347 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			347 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
// This file is part of Eigen, a lightweight C++ template library
 | 
						|
// for linear algebra.
 | 
						|
//
 | 
						|
// Copyright (C) 2009 Claire Maurice
 | 
						|
// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
 | 
						|
// Copyright (C) 2010,2012 Jitse Niesen <jitse@maths.leeds.ac.uk>
 | 
						|
//
 | 
						|
// This Source Code Form is subject to the terms of the Mozilla
 | 
						|
// Public License v. 2.0. If a copy of the MPL was not distributed
 | 
						|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
 | 
						|
 | 
						|
#ifndef EIGEN_COMPLEX_EIGEN_SOLVER_H
 | 
						|
#define EIGEN_COMPLEX_EIGEN_SOLVER_H
 | 
						|
 | 
						|
#include "./ComplexSchur.h"
 | 
						|
 | 
						|
namespace Eigen { 
 | 
						|
 | 
						|
/** \eigenvalues_module \ingroup Eigenvalues_Module
 | 
						|
  *
 | 
						|
  *
 | 
						|
  * \class ComplexEigenSolver
 | 
						|
  *
 | 
						|
  * \brief Computes eigenvalues and eigenvectors of general complex matrices
 | 
						|
  *
 | 
						|
  * \tparam _MatrixType the type of the matrix of which we are
 | 
						|
  * computing the eigendecomposition; this is expected to be an
 | 
						|
  * instantiation of the Matrix class template.
 | 
						|
  *
 | 
						|
  * The eigenvalues and eigenvectors of a matrix \f$ A \f$ are scalars
 | 
						|
  * \f$ \lambda \f$ and vectors \f$ v \f$ such that \f$ Av = \lambda v
 | 
						|
  * \f$.  If \f$ D \f$ is a diagonal matrix with the eigenvalues on
 | 
						|
  * the diagonal, and \f$ V \f$ is a matrix with the eigenvectors as
 | 
						|
  * its columns, then \f$ A V = V D \f$. The matrix \f$ V \f$ is
 | 
						|
  * almost always invertible, in which case we have \f$ A = V D V^{-1}
 | 
						|
  * \f$. This is called the eigendecomposition.
 | 
						|
  *
 | 
						|
  * The main function in this class is compute(), which computes the
 | 
						|
  * eigenvalues and eigenvectors of a given function. The
 | 
						|
  * documentation for that function contains an example showing the
 | 
						|
  * main features of the class.
 | 
						|
  *
 | 
						|
  * \sa class EigenSolver, class SelfAdjointEigenSolver
 | 
						|
  */
 | 
						|
template<typename _MatrixType> class ComplexEigenSolver
 | 
						|
{
 | 
						|
  public:
 | 
						|
 | 
						|
    /** \brief Synonym for the template parameter \p _MatrixType. */
 | 
						|
    typedef _MatrixType MatrixType;
 | 
						|
 | 
						|
    enum {
 | 
						|
      RowsAtCompileTime = MatrixType::RowsAtCompileTime,
 | 
						|
      ColsAtCompileTime = MatrixType::ColsAtCompileTime,
 | 
						|
      Options = MatrixType::Options,
 | 
						|
      MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
 | 
						|
      MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
 | 
						|
    };
 | 
						|
 | 
						|
    /** \brief Scalar type for matrices of type #MatrixType. */
 | 
						|
    typedef typename MatrixType::Scalar Scalar;
 | 
						|
    typedef typename NumTraits<Scalar>::Real RealScalar;
 | 
						|
    typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3
 | 
						|
 | 
						|
    /** \brief Complex scalar type for #MatrixType.
 | 
						|
      *
 | 
						|
      * This is \c std::complex<Scalar> if #Scalar is real (e.g.,
 | 
						|
      * \c float or \c double) and just \c Scalar if #Scalar is
 | 
						|
      * complex.
 | 
						|
      */
 | 
						|
    typedef std::complex<RealScalar> ComplexScalar;
 | 
						|
 | 
						|
    /** \brief Type for vector of eigenvalues as returned by eigenvalues().
 | 
						|
      *
 | 
						|
      * This is a column vector with entries of type #ComplexScalar.
 | 
						|
      * The length of the vector is the size of #MatrixType.
 | 
						|
      */
 | 
						|
    typedef Matrix<ComplexScalar, ColsAtCompileTime, 1, Options&(~RowMajor), MaxColsAtCompileTime, 1> EigenvalueType;
 | 
						|
 | 
						|
    /** \brief Type for matrix of eigenvectors as returned by eigenvectors().
 | 
						|
      *
 | 
						|
      * This is a square matrix with entries of type #ComplexScalar.
