   // type.
 | |
|   Message* MutableRepeatedMessage(Message* message,
 | |
|                                   const FieldDescriptor* field,
 | |
|                                   int index) const;
 | |
| 
 | |
| 
 | |
|   // Repeated field adders -------------------------------------------
 | |
|   // These add an element to a repeated field.
 | |
| 
 | |
|   void AddInt32(Message* message, const FieldDescriptor* field,
 | |
|                 int32 value) const;
 | |
|   void AddInt64(Message* message, const FieldDescriptor* field,
 | |
|                 int64 value) const;
 | |
|   void AddUInt32(Message* message, const FieldDescriptor* field,
 | |
|                  uint32 value) const;
 | |
|   void AddUInt64(Message* message, const FieldDescriptor* field,
 | |
|                  uint64 value) const;
 | |
|   void AddFloat(Message* message, const FieldDescriptor* field,
 | |
|                 float value) const;
 | |
|   void AddDouble(Message* message, const FieldDescriptor* field,
 | |
|                  double value) const;
 | |
|   void AddBool(Message* message, const FieldDescriptor* field,
 | |
|                bool value) const;
 | |
|   void AddString(Message* message, const FieldDescriptor* field,
 | |
|                  std::string value) const;
 | |
|   void AddEnum(Message* message, const FieldDescriptor* field,
 | |
|                const EnumValueDescriptor* value) const;
 | |
|   // Add an integer value to a repeated enum field rather than
 | |
|   // EnumValueDescriptor. For proto3 this is just setting the enum field to the
 | |
|   // value specified, for proto2 it's more complicated. If value is a known enum
 | |
|   // value the field is set as usual. If the value is unknown then it is added
 | |
|   // to the unknown field set. Note this matches the behavior of parsing unknown
 | |
|   // enum values. If multiple calls with unknown values happen than they are all
 | |
|   // added to the unknown field set in order of the calls.
 | |
|   void AddEnumValue(Message* message, const FieldDescriptor* field,
 | |
|                     int value) const;
 | |
|   // See MutableMessage() for comments on the "factory" parameter.
 | |
|   Message* AddMessage(Message* message, const FieldDescriptor* field,
 | |
|                       MessageFactory* factory = nullptr) const;
 | |
| 
 | |
|   // Appends an already-allocated object 'new_entry' to the repeated field
 | |
|   // specified by 'field' passing ownership to the message.
 | |
|   void AddAllocatedMessage(Message* message, const FieldDescriptor* field,
 | |
|                            Message* new_entry) const;
 | |
| 
 | |
| 
 | |
|   // Get a RepeatedFieldRef object that can be used to read the underlying
 | |
|   // repeated field. The type parameter T must be set according to the
 | |
|   // field's cpp type. The following table shows the mapping from cpp type
 | |
|   // to acceptable T.
 | |
|   //
 | |
|   //   field->cpp_type()      T
 | |
|   //   CPPTYPE_INT32        int32
 | |
|   //   CPPTYPE_UINT32       uint32
 | |
|   //   CPPTYPE_INT64        int64
 | |
|   //   CPPTYPE_UINT64       uint64
 | |
|   //   CPPTYPE_DOUBLE       double
 | |
|   //   CPPTYPE_FLOAT        float
 | |
|   //   CPPTYPE_BOOL         bool
 | |
|   //   CPPTYPE_ENUM         generated enum type or int32
 | |
|   //   CPPTYPE_STRING       std::string
 | |
|   //   CPPTYPE_MESSAGE      generated message type or google::protobuf::Message
 | |
|   //
 | |
|   // A RepeatedFieldRef object can be copied and the resulted object will point
 | |
|   // to the same repeated field in the same message. The object can be used as
 | |
|   // long as the message is not destroyed.
 | |
|   //
 | |
|   // Note that to use this method users need to include the header file
 | |
|   // "reflection.h" (which defines the RepeatedFieldRef class templates).
 | |
|   template <typename T>
 | |
|   RepeatedFieldRef<T> GetRepeatedFieldRef(const Message& message,
 | |
|                                           const FieldDescriptor* field) const;
 | |
| 
 | |
|   // Like GetRepeatedFieldRef() but return an object that can also be used
 | |
|   // manipulate the underlying repeated field.
 | |
|   template <typename T>
 | |
|   MutableRepeatedFieldRef<T> GetMutableRepeatedFieldRef(
 | |
|       Message* message, const FieldDescriptor* field) const;
 | |
| 
 | |
|   // DEPRECATED. Please use Get(Mutable)RepeatedFieldRef() for repeated field
 | |
|   // access. The following repeated field accessors will be removed in the
 | |
|   // future.
 | |
|   //
 | |
|   // Repeated field accessors  -------------------------------------------------
 | |
|   // The methods above, e.g. GetRepeatedInt32(msg, fd, index), provide singular
 | |
|   // access to the data in a RepeatedField.  The methods below provide aggregate
 | |
|   // access by exposing the RepeatedField object itself with the Message.
