// Protocol Buffers - Google's data interchange format // Copyright 2008 Google Inc. All rights reserved. // https://developers.google.com/protocol-buffers/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // Author: kenton@google.com (Kenton Varda) // Based on original Protocol Buffers design by // Sanjay Ghemawat, Jeff Dean, and others. // // Defines Message, the abstract interface implemented by non-lite // protocol message objects. Although it's possible to implement this // interface manually, most users will use the protocol compiler to // generate implementations. // // Example usage: // // Say you have a message defined as: // // message Foo { // optional string text = 1; // repeated int32 numbers = 2; // } // // Then, if you used the protocol compiler to generate a class from the above // definition, you could use it like so: // // std::string data; // Will store a serialized version of the message. // // { // // Create a message and serialize it. // Foo foo; // foo.set_text("Hello World!"); // foo.add_numbers(1); // foo.add_numbers(5); // foo.add_numbers(42); // // foo.SerializeToString(&data); // } // // { // // Parse the serialized message and check that it contains the // // correct data. // Foo foo; // foo.ParseFromString(data); // // assert(foo.text() == "Hello World!"); // assert(foo.numbers_size() == 3); // assert(foo.numbers(0) == 1); // assert(foo.numbers(1) == 5); // assert(foo.numbers(2) == 42); // } // // { // // Same as the last block, but do it dynamically via the Message // // reflection interface. // Message* foo = new Foo; // const Descriptor* descriptor = foo->GetDescriptor(); // // // Get the descriptors for the fields we're interested in and verify // // their types. // const FieldDescriptor* text_field = descriptor->FindFieldByName("text"); // assert(text_field != nullptr); // assert(text_field->type() == FieldDescriptor::TYPE_STRING); // assert(text_field->label() == FieldDescriptor::LABEL_OPTIONAL); // const FieldDescriptor* numbers_field = descriptor-> // FindFieldByName("numbers"); // assert(numbers_field != nullptr); // assert(numbers_field->type() == FieldDescriptor::TYPE_INT32); // assert(numbers_field->label() == FieldDescriptor::LABEL_REPEATED); // // // Parse the message. // foo->ParseFromString(data); // // // Use the reflection interface to examine the contents. // const Reflection* reflection = foo->GetReflection(); // assert(reflection->GetString(*foo, text_field) == "Hello World!"); // assert(reflection->FieldSize(*foo, numbers_field) == 3); // assert(reflection->GetRepeatedInt32(*foo, numbers_field, 0) == 1); // assert(reflection->GetRepeatedInt32(*foo, numbers_field, 1) == 5); // assert(reflection->GetRepeatedInt32(*foo, numbers_field, 2) == 42); // // delete foo; // } #ifndef GOOGLE_PROTOBUF_MESSAGE_H__ #define GOOGLE_PROTOBUF_MESSAGE_H__ #include #include #include #include #include #include #include #include #include #include #include #include #define GOOGLE_PROTOBUF_HAS_ONEOF #define GOOGLE_PROTOBUF_HAS_ARENAS #include #ifdef SWIG #error "You cannot SWIG proto headers" #endif namespace google { namespace protobuf { // Defined in this file. class Message; class Reflection; class MessageFactory; // Defined in other files. class AssignDescriptorsHelper; class DynamicMessageFactory; class DynamicMessageReflectionHelper; class GeneratedMessageReflectionTestHelper; class MapKey; class MapValueConstRef; class MapValueRef; class MapIterator; class MapReflectionTester; namespace internal { struct DescriptorTable; class MapFieldBase; class SwapFieldHelper; class CachedSize; } class UnknownFieldSet; // unknown_field_set.h namespace io { class ZeroCopyInputStream; // zero_copy_stream.h class ZeroCopyOutputStream; // zero_copy_stream.h class CodedInputStream; // coded_stream.h class CodedOutputStream; // coded_stream.h } // namespace io namespace python { class MapReflectionFriend; // scalar_map_container.h class MessageReflectionFriend; } namespace expr { class CelMapReflectionFriend; // field_backed_map_impl.cc } namespace internal { class MapFieldPrinterHelper; // text_format.cc } namespace util { class MessageDifferencer; } namespace internal { class ReflectionAccessor; // message.cc class ReflectionOps; // reflection_ops.h class MapKeySorter; // wire_format.cc class WireFormat; // wire_format.h class MapFieldReflectionTest; // map_test.cc } // namespace internal template class RepeatedField; // repeated_field.h template class RepeatedPtrField; // repeated_field.h // A container to hold