 | 
						|
      * The size is the same as the size of #MatrixType.
 | 
						|
      */
 | 
						|
    typedef Matrix<ComplexScalar, RowsAtCompileTime, ColsAtCompileTime, Options, MaxRowsAtCompileTime, MaxColsAtCompileTime> EigenvectorType;
 | 
						|
 | 
						|
    /** \brief Default constructor.
 | 
						|
      *
 | 
						|
      * The default constructor is useful in cases in which the user intends to
 | 
						|
      * perform decompositions via compute().
 | 
						|
      */
 | 
						|
    ComplexEigenSolver()
 | 
						|
            : m_eivec(),
 | 
						|
              m_eivalues(),
 | 
						|
              m_schur(),
 | 
						|
              m_isInitialized(false),
 | 
						|
              m_eigenvectorsOk(false),
 | 
						|
              m_matX()
 | 
						|
    {}
 | 
						|
 | 
						|
    /** \brief Default Constructor with memory preallocation
 | 
						|
      *
 | 
						|
      * Like the default constructor but with preallocation of the internal data
 | 
						|
      * according to the specified problem \a size.
 | 
						|
      * \sa ComplexEigenSolver()
 | 
						|
      */
 | 
						|
    explicit ComplexEigenSolver(Index size)
 | 
						|
            : m_eivec(size, size),
 | 
						|
              m_eivalues(size),
 | 
						|
              m_schur(size),
 | 
						|
              m_isInitialized(false),
 | 
						|
              m_eigenvectorsOk(false),
 | 
						|
              m_matX(size, size)
 | 
						|
    {}
 | 
						|
 | 
						|
    /** \brief Constructor; computes eigendecomposition of given matrix.
 | 
						|
      *
 | 
						|
      * \param[in]  matrix  Square matrix whose eigendecomposition is to be computed.
 | 
						|
      * \param[in]  computeEigenvectors  If true, both the eigenvectors and the
 | 
						|
      *    eigenvalues are computed; if false, only the eigenvalues are
 | 
						|
      *    computed.
 | 
						|
      *
 | 
						|
      * This constructor calls compute() to compute the eigendecomposition.
 | 
						|
      */
 | 
						|
    template<typename InputType>
 | 
						|
    explicit ComplexEigenSolver(const EigenBase<InputType>& matrix, bool computeEigenvectors = true)
 | 
						|
            : m_eivec(matrix.rows(),matrix.cols()),
 | 
						|
              m_eivalues(matrix.cols()),
 | 
						|
              m_schur(matrix.rows()),
 | 
						|
              m_isInitialized(false),
 | 
						|
              m_eigenvectorsOk(false),
 | 
						|
              m_matX(matrix.rows(),matrix.cols())
 | 
						|
    {
 | 
						|
      compute(matrix.derived(), computeEigenvectors);
 | 
						|
    }
 | 
						|
 | 
						|
    /** \brief Returns the eigenvectors of given matrix.
 | 
						|
      *
 | 
						|
      * \returns  A const reference to the matrix whose columns are the eigenvectors.
 | 
						|
      *
 | 
						|
      * \pre Either the constructor
 | 
						|
      * ComplexEigenSolver(const MatrixType& matrix, bool) or the member
 | 
						|
      * function compute(const MatrixType& matrix, bool) has been called before
 | 
						|
      * to compute the eigendecomposition of a matrix, and
 | 
						|
      * \p computeEigenvectors was set to true (the default).
 | 
						|
      *
 | 
						|
      * This function returns a matrix whose columns are the eigenvectors. Column
 | 
						|
      * \f$ k \f$ is an eigenvector corresponding to eigenvalue number \f$ k
 | 
						|
      * \f$ as returned by eigenvalues().  The eigenvectors are normalized to
 | 
						|
      * have (Euclidean) norm equal to one. The matrix returned by this
 | 
						|
      * function is the matrix \f$ V \f$ in the eigendecomposition \f$ A = V D
 | 
						|
      * V^{-1} \f$, if it exists.
 | 
						|
      *
 | 
						|
      * Example: \include ComplexEigenSolver_eigenvectors.cpp
 | 
						|
      * Output: \verbinclude ComplexEigenSolver_eigenvectors.out
 | 
						|
      */
 | 
						|
    const EigenvectorType& eigenvectors() const
 | 
						|
    {
 | 
						|
      eigen_assert(m_isInitialized && "ComplexEigenSolver is not initialized.");
 | 
						|
      eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
 | 
						|
      return m_eivec;
 | 
						|
    }
 | 
						|
 | 
						|
    /** \brief Returns the eigenvalues of given matrix.
 | 
						|
      *
 | 
						|
      * \returns A const reference to the column vector containing the eigenvalues.
