// Protocol Buffers - Google's data interchange format // Copyright 2008 Google Inc. All rights reserved. // https://developers.google.com/protocol-buffers/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // from google3/strings/strutil.h #ifndef GOOGLE_PROTOBUF_STUBS_STRUTIL_H__ #define GOOGLE_PROTOBUF_STUBS_STRUTIL_H__ #include #include #include #include #include #include namespace google { namespace protobuf { #if defined(_MSC_VER) && _MSC_VER < 1800 #define strtoll _strtoi64 #define strtoull _strtoui64 #elif defined(__DECCXX) && defined(__osf__) // HP C++ on Tru64 does not have strtoll, but strtol is already 64-bit. #define strtoll strtol #define strtoull strtoul #endif // ---------------------------------------------------------------------- // ascii_isalnum() // Check if an ASCII character is alphanumeric. We can't use ctype's // isalnum() because it is affected by locale. This function is applied // to identifiers in the protocol buffer language, not to natural-language // strings, so locale should not be taken into account. // ascii_isdigit() // Like above, but only accepts digits. // ascii_isspace() // Check if the character is a space character. // ---------------------------------------------------------------------- inline bool ascii_isalnum(char c) { return ('a' <= c && c <= 'z') || ('A' <= c && c <= 'Z') || ('0' <= c && c <= '9'); } inline bool ascii_isdigit(char c) { return ('0' <= c && c <= '9'); } inline bool ascii_isspace(char c) { return c == ' ' || c == '\t' || c == '\n' || c == '\v' || c == '\f' || c == '\r'; } inline bool ascii_isupper(char c) { return c >= 'A' && c <= 'Z'; } inline bool ascii_islower(char c) { return c >= 'a' && c <= 'z'; } inline char ascii_toupper(char c) { return ascii_islower(c) ? c - ('a' - 'A') : c; } inline char ascii_tolower(char c) { return ascii_isupper(c) ? c + ('a' - 'A') : c; } inline int hex_digit_to_int(char c) { /* Assume ASCII. */ int x = static_cast(c); if (x > '9') { x += 9; } return x & 0xf; } // ---------------------------------------------------------------------- // HasPrefixString() // Check if a string begins with a given prefix. // StripPrefixString() // Given a string and a putative prefix, returns the string minus the // prefix string if the prefix matches, otherwise the original // string. // ---------------------------------------------------------------------- inline bool HasPrefixString(StringPiece str, StringPiece prefix) { return str.size() >= prefix.size() && memcmp(str.data(), prefix.data(), prefix.size()) == 0; } inline std::string StripPrefixString(const std::string& str, const std::string& prefix) { if (HasPrefixString(str, prefix)) { return str.substr(prefix.size()); } else { return str; } } // ---------------------------------------------------------------------- // HasSuffixString() // Return true if str ends in suffix. // StripSuffixString() // Given a string and a putative suffix, returns the string minus the // suffix string if the suffix matches, otherwise the original // string. // ---------------------------------------------------------------------- inline bool HasSuffixString(StringPiece str, StringPiece suffix) { return str.size() >= suffix.size() && memcmp(str.data() + str.size() - suffix.size(), suffix.data(), suffix.size()) == 0; } inline std::string StripSuffixString(const std::string& str, const std::string& suffix) { if (HasSuffixString(str, suffix)) { return str.substr(0, str.size() - suffix.size()); } else { return str; } } // ---------------------------------------------------------------------- // ReplaceCharacters // Replaces any occurrence of the character 'remove' (or the characters // in 'remove') with the character 'replacewith'. // Good for keeping html characters or protocol characters (\t) out // of places where they might cause a problem. // StripWhitespace // Removes whitespaces from both ends of the given string. // ---------------------------------------------------------------------- PROTOBUF_EXPORT void ReplaceCharacters(std::string* s, const char* remove, char replacewith); PROTOBUF_EXPORT void