message metadata. struct Metadata { const Descriptor* descriptor; const Reflection* reflection; }; namespace internal { template inline To* GetPointerAtOffset(Message* message, uint32_t offset) { return reinterpret_cast(reinterpret_cast(message) + offset); } template const To* GetConstPointerAtOffset(const Message* message, uint32_t offset) { return reinterpret_cast(reinterpret_cast(message) + offset); } template const To& GetConstRefAtOffset(const Message& message, uint32_t offset) { return *GetConstPointerAtOffset(&message, offset); } bool CreateUnknownEnumValues(const FieldDescriptor* field); } // namespace internal // Abstract interface for protocol messages. // // See also MessageLite, which contains most every-day operations. Message // adds descriptors and reflection on top of that. // // The methods of this class that are virtual but not pure-virtual have // default implementations based on reflection. Message classes which are // optimized for speed will want to override these with faster implementations, // but classes optimized for code size may be happy with keeping them. See // the optimize_for option in descriptor.proto. // // Users must not derive from this class. Only the protocol compiler and // the internal library are allowed to create subclasses. class PROTOBUF_EXPORT Message : public MessageLite { public: constexpr Message() {} // Basic Operations ------------------------------------------------ // Construct a new instance of the same type. Ownership is passed to the // caller. (This is also defined in MessageLite, but is defined again here // for return-type covariance.) Message* New() const override = 0; // Construct a new instance on the arena. Ownership is passed to the caller // if arena is a nullptr. Default implementation allows for API compatibility // during the Arena transition. Message* New(Arena* arena) const override { Message* message = New(); if (arena != nullptr) { arena->Own(message); } return message; } // Make this message into a copy of the given message. The given message // must have the same descriptor, but need not necessarily be the same class. // By default this is just implemented as "Clear(); MergeFrom(from);". virtual void CopyFrom(const Message& from); // Merge the fields from the given message into this message. Singular // fields will be overwritten, if specified in from, except for embedded // messages which will be merged. Repeated fields will be concatenated. // The given message must be of the same type as this message (i.e. the // exact same class). virtual void MergeFrom(const Message& from); // Verifies that IsInitialized() returns true. GOOGLE_CHECK-fails otherwise, with // a nice error message. void CheckInitialized() const; // Slowly build a list of all required fields that are not set. // This is much, much slower than IsInitialized() as it is implemented // purely via reflection. Generally, you should not call this unless you // have already determined that an error exists by calling IsInitialized(). void FindInitializationErrors(std::vector* errors) const; // Like FindInitializationErrors, but joins all the strings, delimited by // commas, and returns them. std::string InitializationErrorString() const override; // Clears all unknown fields from this message and all embedded messages. // Normally, if unknown tag numbers are encountered when parsing a message, // the tag and value are stored in the message's UnknownFieldSet and // then written back out when the message is serialized. This allows servers // which simply route messages to other servers to pass through messages // that have new field definitions which they don't yet know about. However, // this behavior can have security implications. To avoid it, call this // method after parsing. // // See Reflection::GetUnknownFields() for more on unknown fields. virtual void DiscardUnknownFields(); // Computes (an estimate of) the total number of bytes currently used for // storing the message in memory. The default implementation calls the // Reflection object's SpaceUsed() method. // // SpaceUsed() is noticeably slower than ByteSize(), as it is implemented // using reflection (rather than the generated code implementation for // ByteSize()). Like ByteSize(), its CPU time is linear in the number of // fields defined for the proto. virtual size_t SpaceUsedLong() const; PROTOBUF_DEPRECATED_MSG("Please use SpaceUsedLong() instead") int SpaceUsed() const { return internal::ToIntSize(SpaceUsedLong()); } // Debugging & Testing---------------------------------------------- // Generates a human readable form of this message, useful for debugging // and other purposes. std::string DebugString() const; // Like DebugString(), but with less whitespace. std::string ShortDebugString() const; // Like DebugString(), but do not escape UTF-8 byte sequences. std::string Utf8DebugString() const; // Convenience function useful in GDB. Prints DebugString() to stdout. void PrintDebugString() const; // Reflection-based methods ---------------------------------------- // These methods are pure-virtual in MessageLite, but Message provides // reflection-based default implementations. std::string GetTypeName() const override; void Clear() override; // Returns whether all required fields have been set. Note that required // fields no longer exist starting in proto3. bool IsInitialized() const override; void CheckTypeAndMergeFrom(const MessageLite& other) override; // Reflective parser const char* _InternalParse(const char* ptr, internal::ParseContext* ctx) override; size_t ByteSizeLong() const override; uint8_t* _InternalSerialize(uint8_t* target, io::EpsCopyOutputStream* stream) const override; private: // This is called only by the default implementation of ByteSize(), to // update the cached size. If you override ByteSize(), you do not need // to override this. If you do not override ByteSize(), you MUST override // this; the default implementation will crash. // // The method is private because subclasses should never call it; only // override it. Yes, C++ lets you do that. Crazy, huh? virtual void SetCachedSize(int size) const; public: // Introspection --------------------------------------------------- // Get a non-owning pointer to a Descriptor for this message's type. This // describes what fields the message contains, the types of those fields, etc. // This object remains property of the Message. const Descriptor* GetDescriptor() const { return GetMetadata().descriptor; } // Get a non-owning pointer to the Reflection interface for this Message, // which can be used to read and modify the fields of the Message dynamically // (in other words, without knowing the message type at compile time). This // object remains property of the Message. const Reflection* GetReflection() const { return GetMetadata().reflection; } protected: // Get a struct containing the metadata for the Message, which is used in turn // to implement GetDescriptor() and GetReflection() above. virtual Metadata GetMetadata() const = 0; struct ClassData { // Note: The order of arguments (to, then from) is chosen so that the ABI // of this function is the same as the CopyFrom method. That is, the // hidden "this" parameter comes first. void (*copy_to_from)(Message* to, const Message& from_msg); void (*merge_to_from)(Message* to, const Message& from_msg); }; // GetClassData() returns a pointer to a ClassData struct which // exists in global memory and is unique to each subclass. This uniqueness // property is used in order to quickly determine whether two messages are // of the same type. // TODO(jorg): change to pure virtual virtual const ClassData* GetClassData() const { return nullptr; } // CopyWithSizeCheck calls Clear() and then MergeFrom(), and in debug // builds, checks that calling Clear() on the destination message doesn't // alter the size of the source. It assumes the messages are known to be // of the same type, and thus uses GetClassData(). static void CopyWithSizeCheck(Message* to, const Message& from); inline explicit Message(Arena* arena, bool is_message_owned = false) : MessageLite(arena, is_message_owned) {} size_t ComputeUnknownFieldsSize(size_t total_size, internal::CachedSize* cached_size) const; size_t MaybeComputeUnknownFieldsSize(size_t total_size, internal::CachedSize* cached_size) const; protected: static uint64_t GetInvariantPerBuild(uint64_t salt); private: GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(Message); }; namespace internal { // Forward-declare interfaces used to implement RepeatedFieldRef. // These are protobuf internals that users shouldn't care about. class RepeatedFieldAccessor; } // namespace internal // Forward-declare RepeatedFieldRef templates. The second type parameter is // used for SFINAE tricks. Users should ignore it. template class RepeatedFieldRef; template class MutableRepeatedFieldRef; // This interface contains methods that can be used to dynamically access // and modify the fields of a protocol message. Their semantics are // similar