 | |
|   // Applying these templates to inappropriate types will lead to an undefined
 | |
|   // reference at link time (e.g. GetRepeatedField<***double>), or possibly a
 | |
|   // template matching error at compile time (e.g. GetRepeatedPtrField<File>).
 | |
|   //
 | |
|   // Usage example: my_doubs = refl->GetRepeatedField<double>(msg, fd);
 | |
| 
 | |
|   // DEPRECATED. Please use GetRepeatedFieldRef().
 | |
|   //
 | |
|   // for T = Cord and all protobuf scalar types except enums.
 | |
|   template <typename T>
 | |
|   PROTOBUF_DEPRECATED_MSG("Please use GetRepeatedFieldRef() instead")
 | |
|   const RepeatedField<T>& GetRepeatedField(const Message& msg,
 | |
|                                            const FieldDescriptor* d) const {
 | |
|     return GetRepeatedFieldInternal<T>(msg, d);
 | |
|   }
 | |
| 
 | |
|   // DEPRECATED. Please use GetMutableRepeatedFieldRef().
 | |
|   //
 | |
|   // for T = Cord and all protobuf scalar types except enums.
 | |
|   template <typename T>
 | |
|   PROTOBUF_DEPRECATED_MSG("Please use GetMutableRepeatedFieldRef() instead")
 | |
|   RepeatedField<T>* MutableRepeatedField(Message* msg,
 | |
|                                          const FieldDescriptor* d) const {
 | |
|     return MutableRepeatedFieldInternal<T>(msg, d);
 | |
|   }
 | |
| 
 | |
|   // DEPRECATED. Please use GetRepeatedFieldRef().
 | |
|   //
 | |
|   // for T = std::string, google::protobuf::internal::StringPieceField
 | |
|   //         google::protobuf::Message & descendants.
 | |
|   template <typename T>
 | |
|   PROTOBUF_DEPRECATED_MSG("Please use GetRepeatedFieldRef() instead")
 | |
|   const RepeatedPtrField<T>& GetRepeatedPtrField(
 | |
|       const Message& msg, const FieldDescriptor* d) const {
 | |
|     return GetRepeatedPtrFieldInternal<T>(msg, d);
 | |
|   }
 | |
| 
 | |
|   // DEPRECATED. Please use GetMutableRepeatedFieldRef().
 | |
|   //
 | |
|   // for T = std::string, google::protobuf::internal::StringPieceField
 | |
|   //         google::protobuf::Message & descendants.
 | |
|   template <typename T>
 | |
|   PROTOBUF_DEPRECATED_MSG("Please use GetMutableRepeatedFieldRef() instead")
 | |
|   RepeatedPtrField<T>* MutableRepeatedPtrField(Message* msg,
 | |
|                                                const FieldDescriptor* d) const {
 | |
|     return MutableRepeatedPtrFieldInternal<T>(msg, d);
 | |
|   }
 | |
| 
 | |
|   // Extensions ----------------------------------------------------------------
 | |
| 
 | |
|   // Try to find an extension of this message type by fully-qualified field
 | |
|   // name.  Returns nullptr if no extension is known for this name or number.
 | |
|   const FieldDescriptor* FindKnownExtensionByName(
 | |
|       const std::string& name) const;
 | |
| 
 | |
|   // Try to find an extension of this message type by field number.
 | |
|   // Returns nullptr if no extension is known for this name or number.
 | |
|   const FieldDescriptor* FindKnownExtensionByNumber(int number) const;
 | |
| 
 | |
|   // Feature Flags -------------------------------------------------------------
 | |
| 
 | |
|   // Does this message support storing arbitrary integer values in enum fields?
 | |
|   // If |true|, GetEnumValue/SetEnumValue and associated repeated-field versions
 | |
|   // take arbitrary integer values, and the legacy GetEnum() getter will
 | |
|   // dynamically create an EnumValueDescriptor for any integer value without
 | |
|   // one. If |false|, setting an unknown enum value via the integer-based
 | |
|   // setters results in undefined behavior (in practice, GOOGLE_DCHECK-fails).
 | |
|   //
 | |
|   // Generic code that uses reflection to handle messages with enum fields
 | |
|   // should check this flag before using the integer-based setter, and either
 | |
|   // downgrade to a compatible value or use the UnknownFieldSet if not. For
 | |
|   // example:
 | |
|   //
 | |
|   //   int new_value = GetValueFromApplicationLogic();
 | |
|   //   if (reflection->SupportsUnknownEnumValues()) {
 | |
|   //     reflection->SetEnumValue(message, field, new_value);
 | |
|   //   } else {
 | |
|   //     if (field_descriptor->enum_type()->
 | |
|   //             FindValueByNumber(new_value) != nullptr) {
 | |
|   //       reflection->SetEnumValue(message, field, new_value);
 | |
|   //     } else if (emit_unknown_enum_values) {
 | |
|   //       reflection->MutableUnknownFields(message)->AddVarint(
 | |
|   //           field->number(), new_value);
 | |
|   //     } else {
 | |
|   //       // convert value to a compatible/default value.