StripWhitespace(std::string* s); // ---------------------------------------------------------------------- // LowerString() // UpperString() // ToUpper() // Convert the characters in "s" to lowercase or uppercase. ASCII-only: // these functions intentionally ignore locale because they are applied to // identifiers used in the Protocol Buffer language, not to natural-language // strings. // ---------------------------------------------------------------------- inline void LowerString(std::string* s) { std::string::iterator end = s->end(); for (std::string::iterator i = s->begin(); i != end; ++i) { // tolower() changes based on locale. We don't want this! if ('A' <= *i && *i <= 'Z') *i += 'a' - 'A'; } } inline void UpperString(std::string* s) { std::string::iterator end = s->end(); for (std::string::iterator i = s->begin(); i != end; ++i) { // toupper() changes based on locale. We don't want this! if ('a' <= *i && *i <= 'z') *i += 'A' - 'a'; } } inline void ToUpper(std::string* s) { UpperString(s); } inline std::string ToUpper(const std::string& s) { std::string out = s; UpperString(&out); return out; } // ---------------------------------------------------------------------- // StringReplace() // Give me a string and two patterns "old" and "new", and I replace // the first instance of "old" in the string with "new", if it // exists. RETURN a new string, regardless of whether the replacement // happened or not. // ---------------------------------------------------------------------- PROTOBUF_EXPORT std::string StringReplace(const std::string& s, const std::string& oldsub, const std::string& newsub, bool replace_all); // ---------------------------------------------------------------------- // SplitStringUsing() // Split a string using a character delimiter. Append the components // to 'result'. If there are consecutive delimiters, this function skips // over all of them. // ---------------------------------------------------------------------- PROTOBUF_EXPORT void SplitStringUsing(StringPiece full, const char* delim, std::vector* res); // Split a string using one or more byte delimiters, presented // as a nul-terminated c string. Append the components to 'result'. // If there are consecutive delimiters, this function will return // corresponding empty strings. If you want to drop the empty // strings, try SplitStringUsing(). // // If "full" is the empty string, yields an empty string as the only value. // ---------------------------------------------------------------------- PROTOBUF_EXPORT void SplitStringAllowEmpty(StringPiece full, const char* delim, std::vector* result); // ---------------------------------------------------------------------- // Split() // Split a string using a character delimiter. // ---------------------------------------------------------------------- inline std::vector Split(StringPiece full, const char* delim, bool skip_empty = true) { std::vector result; if (skip_empty) { SplitStringUsing(full, delim, &result); } else { SplitStringAllowEmpty(full, delim, &result); } return result; } // ---------------------------------------------------------------------- // JoinStrings() // These methods concatenate a vector of strings into a C++ string, using // the C-string "delim" as a separator between components. There are two // flavors of the function, one flavor returns the concatenated string, // another takes a pointer to the target string. In the latter case the // target string is cleared and overwritten. // ---------------------------------------------------------------------- PROTOBUF_EXPORT void JoinStrings(const std::vector& components, const char* delim, std::string* result); inline std::string JoinStrings(const std::vector& components, const char* delim) { std::string result; JoinStrings(components, delim, &result); return result; } // ---------------------------------------------------------------------- // UnescapeCEscapeSequences() // Copies "source" to "dest", rewriting C-style escape sequences // -- '\n', '\r', '\\', '\ooo', etc -- to their ASCII // equivalents. "dest" must be sufficiently large to hold all // the characters in the rewritten string (i.e. at least as large // as strlen(source) + 1 should be safe, since the replacements // are always shorter than the original escaped sequences). It's // safe for source and dest to be the same. RETURNS the length // of dest. // // It allows hex sequences \xhh, or generally \xhhhhh with an // arbitrary number of hex digits, but all of them together must // specify a value of a single byte (e.g. \x0045 is equivalent // to \x45, and \x1234 is erroneous). // // It also allows escape sequences of the form \uhhhh (exactly four // hex digits, upper or lower case) or \Uhhhhhhhh (exactly eight // hex digits, upper or lower case) to specify a Unicode code // point. The dest array will contain the UTF8-encoded version of // that code-point (e.g., if source contains \u2019, then dest will // contain the three bytes 0xE2, 0x80, and 0x99). // // Errors: In the first form of the call, errors are reported with // LOG(ERROR). The same is true for the second form of the call if // the pointer to the string std::vector is nullptr; otherwise, error // messages are stored in the std::vector. In either case, the effect on // the dest array is not defined, but rest of the source will be // processed. // ---------------------------------------------------------------------- PROTOBUF_EXPORT int UnescapeCEscapeSequences(const char* source, char* dest); PROTOBUF_EXPORT int UnescapeCEscapeSequences(const char* source, char* dest, std::vector* errors); // ---------------------------------------------------------------------- // UnescapeCEscapeString() // This does the same thing as UnescapeCEscapeSequences, but creates // a new string. The caller does not need to worry about allocating // a dest buffer. This should be used for non performance critical // tasks such as printing debug messages. It is safe for src and dest // to be the same. // // The second call stores its errors in a supplied string vector. // If the string vector pointer is nullptr, it reports the errors with LOG(). // // In the first and second calls, the length of dest is returned. In the // the third call, the new string is returned. // ---------------------------------------------------------------------- PROTOBUF_EXPORT int UnescapeCEscapeString(const std::string& src, std::string* dest); PROTOBUF_EXPORT int UnescapeCEscapeString(const std::string& src, std::string* dest, std::vector* errors); PROTOBUF_EXPORT std::string UnescapeCEscapeString(const std::string& src); // ---------------------------------------------------------------------- // CEscape() // Escapes 'src' using C-style escape sequences and returns the resulting // string. // // Escaped chars: \n, \r, \t, ", ', \, and !isprint(). // ---------------------------------------------------------------------- PROTOBUF_EXPORT std::string CEscape(const std::string& src); // ---------------------------------------------------------------------- // CEscapeAndAppend() // Escapes 'src' using C-style escape sequences, and appends the escaped // string to 'dest'. // ---------------------------------------------------------------------- PROTOBUF_EXPORT void CEscapeAndAppend(StringPiece src, std::string* dest); namespace strings { // Like CEscape() but does not escape bytes with the upper bit set. PROTOBUF_EXPORT std::string Utf8SafeCEscape(const std::string& src); // Like CEscape() but uses hex (\x) escapes instead of octals. PROTOBUF_EXPORT std::string CHexEscape(const std::string& src); } // namespace strings // ---------------------------------------------------------------------- // strto32() // strtou32() // strto64() // strtou64() // Architecture-neutral plug compatible replacements for strtol() and // strtoul(). Long's have different lengths on ILP-32 and LP-64 // platforms, so using these is safer, from the point of view of // overflow behavior, than using the standard libc functions. // ---------------------------------------------------------------------- PROTOBUF_EXPORT int32 strto32_adaptor(const char* nptr, char** endptr, int base); PROTOBUF_EXPORT uint32 strtou32_adaptor(const char* nptr, char** endptr, int base); inline int32 strto32(const char *nptr, char **endptr, int base) { if (sizeof(int32) == sizeof(long)) return strtol(nptr, endptr, base); else return strto32_adaptor(nptr, endptr, base); } inline uint32 strtou32(const char *nptr, char **endptr, int base) { if (sizeof(uint32) == sizeof(unsigned long)) return strtoul(nptr, endptr, base); else return strtou32_adaptor(nptr, endptr, base); } // For now, long long is 64-bit on all the platforms we care about, so these // functions can simply pass the call to strto[u]ll. inline int64 strto64(const char *nptr, char **endptr, int base) { static_assert(sizeof(int64) == sizeof(long long), "sizeof_int64_is_not_sizeof_long_long"); return strtoll(nptr, endptr, base); } inline uint64 strtou64(const char *nptr, char **endptr, int base) { static_assert(sizeof(uint64) == sizeof(unsigned long long), "sizeof_uint64_is_not_sizeof_long_long"); return strtoull(nptr, endptr, base); } // ---------------------------------------------------------------------- // safe_strtob() // safe_strto32() // safe_strtou32() // safe_strto64() // safe_strtou64() // safe_strtof() // safe_strtod() // ---------------------------------------------------------------------- PROTOBUF_EXPORT bool safe_strtob(StringPiece str, bool* value); PROTOBUF_EXPORT bool safe_strto32(const std::string& str, int32* value); PROTOBUF_EXPORT bool safe_strtou32(const std::string& str, uint32* value); inline bool safe_strto32(const char* str, int32* value) { return safe_strto32(std::string(str), value); } inline bool safe_strto32(StringPiece str, int32* value) { return safe_strto32(str.ToString(), value); } inline bool safe_strtou32(const char* str, uint32* value) { return safe_strtou32(std::string(str), value); } inline bool safe_strtou32(StringPiece str, uint32* value) { return safe_strtou32(str.ToString(), value); } PROTOBUF_EXPORT bool safe_strto64(const std::string& str, int64* value); PROTOBUF_EXPORT bool safe_strtou64(const std::string& str, uint64* value); inline bool safe_strto64(const char* str, int64* value) { return safe_strto64(std::string(str), value); } inline bool safe_strto64(StringPiece str, int64* value) { return safe_strto64(str.ToString(), value); } inline bool safe_strtou64(const char* str, uint64* value) { return safe_strtou64(std::string(str), value); } inline bool safe_strtou64(StringPiece str, uint64* value) { return safe_strtou64(str.ToString(), value); } PROTOBUF_EXPORT bool safe_strtof(const char* str, float* value); PROTOBUF_EXPORT bool safe_strtod(const char* str, double* value); inline bool safe_strtof(const std::string& str, float* value) { return safe_strtof(str.c_str(), value); } inline bool safe_strtod(const std::string& str, double* value) { return safe_strtod(str.c_str(), value); } inline bool safe_strtof(StringPiece str, float* value) { return safe_strtof(str.ToString(), value); } inline bool safe_strtod(StringPiece str, double* value) { return safe_strtod(str.ToString(), value); } // ---------------------------------------------------------------------- // FastIntToBuffer() // FastHexToBuffer() // FastHex64ToBuffer() // FastHex32ToBuffer() // FastTimeToBuffer() // These are intended for speed. FastIntToBuffer() assumes the // integer is non-negative. FastHexToBuffer() puts output in // hex rather than decimal. FastTimeToBuffer() puts the output // into RFC822 format. // // FastHex64ToBuffer() puts a 64-bit unsigned value in hex-format, // padded to exactly 16 bytes (plus one byte for '\0') // // FastHex32ToBuffer() puts a 32-bit unsigned value in hex-format, // padded to exactly 8 bytes (plus one byte for '\0') // // All functions take the output buffer as an arg. // They all return a pointer to the beginning of the output, // which may not be the beginning of the input buffer. // ---------------------------------------------------------------------- // Suggested buffer size for FastToBuffer functions. Also works with // DoubleToBuffer() and FloatToBuffer(). static const int kFastToBufferSize = 32; PROTOBUF_EXPORT char* FastInt32ToBuffer(int32 i, char* buffer); PROTOBUF_EXPORT char* FastInt64ToBuffer(int64 i, char* buffer); char* FastUInt32ToBuffer(uint32 i, char* buffer); // inline below