 | 
						|
      *
 | 
						|
      * \pre Either the constructor
 | 
						|
      * ComplexEigenSolver(const MatrixType& matrix, bool) or the member
 | 
						|
      * function compute(const MatrixType& matrix, bool) has been called before
 | 
						|
      * to compute the eigendecomposition of a matrix.
 | 
						|
      *
 | 
						|
      * This function returns a column vector containing the
 | 
						|
      * eigenvalues. Eigenvalues are repeated according to their
 | 
						|
      * algebraic multiplicity, so there are as many eigenvalues as
 | 
						|
      * rows in the matrix. The eigenvalues are not sorted in any particular
 | 
						|
      * order.
 | 
						|
      *
 | 
						|
      * Example: \include ComplexEigenSolver_eigenvalues.cpp
 | 
						|
      * Output: \verbinclude ComplexEigenSolver_eigenvalues.out
 | 
						|
      */
 | 
						|
    const EigenvalueType& eigenvalues() const
 | 
						|
    {
 | 
						|
      eigen_assert(m_isInitialized && "ComplexEigenSolver is not initialized.");
 | 
						|
      return m_eivalues;
 | 
						|
    }
 | 
						|
 | 
						|
    /** \brief Computes eigendecomposition of given matrix.
 | 
						|
      *
 | 
						|
      * \param[in]  matrix  Square matrix whose eigendecomposition is to be computed.
 | 
						|
      * \param[in]  computeEigenvectors  If true, both the eigenvectors and the
 | 
						|
      *    eigenvalues are computed; if false, only the eigenvalues are
 | 
						|
      *    computed.
 | 
						|
      * \returns    Reference to \c *this
 | 
						|
      *
 | 
						|
      * This function computes the eigenvalues of the complex matrix \p matrix.
 | 
						|
      * The eigenvalues() function can be used to retrieve them.  If
 | 
						|
      * \p computeEigenvectors is true, then the eigenvectors are also computed
 | 
						|
      * and can be retrieved by calling eigenvectors().
 | 
						|
      *
 | 
						|
      * The matrix is first reduced to Schur form using the
 | 
						|
      * ComplexSchur class. The Schur decomposition is then used to
 | 
						|
      * compute the eigenvalues and eigenvectors.
 | 
						|
      *
 | 
						|
      * The cost of the computation is dominated by the cost of the
 | 
						|
      * Schur decomposition, which is \f$ O(n^3) \f$ where \f$ n \f$
 | 
						|
      * is the size of the matrix.
 | 
						|
      *
 | 
						|
      * Example: \include ComplexEigenSolver_compute.cpp
 | 
						|
      * Output: \verbinclude ComplexEigenSolver_compute.out
 | 
						|
      */
 | 
						|
    template<typename InputType>
 | 
						|
    ComplexEigenSolver& compute(const EigenBase<InputType>& matrix, bool computeEigenvectors = true);
 | 
						|
 | 
						|
    /** \brief Reports whether previous computation was successful.
 | 
						|
      *
 | 
						|
      * \returns \c Success if computation was succesful, \c NoConvergence otherwise.
 | 
						|
      */
 | 
						|
    ComputationInfo info() const
 | 
						|
    {
 | 
						|
      eigen_assert(m_isInitialized && "ComplexEigenSolver is not initialized.");
 | 
						|
      return m_schur.info();
 | 
						|
    }
 | 
						|
 | 
						|
    /** \brief Sets the maximum number of iterations allowed. */
 | 
						|
    ComplexEigenSolver& setMaxIterations(Index maxIters)
 | 
						|
    {
 | 
						|
      m_schur.setMaxIterations(maxIters);
 | 
						|
      return *this;
 | 
						|
    }
 | 
						|
 | 
						|
    /** \brief Returns the maximum number of iterations. */
 | 
						|
    Index getMaxIterations()
 | 
						|
    {
 | 
						|
      return m_schur.getMaxIterations();
 | 
						|
    }
 | 
						|
 | 
						|
  protected:
 | 
						|
    
 | 
						|
    static void check_template_parameters()
 | 
						|
    {
 | 
						|
      EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
 | 
						|
    }
 | 
						|
    
 | 
						|
    EigenvectorType m_eivec;
 | 
						|
    EigenvalueType m_eivalues;
 | 
						|
    ComplexSchur<MatrixType> m_schur;
 | 
						|
    bool m_isInitialized;
 | 
						|
    bool m_eigenvectorsOk;
 | 
						|
    EigenvectorType m_matX;
 | 
						|
 | 
						|
  private:
 | 
						|
    void doComputeEigenvectors(RealScalar matrixnorm);
 | 
						|
    void sortEigenvalues(bool computeEigenvectors);
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
template<typename MatrixType>
 | 
						|
template<typename InputType>
 | 
						|
ComplexEigenSolver<MatrixType>& 
 | 
						|
ComplexEigenSolver<MatrixType>::compute(const EigenBase<InputType>& matrix, bool computeEigenvectors)
 | 
						|
{
 | 
						|
  check_template_parameters();
 | 
						|
  
 | 
						|
  // this code is inspired from Jampack
 | 
						|
  eigen_assert(matrix.cols() == matrix.rows());
 | 
						|
 | 
						|
  // Do a complex Schur decomposition, A = U T U^*
 | 
						|
  // The eigenvalues are on the diagonal of T.