 | |
|   //       new_value = CompatibleDowngrade(new_value);
 | |
|   //       reflection->SetEnumValue(message, field, new_value);
 | |
|   //     }
 | |
|   //   }
 | |
|   bool SupportsUnknownEnumValues() const;
 | |
| 
 | |
|   // Returns the MessageFactory associated with this message.  This can be
 | |
|   // useful for determining if a message is a generated message or not, for
 | |
|   // example:
 | |
|   //   if (message->GetReflection()->GetMessageFactory() ==
 | |
|   //       google::protobuf::MessageFactory::generated_factory()) {
 | |
|   //     // This is a generated message.
 | |
|   //   }
 | |
|   // It can also be used to create more messages of this type, though
 | |
|   // Message::New() is an easier way to accomplish this.
 | |
|   MessageFactory* GetMessageFactory() const;
 | |
| 
 | |
|  private:
 | |
|   template <typename T>
 | |
|   const RepeatedField<T>& GetRepeatedFieldInternal(
 | |
|       const Message& message, const FieldDescriptor* field) const;
 | |
|   template <typename T>
 | |
|   RepeatedField<T>* MutableRepeatedFieldInternal(
 | |
|       Message* message, const FieldDescriptor* field) const;
 | |
|   template <typename T>
 | |
|   const RepeatedPtrField<T>& GetRepeatedPtrFieldInternal(
 | |
|       const Message& message, const FieldDescriptor* field) const;
 | |
|   template <typename T>
 | |
|   RepeatedPtrField<T>* MutableRepeatedPtrFieldInternal(
 | |
|       Message* message, const FieldDescriptor* field) const;
 | |
|   // Obtain a pointer to a Repeated Field Structure and do some type checking:
 | |
|   //   on field->cpp_type(),
 | |
|   //   on field->field_option().ctype() (if ctype >= 0)
 | |
|   //   of field->message_type() (if message_type != nullptr).
 | |
|   // We use 2 routine rather than 4 (const vs mutable) x (scalar vs pointer).
 | |
|   void* MutableRawRepeatedField(Message* message, const FieldDescriptor* field,
 | |
|                                 FieldDescriptor::CppType, int ctype,
 | |
|                                 const Descriptor* message_type) const;
 | |
| 
 | |
|   const void* GetRawRepeatedField(const Message& message,
 | |
|                                   const FieldDescriptor* field,
 | |
|                                   FieldDescriptor::CppType cpptype, int ctype,
 | |
|                                   const Descriptor* message_type) const;
 | |
| 
 | |
|   // The following methods are used to implement (Mutable)RepeatedFieldRef.
 | |
|   // A Ref object will store a raw pointer to the repeated field data (obtained
 | |
|   // from RepeatedFieldData()) and a pointer to a Accessor (obtained from
 | |
|   // RepeatedFieldAccessor) which will be used to access the raw data.
 | |
| 
 | |
|   // Returns a raw pointer to the repeated field
 | |
|   //
 | |
|   // "cpp_type" and "message_type" are deduced from the type parameter T passed
 | |
|   // to Get(Mutable)RepeatedFieldRef. If T is a generated message type,
 | |
|   // "message_type" should be set to its descriptor. Otherwise "message_type"
 | |
|   // should be set to nullptr. Implementations of this method should check
 | |
|   // whether "cpp_type"/"message_type" is consistent with the actual type of the
 | |
|   // field. We use 1 routine rather than 2 (const vs mutable) because it is
 | |
|   // protected and it doesn't change the message.
 | |
|   void* RepeatedFieldData(Message* message, const FieldDescriptor* field,
 | |
|                           FieldDescriptor::CppType cpp_type,
 | |
|                           const Descriptor* message_type) const;
 | |
| 
 | |
|   // The returned pointer should point to a singleton instance which implements
 | |
|   // the RepeatedFieldAccessor interface.
 | |
|   const internal::RepeatedFieldAccessor* RepeatedFieldAccessor(
 | |
|       const FieldDescriptor* field) const;
 | |
| 
 | |
|   // Lists all fields of the message which are currently set, except for unknown
 | |
|   // fields and stripped fields. See ListFields for details.
 | |
|   void ListFieldsOmitStripped(
 | |
|       const Message& message,
 | |
|       std::vector<const FieldDescriptor*>* output) const;
 | |
| 
 | |
|   bool IsMessageStripped(const Descriptor* descriptor) const {
 | |
|     return schema_.IsMessageStripped(descriptor);
 | |
|   }
 | |
| 
 | |
|   friend class TextFormat;
 | |
| 
 | |
|   void ListFieldsMayFailOnStripped(
 | |
|       const Message& message, bool should_fail,
 | |
|       std::vector<const FieldDescriptor*>* output) const;
 | |
| 
 | |
|   // Returns true if the message field is backed by a LazyField.