to the accessors the protocol compiler generates. // // To get the Reflection for a given Message, call Message::GetReflection(). // // This interface is separate from Message only for efficiency reasons; // the vast majority of implementations of Message will share the same // implementation of Reflection (GeneratedMessageReflection, // defined in generated_message.h), and all Messages of a particular class // should share the same Reflection object (though you should not rely on // the latter fact). // // There are several ways that these methods can be used incorrectly. For // example, any of the following conditions will lead to undefined // results (probably assertion failures): // - The FieldDescriptor is not a field of this message type. // - The method called is not appropriate for the field's type. For // each field type in FieldDescriptor::TYPE_*, there is only one // Get*() method, one Set*() method, and one Add*() method that is // valid for that type. It should be obvious which (except maybe // for TYPE_BYTES, which are represented using strings in C++). // - A Get*() or Set*() method for singular fields is called on a repeated // field. // - GetRepeated*(), SetRepeated*(), or Add*() is called on a non-repeated // field. // - The Message object passed to any method is not of the right type for // this Reflection object (i.e. message.GetReflection() != reflection). // // You might wonder why there is not any abstract representation for a field // of arbitrary type. E.g., why isn't there just a "GetField()" method that // returns "const Field&", where "Field" is some class with accessors like // "GetInt32Value()". The problem is that someone would have to deal with // allocating these Field objects. For generated message classes, having to // allocate space for an additional object to wrap every field would at least // double the message's memory footprint, probably worse. Allocating the // objects on-demand, on the other hand, would be expensive and prone to // memory leaks. So, instead we ended up with this flat interface. class PROTOBUF_EXPORT Reflection final { public: // Get the UnknownFieldSet for the message. This contains fields which // were seen when the Message was parsed but were not recognized according // to the Message's definition. const UnknownFieldSet& GetUnknownFields(const Message& message) const; // Get a mutable pointer to the UnknownFieldSet for the message. This // contains fields which were seen when the Message was parsed but were not // recognized according to the Message's definition. UnknownFieldSet* MutableUnknownFields(Message* message) const; // Estimate the amount of memory used by the message object. size_t SpaceUsedLong(const Message& message) const; PROTOBUF_DEPRECATED_MSG("Please use SpaceUsedLong() instead") int SpaceUsed(const Message& message) const { return internal::ToIntSize(SpaceUsedLong(message)); } // Check if the given non-repeated field is set. bool HasField(const Message& message, const FieldDescriptor* field) const; // Get the number of elements of a repeated field. int FieldSize(const Message& message, const FieldDescriptor* field) const; // Clear the value of a field, so that HasField() returns false or // FieldSize() returns zero. void ClearField(Message* message, const FieldDescriptor* field) const; // Check if the oneof is set. Returns true if any field in oneof // is set, false otherwise. bool HasOneof(const Message& message, const OneofDescriptor* oneof_descriptor) const; void ClearOneof(Message* message, const OneofDescriptor* oneof_descriptor) const; // Returns the field descriptor if the oneof is set. nullptr otherwise. const FieldDescriptor* GetOneofFieldDescriptor( const Message& message, const OneofDescriptor* oneof_descriptor) const; // Removes the last element of a repeated field. // We don't provide a way to remove any element other than the last // because it invites inefficient use, such as O(n^2) filtering loops // that should have been O(n). If you want to remove an element other // than the last, the best way to do it is to re-arrange the elements // (using Swap()) so that the one you want removed is at the end, then // call RemoveLast(). void RemoveLast(Message* message, const FieldDescriptor* field) const; // Removes the last element of a repeated message field, and returns the // pointer to the caller. Caller takes ownership of the returned pointer. PROTOBUF_MUST_USE_RESULT Message* ReleaseLast( Message* message, const FieldDescriptor* field) const; // Similar