char* FastUInt64ToBuffer(uint64 i, char* buffer); // inline below PROTOBUF_EXPORT char* FastHexToBuffer(int i, char* buffer); PROTOBUF_EXPORT char* FastHex64ToBuffer(uint64 i, char* buffer); PROTOBUF_EXPORT char* FastHex32ToBuffer(uint32 i, char* buffer); // at least 22 bytes long inline char* FastIntToBuffer(int i, char* buffer) { return (sizeof(i) == 4 ? FastInt32ToBuffer(i, buffer) : FastInt64ToBuffer(i, buffer)); } inline char* FastUIntToBuffer(unsigned int i, char* buffer) { return (sizeof(i) == 4 ? FastUInt32ToBuffer(i, buffer) : FastUInt64ToBuffer(i, buffer)); } inline char* FastLongToBuffer(long i, char* buffer) { return (sizeof(i) == 4 ? FastInt32ToBuffer(i, buffer) : FastInt64ToBuffer(i, buffer)); } inline char* FastULongToBuffer(unsigned long i, char* buffer) { return (sizeof(i) == 4 ? FastUInt32ToBuffer(i, buffer) : FastUInt64ToBuffer(i, buffer)); } // ---------------------------------------------------------------------- // FastInt32ToBufferLeft() // FastUInt32ToBufferLeft() // FastInt64ToBufferLeft() // FastUInt64ToBufferLeft() // // Like the Fast*ToBuffer() functions above, these are intended for speed. // Unlike the Fast*ToBuffer() functions, however, these functions write // their output to the beginning of the buffer (hence the name, as the // output is left-aligned). The caller is responsible for ensuring that // the buffer has enough space to hold the output. // // Returns a pointer to the end of the string (i.e. the null character // terminating the string). // ---------------------------------------------------------------------- PROTOBUF_EXPORT char* FastInt32ToBufferLeft(int32 i, char* buffer); PROTOBUF_EXPORT char* FastUInt32ToBufferLeft(uint32 i, char* buffer); PROTOBUF_EXPORT char* FastInt64ToBufferLeft(int64 i, char* buffer); PROTOBUF_EXPORT char* FastUInt64ToBufferLeft(uint64 i, char* buffer); // Just define these in terms of the above. inline char* FastUInt32ToBuffer(uint32 i, char* buffer) { FastUInt32ToBufferLeft(i, buffer); return buffer; } inline char* FastUInt64ToBuffer(uint64 i, char* buffer) { FastUInt64ToBufferLeft(i, buffer); return buffer; } inline std::string SimpleBtoa(bool value) { return value ? "true" : "false"; } // ---------------------------------------------------------------------- // SimpleItoa() // Description: converts an integer to a string. // // Return value: string // ---------------------------------------------------------------------- PROTOBUF_EXPORT std::string SimpleItoa(int i); PROTOBUF_EXPORT std::string SimpleItoa(unsigned int i); PROTOBUF_EXPORT std::string SimpleItoa(long i); PROTOBUF_EXPORT std::string SimpleItoa(unsigned long i); PROTOBUF_EXPORT std::string SimpleItoa(long long i); PROTOBUF_EXPORT std::string SimpleItoa(unsigned long long i); // ---------------------------------------------------------------------- // SimpleDtoa() // SimpleFtoa() // DoubleToBuffer() // FloatToBuffer() // Description: converts a double or float to a string which, if // passed to NoLocaleStrtod(), will produce the exact same original double // (except in case of NaN; all NaNs are considered the same value). // We try to keep the string short but it's not guaranteed to be as // short as possible. // // DoubleToBuffer() and FloatToBuffer() write the text to the given // buffer and return it. The buffer must be at least // kDoubleToBufferSize bytes for doubles and kFloatToBufferSize // bytes for floats. kFastToBufferSize is also guaranteed to be large // enough to hold either. // // Return value: string // ---------------------------------------------------------------------- PROTOBUF_EXPORT std::string SimpleDtoa(double value); PROTOBUF_EXPORT std::string SimpleFtoa(float value); PROTOBUF_EXPORT char* DoubleToBuffer(double i, char* buffer); PROTOBUF_EXPORT char* FloatToBuffer(float i, char* buffer); // In practice, doubles should never need more than 24 bytes and floats // should never need more than 14 (including null terminators), but we // overestimate to be safe. static const int kDoubleToBufferSize = 32; static const int kFloatToBufferSize = 24; namespace strings { enum PadSpec { NO_PAD = 