 | |
|   //
 | |
|   // A message field may be backed by a LazyField without the user annotation
 | |
|   // ([lazy = true]). While the user-annotated LazyField is lazily verified on
 | |
|   // first touch (i.e. failure on access rather than parsing if the LazyField is
 | |
|   // not initialized), the inferred LazyField is eagerly verified to avoid lazy
 | |
|   // parsing error at the cost of lower efficiency. When reflecting a message
 | |
|   // field, use this API instead of checking field->options().lazy().
 | |
|   bool IsLazyField(const FieldDescriptor* field) const {
 | |
|     return IsLazilyVerifiedLazyField(field) ||
 | |
|            IsEagerlyVerifiedLazyField(field);
 | |
|   }
 | |
| 
 | |
|   bool IsLazilyVerifiedLazyField(const FieldDescriptor* field) const;
 | |
|   bool IsEagerlyVerifiedLazyField(const FieldDescriptor* field) const;
 | |
| 
 | |
|   friend class FastReflectionMessageMutator;
 | |
| 
 | |
|   const Descriptor* const descriptor_;
 | |
|   const internal::ReflectionSchema schema_;
 | |
|   const DescriptorPool* const descriptor_pool_;
 | |
|   MessageFactory* const message_factory_;
 | |
| 
 | |
|   // Last non weak field index. This is an optimization when most weak fields
 | |
|   // are at the end of the containing message. If a message proto doesn't
 | |
|   // contain weak fields, then this field equals descriptor_->field_count().
 | |
|   int last_non_weak_field_index_;
 | |
| 
 | |
|   template <typename T, typename Enable>
 | |
|   friend class RepeatedFieldRef;
 | |
|   template <typename T, typename Enable>
 | |
|   friend class MutableRepeatedFieldRef;
 | |
|   friend class ::PROTOBUF_NAMESPACE_ID::MessageLayoutInspector;
 | |
|   friend class ::PROTOBUF_NAMESPACE_ID::AssignDescriptorsHelper;
 | |
|   friend class DynamicMessageFactory;
 | |
|   friend class GeneratedMessageReflectionTestHelper;
 | |
|   friend class python::MapReflectionFriend;
 | |
|   friend class python::MessageReflectionFriend;
 | |
|   friend class util::MessageDifferencer;
 | |
| #define GOOGLE_PROTOBUF_HAS_CEL_MAP_REFLECTION_FRIEND
 | |
|   friend class expr::CelMapReflectionFriend;
 | |
|   friend class internal::MapFieldReflectionTest;
 | |
|   friend class internal::MapKeySorter;
 | |
|   friend class internal::WireFormat;
 | |
|   friend class internal::ReflectionOps;
 | |
|   friend class internal::SwapFieldHelper;
 | |
|   // Needed for implementing text format for map.
 | |
|   friend class internal::MapFieldPrinterHelper;
 | |
| 
 | |
|   Reflection(const Descriptor* descriptor,
 | |
|              const internal::ReflectionSchema& schema,
 | |
|              const DescriptorPool* pool, MessageFactory* factory);
 | |
| 
 | |
|   // Special version for specialized implementations of string.  We can't
 | |
|   // call MutableRawRepeatedField directly here because we don't have access to
 | |
|   // FieldOptions::* which are defined in descriptor.pb.h.  Including that
 | |
|   // file here is not possible because it would cause a circular include cycle.
 | |
|   // We use 1 routine rather than 2 (const vs mutable) because it is private
 | |
|   // and mutable a repeated string field doesn't change the message.
 | |
|   void* MutableRawRepeatedString(Message* message, const FieldDescriptor* field,
 | |
|                                  bool is_string) const;
 | |
| 
 | |
|   friend class MapReflectionTester;
 | |
|   // Returns true if key is in map. Returns false if key is not in map field.
 | |
|   bool ContainsMapKey(const Message& message, const FieldDescriptor* field,
 | |
|                       const MapKey& key) const;
 | |
| 
 | |
|   // If key is in map field: Saves the value pointer to val and returns
 | |
|   // false. If key in not in map field: Insert the key into map, saves
 | |
|   // value pointer to val and returns true. Users are able to modify the
 | |
|   // map value by MapValueRef.
 | |
|   bool InsertOrLookupMapValue(Message* message, const FieldDescriptor* field,
 | |
|                               const MapKey& key, MapValueRef* val) const;
 | |
| 
 | |
|   // If key is in map field: Saves the value pointer to val and returns true.
 | |
|   // Returns false if key is not in map field. Users are NOT able to modify
 | |
|   // the value by MapValueConstRef.
 | |
|   bool LookupMapValue(const Message& message, const FieldDescriptor* field,
 | |
|                       const MapKey& key, MapValueConstRef* val) const;
 | |
|   bool LookupMapValue(const Message&, const FieldDescriptor*, const MapKey&,
 | |
|                       MapValueRef*) const = delete;
 | |
| 
 | |
|   // Delete and returns true if key is in the map field. Returns false
 | |
|   // otherwise.