to ReleaseLast() without internal safety and ownershp checks. This // method should only be used when the objects are on the same arena or paired // with a call to `UnsafeArenaAddAllocatedMessage`. Message* UnsafeArenaReleaseLast(Message* message, const FieldDescriptor* field) const; // Swap the complete contents of two messages. void Swap(Message* message1, Message* message2) const; // Swap fields listed in fields vector of two messages. void SwapFields(Message* message1, Message* message2, const std::vector& fields) const; // Swap two elements of a repeated field. void SwapElements(Message* message, const FieldDescriptor* field, int index1, int index2) const; // Swap without internal safety and ownership checks. This method should only // be used when the objects are on the same arena. void UnsafeArenaSwap(Message* lhs, Message* rhs) const; // SwapFields without internal safety and ownership checks. This method should // only be used when the objects are on the same arena. void UnsafeArenaSwapFields( Message* lhs, Message* rhs, const std::vector& fields) const; // List all fields of the message which are currently set, except for unknown // fields, but including extension known to the parser (i.e. compiled in). // Singular fields will only be listed if HasField(field) would return true // and repeated fields will only be listed if FieldSize(field) would return // non-zero. Fields (both normal fields and extension fields) will be listed // ordered by field number. // Use Reflection::GetUnknownFields() or message.unknown_fields() to also get // access to fields/extensions unknown to the parser. void ListFields(const Message& message, std::vector* output) const; // Singular field getters ------------------------------------------ // These get the value of a non-repeated field. They return the default // value for fields that aren't set. int32_t GetInt32(const Message& message, const FieldDescriptor* field) const; int64_t GetInt64(const Message& message, const FieldDescriptor* field) const; uint32_t GetUInt32(const Message& message, const FieldDescriptor* field) const; uint64_t GetUInt64(const Message& message, const FieldDescriptor* field) const; float GetFloat(const Message& message, const FieldDescriptor* field) const; double GetDouble(const Message& message, const FieldDescriptor* field) const; bool GetBool(const Message& message, const FieldDescriptor* field) const; std::string GetString(const Message& message, const FieldDescriptor* field) const; const EnumValueDescriptor* GetEnum(const Message& message, const FieldDescriptor* field) const; // GetEnumValue() returns an enum field's value as an integer rather than // an EnumValueDescriptor*. If the integer value does not correspond to a // known value descriptor, a new value descriptor is created. (Such a value // will only be present when the new unknown-enum-value semantics are enabled // for a message.) int GetEnumValue(const Message& message, const FieldDescriptor* field) const; // See MutableMessage() for the meaning of the "factory" parameter. const Message& GetMessage(const Message& message, const FieldDescriptor* field, MessageFactory* factory = nullptr) const; // Get a string value without copying, if possible. // // GetString() necessarily returns a copy of the string. This can be // inefficient when the std::string is already stored in a std::string object // in the underlying message. GetStringReference() will return a reference to // the underlying std::string in this case. Otherwise, it will copy the // string into *scratch and return that. // // Note: It is perfectly reasonable and useful to write code like: // str = reflection->GetStringReference(message, field, &str); // This line would ensure that only one copy of the string is made // regardless of the field's underlying representation. When initializing // a newly-constructed string, though, it's just as fast and more // readable to use code like: // std::string str = reflection->GetString(message, field); const std::string& GetStringReference(const Message& message, const FieldDescriptor* field, std::string* scratch) const; // Singular field mutators ----------------------------------------- // These mutate the value of a non-repeated field. void SetInt32(Message* message, const FieldDescriptor* field, int32_t value) const; void SetInt64(Message* message, const FieldDescriptor* field, int64_t value) const; void SetUInt32(Message* message, const FieldDescriptor* field, uint32_t value) const; void