 | 
						|
  m_schur.compute(matrix.derived(), computeEigenvectors);
 | 
						|
 | 
						|
  if(m_schur.info() == Success)
 | 
						|
  {
 | 
						|
    m_eivalues = m_schur.matrixT().diagonal();
 | 
						|
    if(computeEigenvectors)
 | 
						|
      doComputeEigenvectors(m_schur.matrixT().norm());
 | 
						|
    sortEigenvalues(computeEigenvectors);
 | 
						|
  }
 | 
						|
 | 
						|
  m_isInitialized = true;
 | 
						|
  m_eigenvectorsOk = computeEigenvectors;
 | 
						|
  return *this;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
template<typename MatrixType>
 | 
						|
void ComplexEigenSolver<MatrixType>::doComputeEigenvectors(RealScalar matrixnorm)
 | 
						|
{
 | 
						|
  const Index n = m_eivalues.size();
 | 
						|
 | 
						|
  matrixnorm = numext::maxi(matrixnorm,(std::numeric_limits<RealScalar>::min)());
 | 
						|
 | 
						|
  // Compute X such that T = X D X^(-1), where D is the diagonal of T.
 | 
						|
  // The matrix X is unit triangular.
 | 
						|
  m_matX = EigenvectorType::Zero(n, n);
 | 
						|
  for(Index k=n-1 ; k>=0 ; k--)
 | 
						|
  {
 | 
						|
    m_matX.coeffRef(k,k) = ComplexScalar(1.0,0.0);
 | 
						|
    // Compute X(i,k) using the (i,k) entry of the equation X T = D X
 | 
						|
    for(Index i=k-1 ; i>=0 ; i--)
 | 
						|
    {
 | 
						|
      m_matX.coeffRef(i,k) = -m_schur.matrixT().coeff(i,k);
 | 
						|
      if(k-i-1>0)
 | 
						|
        m_matX.coeffRef(i,k) -= (m_schur.matrixT().row(i).segment(i+1,k-i-1) * m_matX.col(k).segment(i+1,k-i-1)).value();
 | 
						|
      ComplexScalar z = m_schur.matrixT().coeff(i,i) - m_schur.matrixT().coeff(k,k);
 | 
						|
      if(z==ComplexScalar(0))
 | 
						|
      {
 | 
						|
        // If the i-th and k-th eigenvalue are equal, then z equals 0.
 | 
						|
        // Use a small value instead, to prevent division by zero.
 | 
						|
        numext::real_ref(z) = NumTraits<RealScalar>::epsilon() * matrixnorm;
 | 
						|
      }
 | 
						|
      m_matX.coeffRef(i,k) = m_matX.coeff(i,k) / z;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Compute V as V = U X; now A = U T U^* = U X D X^(-1) U^* = V D V^(-1)
 | 
						|
  m_eivec.noalias() = m_schur.matrixU() * m_matX;
 | 
						|
  // .. and normalize the eigenvectors
 | 
						|
  for(Index k=0 ; k<n ; k++)
 | 
						|
  {
 | 
						|
    m_eivec.col(k).normalize();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
template<typename MatrixType>
 | 
						|
void ComplexEigenSolver<MatrixType>::sortEigenvalues(bool computeEigenvectors)
 | 
						|
{
 | 
						|
  const Index n =  m_eivalues.size();
 | 
						|
  for (Index i=0; i<n; i++)
 | 
						|
  {
 | 
						|
    Index k;
 | 
						|
    m_eivalues.cwiseAbs().tail(n-i).minCoeff(&k);
 | 
						|
    if (k != 0)
 | 
						|
    {
 | 
						|
      k += i;
 | 
						|
      std::swap(m_eivalues[k],m_eivalues[i]);
 | 
						|
      if(computeEigenvectors)
 | 
						|
	m_eivec.col(i).swap(m_eivec.col(k));
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
} // end namespace Eigen
 | 
						|
 | 
						|
#endif // EIGEN_COMPLEX_EIGEN_SOLVER_H
 |