 | |
|   bool DeleteMapValue(Message* message, const FieldDescriptor* field,
 | |
|                       const MapKey& key) const;
 | |
| 
 | |
|   // Returns a MapIterator referring to the first element in the map field.
 | |
|   // If the map field is empty, this function returns the same as
 | |
|   // reflection::MapEnd. Mutation to the field may invalidate the iterator.
 | |
|   MapIterator MapBegin(Message* message, const FieldDescriptor* field) const;
 | |
| 
 | |
|   // Returns a MapIterator referring to the theoretical element that would
 | |
|   // follow the last element in the map field. It does not point to any
 | |
|   // real element. Mutation to the field may invalidate the iterator.
 | |
|   MapIterator MapEnd(Message* message, const FieldDescriptor* field) const;
 | |
| 
 | |
|   // Get the number of <key, value> pair of a map field. The result may be
 | |
|   // different from FieldSize which can have duplicate keys.
 | |
|   int MapSize(const Message& message, const FieldDescriptor* field) const;
 | |
| 
 | |
|   // Help method for MapIterator.
 | |
|   friend class MapIterator;
 | |
|   friend class WireFormatForMapFieldTest;
 | |
|   internal::MapFieldBase* MutableMapData(Message* message,
 | |
|                                          const FieldDescriptor* field) const;
 | |
| 
 | |
|   const internal::MapFieldBase* GetMapData(const Message& message,
 | |
|                                            const FieldDescriptor* field) const;
 | |
| 
 | |
|   template <class T>
 | |
|   const T& GetRawNonOneof(const Message& message,
 | |
|                           const FieldDescriptor* field) const;
 | |
|   template <class T>
 | |
|   T* MutableRawNonOneof(Message* message, const FieldDescriptor* field) const;
 | |
| 
 | |
|   template <typename Type>
 | |
|   const Type& GetRaw(const Message& message,
 | |
|                      const FieldDescriptor* field) const;
 | |
|   template <typename Type>
 | |
|   inline Type* MutableRaw(Message* message, const FieldDescriptor* field) const;
 | |
|   template <typename Type>
 | |
|   const Type& DefaultRaw(const FieldDescriptor* field) const;
 | |
| 
 | |
|   const Message* GetDefaultMessageInstance(const FieldDescriptor* field) const;
 | |
| 
 | |
|   inline const uint32* GetHasBits(const Message& message) const;
 | |
|   inline uint32* MutableHasBits(Message* message) const;
 | |
|   inline uint32 GetOneofCase(const Message& message,
 | |
|                              const OneofDescriptor* oneof_descriptor) const;
 | |
|   inline uint32* MutableOneofCase(
 | |
|       Message* message, const OneofDescriptor* oneof_descriptor) const;
 | |
|   inline bool HasExtensionSet(const Message& /* message */) const {
 | |
|     return schema_.HasExtensionSet();
 | |
|   }
 | |
|   const internal::ExtensionSet& GetExtensionSet(const Message& message) const;
 | |
|   internal::ExtensionSet* MutableExtensionSet(Message* message) const;
 | |
| 
 | |
|   inline const internal::InternalMetadata& GetInternalMetadata(
 | |
|       const Message& message) const;
 | |
| 
 | |
|   internal::InternalMetadata* MutableInternalMetadata(Message* message) const;
 | |
| 
 | |
|   inline bool HasBit(const Message& message,
 | |
|                      const FieldDescriptor* field) const;
 | |
|   inline void SetBit(Message* message, const FieldDescriptor* field) const;
 | |
|   inline void ClearBit(Message* message, const FieldDescriptor* field) const;
 | |
|   inline void SwapBit(Message* message1, Message* message2,
 | |
|                       const FieldDescriptor* field) const;
 | |
| 
 | |
|   // Shallow-swap fields listed in fields vector of two messages. It is the
 | |
|   // caller's responsibility to make sure shallow swap is safe.
 | |
|   void UnsafeShallowSwapFields(
 | |
|       Message* message1, Message* message2,
 | |
|       const std::vector<const FieldDescriptor*>& fields) const;
 | |
| 
 | |
|   // This function only swaps the field. Should swap corresponding has_bit
 | |
|   // before or after using this function.
 | |
|   void SwapField(Message* message1, Message* message2,
 | |
|                  const FieldDescriptor* field) const;
 | |
| 
 | |
|   // Unsafe but shallow version of SwapField.
 | |
|   void UnsafeShallowSwapField(Message* message1, Message* message2,
 | |
|                               const FieldDescriptor* field) const;
 | |
| 
 | |
|   template <bool unsafe_shallow_swap>
 | |
|   void SwapFieldsImpl(Message* message1, Message* message2,
 | |
|                       const std::vector<const FieldDescriptor*>& fields) const;
 | |
| 
 | |
|   void SwapOneofField(Message* message1, Message* message2,
 | |
|                       const OneofDescriptor* oneof_descriptor) const;
 | |
| 
 | |
|   // Unsafe but shallow version of SwapOneofField.