1, ZERO_PAD_2, ZERO_PAD_3, ZERO_PAD_4, ZERO_PAD_5, ZERO_PAD_6, ZERO_PAD_7, ZERO_PAD_8, ZERO_PAD_9, ZERO_PAD_10, ZERO_PAD_11, ZERO_PAD_12, ZERO_PAD_13, ZERO_PAD_14, ZERO_PAD_15, ZERO_PAD_16, }; struct Hex { uint64 value; enum PadSpec spec; template explicit Hex(Int v, PadSpec s = NO_PAD) : spec(s) { // Prevent sign-extension by casting integers to // their unsigned counterparts. #ifdef LANG_CXX11 static_assert( sizeof(v) == 1 || sizeof(v) == 2 || sizeof(v) == 4 || sizeof(v) == 8, "Unknown integer type"); #endif value = sizeof(v) == 1 ? static_cast(v) : sizeof(v) == 2 ? static_cast(v) : sizeof(v) == 4 ? static_cast(v) : static_cast(v); } }; struct PROTOBUF_EXPORT AlphaNum { const char *piece_data_; // move these to string_ref eventually size_t piece_size_; // move these to string_ref eventually char digits[kFastToBufferSize]; // No bool ctor -- bools convert to an integral type. // A bool ctor would also convert incoming pointers (bletch). AlphaNum(int i32) : piece_data_(digits), piece_size_(FastInt32ToBufferLeft(i32, digits) - &digits[0]) {} AlphaNum(unsigned int u32) : piece_data_(digits), piece_size_(FastUInt32ToBufferLeft(u32, digits) - &digits[0]) {} AlphaNum(long long i64) : piece_data_(digits), piece_size_(FastInt64ToBufferLeft(i64, digits) - &digits[0]) {} AlphaNum(unsigned long long u64) : piece_data_(digits), piece_size_(FastUInt64ToBufferLeft(u64, digits) - &digits[0]) {} // Note: on some architectures, "long" is only 32 bits, not 64, but the // performance hit of using FastInt64ToBufferLeft to handle 32-bit values // is quite minor. AlphaNum(long i64) : piece_data_(digits), piece_size_(FastInt64ToBufferLeft(i64, digits) - &digits[0]) {} AlphaNum(unsigned long u64) : piece_data_(digits), piece_size_(FastUInt64ToBufferLeft(u64, digits) - &digits[0]) {} AlphaNum(float f) : piece_data_(digits), piece_size_(strlen(FloatToBuffer(f, digits))) {} AlphaNum(double f) : piece_data_(digits), piece_size_(strlen(DoubleToBuffer(f, digits))) {} AlphaNum(Hex hex); AlphaNum(const char* c_str) : piece_data_(c_str), piece_size_(strlen(c_str)) {} // TODO: Add a string_ref constructor, eventually // AlphaNum(const StringPiece &pc) : piece(pc) {} AlphaNum(const std::string& str) : piece_data_(str.data()), piece_size_(str.size()) {} AlphaNum(StringPiece str) : piece_data_(str.data()), piece_size_(str.size()) {} size_t size() const { return piece_size_; } const char *data() const { return piece_data_; } private: // Use ":" not ':' AlphaNum(char c); // NOLINT(runtime/explicit) // Disallow copy and assign. AlphaNum(const AlphaNum&); void operator=(const AlphaNum&); }; } // namespace strings using strings::AlphaNum; // ---------------------------------------------------------------------- // StrCat() // This merges the given strings or numbers, with no delimiter. This // is designed to be the fastest possible way to construct a string out // of a mix of raw C strings, strings, bool values, // and numeric values. // // Don't use this for user-visible strings. The localization process // works poorly on strings built up out of fragments. // // For clarity and performance, don't use StrCat when appending to a // string. In particular, avoid using any of these (anti-)patterns: // str.append(StrCat(...) // str += StrCat(...) // str = StrCat(str, ...) // where the last is the worse, with the potential to change a loop // from a linear time operation with O(1) dynamic allocations into a // quadratic time operation with O(n) dynamic allocations. StrAppend // is a better choice than any of the above, subject to the restriction // of StrAppend(&str, a, b, c, ...) that none of the a, b, c, ... may // be a reference into str. // ---------------------------------------------------------------------- PROTOBUF_EXPORT std::string StrCat(const AlphaNum& a, const AlphaNum& b); PROTOBUF_EXPORT std::string StrCat(const AlphaNum& a, const AlphaNum& b, const AlphaNum& c); PROTOBUF_EXPORT std::string StrCat(const AlphaNum& a, const AlphaNum& b, const AlphaNum& c, const AlphaNum& d); PROTOBUF_EXPORT std::string StrCat(const AlphaNum& a, const AlphaNum& b, const AlphaNum& c, const AlphaNum& d, const AlphaNum& e); PROTOBUF_EXPORT std::string