 | |
|   void UnsafeShallowSwapOneofField(
 | |
|       Message* message1, Message* message2,
 | |
|       const OneofDescriptor* oneof_descriptor) const;
 | |
| 
 | |
|   inline bool HasOneofField(const Message& message,
 | |
|                             const FieldDescriptor* field) const;
 | |
|   inline void SetOneofCase(Message* message,
 | |
|                            const FieldDescriptor* field) const;
 | |
|   inline void ClearOneofField(Message* message,
 | |
|                               const FieldDescriptor* field) const;
 | |
| 
 | |
|   template <typename Type>
 | |
|   inline const Type& GetField(const Message& message,
 | |
|                               const FieldDescriptor* field) const;
 | |
|   template <typename Type>
 | |
|   inline void SetField(Message* message, const FieldDescriptor* field,
 | |
|                        const Type& value) const;
 | |
|   template <typename Type>
 | |
|   inline Type* MutableField(Message* message,
 | |
|                             const FieldDescriptor* field) const;
 | |
|   template <typename Type>
 | |
|   inline const Type& GetRepeatedField(const Message& message,
 | |
|                                       const FieldDescriptor* field,
 | |
|                                       int index) const;
 | |
|   template <typename Type>
 | |
|   inline const Type& GetRepeatedPtrField(const Message& message,
 | |
|                                          const FieldDescriptor* field,
 | |
|                                          int index) const;
 | |
|   template <typename Type>
 | |
|   inline void SetRepeatedField(Message* message, const FieldDescriptor* field,
 | |
|                                int index, Type value) const;
 | |
|   template <typename Type>
 | |
|   inline Type* MutableRepeatedField(Message* message,
 | |
|                                     const FieldDescriptor* field,
 | |
|                                     int index) const;
 | |
|   template <typename Type>
 | |
|   inline void AddField(Message* message, const FieldDescriptor* field,
 | |
|                        const Type& value) const;
 | |
|   template <typename Type>
 | |
|   inline Type* AddField(Message* message, const FieldDescriptor* field) const;
 | |
| 
 | |
|   int GetExtensionNumberOrDie(const Descriptor* type) const;
 | |
| 
 | |
|   // Internal versions of EnumValue API perform no checking. Called after checks
 | |
|   // by public methods.
 | |
|   void SetEnumValueInternal(Message* message, const FieldDescriptor* field,
 | |
|                             int value) const;
 | |
|   void SetRepeatedEnumValueInternal(Message* message,
 | |
|                                     const FieldDescriptor* field, int index,
 | |
|                                     int value) const;
 | |
|   void AddEnumValueInternal(Message* message, const FieldDescriptor* field,
 | |
|                             int value) const;
 | |
| 
 | |
|   friend inline  // inline so nobody can call this function.
 | |
|       void
 | |
|       RegisterAllTypesInternal(const Metadata* file_level_metadata, int size);
 | |
|   friend inline const char* ParseLenDelim(int field_number,
 | |
|                                           const FieldDescriptor* field,
 | |
|                                           Message* msg,
 | |
|                                           const Reflection* reflection,
 | |
|                                           const char* ptr,
 | |
|                                           internal::ParseContext* ctx);
 | |
|   friend inline const char* ParsePackedField(const FieldDescriptor* field,
 | |
|                                              Message* msg,
 | |
|                                              const Reflection* reflection,
 | |
|                                              const char* ptr,
 | |
|                                              internal::ParseContext* ctx);
 | |
| 
 | |
|   GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(Reflection);
 | |
| };
 | |
| 
 | |
| // Abstract interface for a factory for message objects.
 | |
| class PROTOBUF_EXPORT MessageFactory {
 | |
|  public:
 | |
|   inline MessageFactory() {}
 | |
|   virtual ~MessageFactory();
 | |
| 
 | |
|   // Given a Descriptor, gets or constructs the default (prototype) Message
 | |
|   // of that type.  You can then call that message's New() method to construct
 | |
|   // a mutable message of that type.
 | |
|   //
 | |
|   // Calling this method twice with the same Descriptor returns the same
 | |
|   // object.  The returned object remains property of the factory.  Also, any
 | |
|   // objects created by calling the prototype's New() method share some data
 | |
|   // with the prototype, so these must be destroyed before the MessageFactory
 | |
|   // is destroyed.
 | |
|   //
 | |
|   // The given descriptor must outlive the returned message, and hence must
 | |
|   // outlive the MessageFactory.
 | |
|   //
 | |
|   // Some implementations do not support all types.  GetPrototype() will
 | |
|   // return nullptr if the descriptor passed in is not supported.
 | |
|   //
 | |
|   // This method may or may not be thread-safe depending on the implementation.
 | |
|   // Each implementation should document its own degree thread-safety.
 | |
|   virtual const Message* GetPrototype(const Descriptor* type) = 0;
 | |
| 
 | |
|   // Gets a MessageFactory which supports all generated, compiled-in messages.
 | |
|   // In other words, for any compiled-in type FooMessage, the following is true:
 | |
|   //   MessageFactory::generated_factory()->GetPrototype(
 | |
|   //     FooMessage::descriptor()) == FooMessage::default_instance()
 | |
|   // This factory supports all types which are found in
 | |
|   // DescriptorPool::generated_pool().  If given a descriptor from any other
 | |
|   // pool, GetPrototype() will return nullptr.  (You can also check if a
 | |
|   // descriptor is for a generated message by checking if
 | |
|   // descriptor->file()->pool() == DescriptorPool::generated_pool().)
 | |
|   //
 | |
|   // This factory is 100% thread-safe; calling GetPrototype() does not modify
 | |
|   // any shared data.
 | |
|   //
 | |
|   // This factory is a singleton.  The caller must not delete the object.
 | |
|   static MessageFactory* generated_factory();
 | |
| 
 | |
|   // For internal use only:  Registers a .proto file at static initialization
 | |
|   // time, to be placed in generated_factory.  The first time GetPrototype()
 | |
|   // is called with a descriptor from this file, |register_messages| will be
 | |
|   // called, with the file name as the parameter.  It must call
 | |
|   // InternalRegisterGeneratedMessage() (below) to register each message type
 | |
|   // in the file.  This strange mechanism is necessary because descriptors are
 | |
|   // built lazily, so we can't register types by their descriptor until we
 | |
|   // know that the descriptor exists.  |filename| must be a permanent string.
 | |
|   static void InternalRegisterGeneratedFile(
 | |
|       const google::protobuf::internal::DescriptorTable* table);
 | |
| 
 | |
|   // For internal use only:  Registers a message type.  Called only by the
 | |
|   // functions which are registered with InternalRegisterGeneratedFile(),
 | |
|   // above.
 | |
|   static void InternalRegisterGeneratedMessage(const Descriptor* descriptor,
 | |
|                                                const Message* prototype);
 | |
| 
 | |
| 
 | |
|  private:
 | |
|   GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(MessageFactory);
 | |
| };
 | |
| 
 | |
| #define DECLARE_GET_REPEATED_FIELD(TYPE)                           \
 | |
|   template <>                                                      \
 | |
|   PROTOBUF_EXPORT const RepeatedField<TYPE>&                       \
 | |
|   Reflection::GetRepeatedFieldInternal<TYPE>(                      \
 | |
|       const Message& message, const FieldDescriptor* field) const; \
 | |
|                                                                    \
 | |
|   template <>                                                      \
 | |
|   PROTOBUF_EXPORT RepeatedField<TYPE>*                             \
 | |
|   Reflection::MutableRepeatedFieldInternal<TYPE>(                  \
 | |
|       Message * message, const FieldDescriptor* field) const;
 | |
| 
 | |
| DECLARE_GET_REPEATED_FIELD(int32)
 | |
| DECLARE_GET_REPEATED_FIELD(int64)
 | |
| DECLARE_GET_REPEATED_FIELD(uint32)
 | |
| DECLARE_GET_REPEATED_FIELD(uint64)
 | |
| DECLARE_GET_REPEATED_FIELD(float)
 | |
| DECLARE_GET_REPEATED_FIELD(double)
 | |
| DECLARE_GET_REPEATED_FIELD(bool)
 | |
| 
 | |
| #undef DECLARE_GET_REPEATED_FIELD
 | |
| 
 | |
| // Tries to downcast this message to a generated message type.  Returns nullptr
 | |
| // if this class is not an instance of T.  This works even if RTTI is disabled.
 | |
| //
 | |
| // This also has the effect of creating a strong reference to T that will
 | |
| // prevent the linker from stripping it out at link time.  This can be important
 | |
| // if you are using a DynamicMessageFactory that delegates to the generated
 | |
| // factory.
 | |
| template <typename T>
 | |
| const T* DynamicCastToGenerated(const Message* from) {
 | |
|   // Compile-time assert that T is a generated type that has a
 | |
|   // default_instance() accessor, but avoid actually calling it.
 | |
|   const T& (*get_default_instance)() = &T::default_instance;
 | |
|   (void)get_default_instance;
 | |
| 
 | |
|   // Compile-time assert that T is a subclass of google::protobuf::Message.
 | |
|   const Message* unused = static_cast<T*>(nullptr);
 | |
|   (void)unused;
 | |
| 
 | |
| #if PROTOBUF_RTTI
 | |
|   return dynamic_cast<const T*>(from);
 | |
| #else
 | |
|   bool ok = from != nullptr &&
 | |
|             T::default_instance().GetReflection() == from->GetReflection();
 | |
|   return ok ? down_cast<const T*>(from) : nullptr;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| T* DynamicCastToGenerated(Message* from) {
 | |
|   const Message* message_const = from;
 | |
|   return const_cast<T*>(DynamicCastToGenerated<T>(message_const));
 | |
| }
 | |
| 
 | |
| // Call this function to ensure that this message's reflection is linked into
 | |
| // the binary:
 | |
| //
 | |
| //   google::protobuf::LinkMessageReflection<FooMessage>();
 | |
| //
 | |
| // This will ensure that the following lookup will succeed:
 | |
| //
 | |
| //   DescriptorPool::generated_pool()->FindMessageTypeByName("FooMessage");
 | |
| //
 | |
| // As a side-effect, it will also guarantee that anything else from the same
 | |
| // .proto file will also be available for lookup in the generated pool.