StrCat(const AlphaNum& a, const AlphaNum& b, const AlphaNum& c, const AlphaNum& d, const AlphaNum& e, const AlphaNum& f); PROTOBUF_EXPORT std::string StrCat(const AlphaNum& a, const AlphaNum& b, const AlphaNum& c, const AlphaNum& d, const AlphaNum& e, const AlphaNum& f, const AlphaNum& g); PROTOBUF_EXPORT std::string StrCat(const AlphaNum& a, const AlphaNum& b, const AlphaNum& c, const AlphaNum& d, const AlphaNum& e, const AlphaNum& f, const AlphaNum& g, const AlphaNum& h); PROTOBUF_EXPORT std::string StrCat(const AlphaNum& a, const AlphaNum& b, const AlphaNum& c, const AlphaNum& d, const AlphaNum& e, const AlphaNum& f, const AlphaNum& g, const AlphaNum& h, const AlphaNum& i); inline std::string StrCat(const AlphaNum& a) { return std::string(a.data(), a.size()); } // ---------------------------------------------------------------------- // StrAppend() // Same as above, but adds the output to the given string. // WARNING: For speed, StrAppend does not try to check each of its input // arguments to be sure that they are not a subset of the string being // appended to. That is, while this will work: // // string s = "foo"; // s += s; // // This will not (necessarily) work: // // string s = "foo"; // StrAppend(&s, s); // // Note: while StrCat supports appending up to 9 arguments, StrAppend // is currently limited to 4. That's rarely an issue except when // automatically transforming StrCat to StrAppend, and can easily be // worked around as consecutive calls to StrAppend are quite efficient. // ---------------------------------------------------------------------- PROTOBUF_EXPORT void StrAppend(std::string* dest, const AlphaNum& a); PROTOBUF_EXPORT void StrAppend(std::string* dest, const AlphaNum& a, const AlphaNum& b); PROTOBUF_EXPORT void StrAppend(std::string* dest, const AlphaNum& a, const AlphaNum& b, const AlphaNum& c); PROTOBUF_EXPORT void StrAppend(std::string* dest, const AlphaNum& a, const AlphaNum& b, const AlphaNum& c, const AlphaNum& d); // ---------------------------------------------------------------------- // Join() // These methods concatenate a range of components into a C++ string, using // the C-string "delim" as a separator between components. // ---------------------------------------------------------------------- template void Join(Iterator start, Iterator end, const char* delim, std::string* result) { for (Iterator it = start; it != end; ++it) { if (it != start) { result->append(delim); } StrAppend(result, *it); } } template std::string Join(const Range& components, const char* delim) { std::string result; Join(components.begin(), components.end(), delim, &result); return result; } // ---------------------------------------------------------------------- // ToHex() // Return a lower-case hex string representation of the given integer. // ---------------------------------------------------------------------- PROTOBUF_EXPORT std::string ToHex(uint64 num); // ---------------------------------------------------------------------- // GlobalReplaceSubstring() // Replaces all instances of a substring in a string. Does nothing // if 'substring' is empty. Returns the number of replacements. // // NOTE: The string pieces must not overlap s. // ---------------------------------------------------------------------- PROTOBUF_EXPORT int GlobalReplaceSubstring(const std::string& substring, const std::string& replacement, std::string* s); // ---------------------------------------------------------------------- // Base64Unescape() // Converts "src" which is encoded in Base64 to its binary equivalent and // writes it to "dest". If src contains invalid characters, dest is cleared // and the function returns false. Returns true on success. // ---------------------------------------------------------------------- PROTOBUF_EXPORT bool Base64Unescape(StringPiece src, std::string* dest); // ---------------------------------------------------------------------- // WebSafeBase64Unescape() // This is a variation of Base64Unescape which uses '-' instead of '+', and // '_' instead of '/'. src is not null terminated, instead specify len. I // recommend that slen