 | |
| //
 | |
| // This function does not actually register the message, so it does not need
 | |
| // to be called before the lookup.  However it does need to occur in a function
 | |
| // that cannot be stripped from the binary (ie. it must be reachable from main).
 | |
| //
 | |
| // Best practice is to call this function as close as possible to where the
 | |
| // reflection is actually needed.  This function is very cheap to call, so you
 | |
| // should not need to worry about its runtime overhead except in the tightest
 | |
| // of loops (on x86-64 it compiles into two "mov" instructions).
 | |
| template <typename T>
 | |
| void LinkMessageReflection() {
 | |
|   internal::StrongReference(T::default_instance);
 | |
| }
 | |
| 
 | |
| // =============================================================================
 | |
| // Implementation details for {Get,Mutable}RawRepeatedPtrField.  We provide
 | |
| // specializations for <std::string>, <StringPieceField> and <Message> and
 | |
| // handle everything else with the default template which will match any type
 | |
| // having a method with signature "static const google::protobuf::Descriptor*
 | |
| // descriptor()". Such a type presumably is a descendant of google::protobuf::Message.
 | |
| 
 | |
| template <>
 | |
| inline const RepeatedPtrField<std::string>&
 | |
| Reflection::GetRepeatedPtrFieldInternal<std::string>(
 | |
|     const Message& message, const FieldDescriptor* field) const {
 | |
|   return *static_cast<RepeatedPtrField<std::string>*>(
 | |
|       MutableRawRepeatedString(const_cast<Message*>(&message), field, true));
 | |
| }
 | |
| 
 | |
| template <>
 | |
| inline RepeatedPtrField<std::string>*
 | |
| Reflection::MutableRepeatedPtrFieldInternal<std::string>(
 | |
|     Message* message, const FieldDescriptor* field) const {
 | |
|   return static_cast<RepeatedPtrField<std::string>*>(
 | |
|       MutableRawRepeatedString(message, field, true));
 | |
| }
 | |
| 
 | |
| 
 | |
| // -----
 | |
| 
 | |
| template <>
 | |
| inline const RepeatedPtrField<Message>& Reflection::GetRepeatedPtrFieldInternal(
 | |
|     const Message& message, const FieldDescriptor* field) const {
 | |
|   return *static_cast<const RepeatedPtrField<Message>*>(GetRawRepeatedField(
 | |
|       message, field, FieldDescriptor::CPPTYPE_MESSAGE, -1, nullptr));
 | |
| }
 | |
| 
 | |
| template <>
 | |
| inline RepeatedPtrField<Message>* Reflection::MutableRepeatedPtrFieldInternal(
 | |
|     Message* message, const FieldDescriptor* field) const {
 | |
|   return static_cast<RepeatedPtrField<Message>*>(MutableRawRepeatedField(
 | |
|       message, field, FieldDescriptor::CPPTYPE_MESSAGE, -1, nullptr));
 | |
| }
 | |
| 
 | |
| template <typename PB>
 | |
| inline const RepeatedPtrField<PB>& Reflection::GetRepeatedPtrFieldInternal(
 | |
|     const Message& message, const FieldDescriptor* field) const {
 | |
|   return *static_cast<const RepeatedPtrField<PB>*>(
 | |
|       GetRawRepeatedField(message, field, FieldDescriptor::CPPTYPE_MESSAGE, -1,
 | |
|                           PB::default_instance().GetDescriptor()));
 | |
| }
 | |
| 
 | |
| template <typename PB>
 | |
| inline RepeatedPtrField<PB>* Reflection::MutableRepeatedPtrFieldInternal(
 | |
|     Message* message, const FieldDescriptor* field) const {
 | |
|   return static_cast<RepeatedPtrField<PB>*>(
 | |
|       MutableRawRepeatedField(message, field, FieldDescriptor::CPPTYPE_MESSAGE,
 | |
|                               -1, PB::default_instance().GetDescriptor()));
 | |
| }
 | |
| 
 | |
| template <typename Type>
 | |
| const Type& Reflection::DefaultRaw(const FieldDescriptor* field) const {
 | |
|   return *reinterpret_cast<const Type*>(schema_.GetFieldDefault(field));
 | |
| }
 | |
| }  // namespace protobuf
 | |
| }  // namespace google
 | |
| 
 | |
| #include <google/protobuf/port_undef.inc>
 | |
| 
 | |
| #endif  // GOOGLE_PROTOBUF_MESSAGE_H__
 |