SetUInt64(Message* message, const FieldDescriptor* field, uint64_t value) const; void SetFloat(Message* message, const FieldDescriptor* field, float value) const; void SetDouble(Message* message, const FieldDescriptor* field, double value) const; void SetBool(Message* message, const FieldDescriptor* field, bool value) const; void SetString(Message* message, const FieldDescriptor* field, std::string value) const; void SetEnum(Message* message, const FieldDescriptor* field, const EnumValueDescriptor* value) const; // Set an enum field's value with an integer rather than EnumValueDescriptor. // For proto3 this is just setting the enum field to the value specified, for // proto2 it's more complicated. If value is a known enum value the field is // set as usual. If the value is unknown then it is added to the unknown field // set. Note this matches the behavior of parsing unknown enum values. // If multiple calls with unknown values happen than they are all added to the // unknown field set in order of the calls. void SetEnumValue(Message* message, const FieldDescriptor* field, int value) const; // Get a mutable pointer to a field with a message type. If a MessageFactory // is provided, it will be used to construct instances of the sub-message; // otherwise, the default factory is used. If the field is an extension that // does not live in the same pool as the containing message's descriptor (e.g. // it lives in an overlay pool), then a MessageFactory must be provided. // If you have no idea what that meant, then you probably don't need to worry // about it (don't provide a MessageFactory). WARNING: If the // FieldDescriptor is for a compiled-in extension, then // factory->GetPrototype(field->message_type()) MUST return an instance of // the compiled-in class for this type, NOT DynamicMessage. Message* MutableMessage(Message* message, const FieldDescriptor* field, MessageFactory* factory = nullptr) const; // Replaces the message specified by 'field' with the already-allocated object // sub_message, passing ownership to the message. If the field contained a // message, that message is deleted. If sub_message is nullptr, the field is // cleared. void SetAllocatedMessage(Message* message, Message* sub_message, const FieldDescriptor* field) const; // Similar to `SetAllocatedMessage`, but omits all internal safety and // ownership checks. This method should only be used when the objects are on // the same arena or paired with a call to `UnsafeArenaReleaseMessage`. void UnsafeArenaSetAllocatedMessage(Message* message, Message* sub_message, const FieldDescriptor* field) const; // Releases the message specified by 'field' and returns the pointer, // ReleaseMessage() will return the message the message object if it exists. // Otherwise, it may or may not return nullptr. In any case, if the return // value is non-null, the caller takes ownership of the pointer. // If the field existed (HasField() is true), then the returned pointer will // be the same as the pointer returned by MutableMessage(). // This function has the same effect as ClearField(). PROTOBUF_MUST_USE_RESULT Message* ReleaseMessage( Message* message, const FieldDescriptor* field, MessageFactory* factory = nullptr) const; // Similar to `ReleaseMessage`, but omits all internal safety and ownership // checks. This method should only be used when the objects are on the same // arena or paired with a call to `UnsafeArenaSetAllocatedMessage`. Message* UnsafeArenaReleaseMessage(Message* message, const FieldDescriptor* field, MessageFactory* factory = nullptr) const; // Repeated field getters ------------------------------------------ // These get the value of one element of a repeated field. int32_t GetRepeatedInt32(const Message& message, const FieldDescriptor* field, int index) const; int64_t GetRepeatedInt64(const Message& message, const FieldDescriptor* field, int index) const; uint32_t GetRepeatedUInt32(const Message& message, const FieldDescriptor* field, int index) const; uint64_t GetRepeatedUInt64(const Message& message, const FieldDescriptor* field, int index) const; float GetRepeatedFloat(const Message& message, const FieldDescriptor* field, int index) const; double GetRepeatedDouble(const Message& message, const FieldDescriptor* field, int index) const; bool GetRepeatedBool(const Message& message, const FieldDescriptor* field, int index) const; std::string GetRepeatedString(const Message& message, const FieldDescriptor* field, int index) const; const EnumValueDescriptor* GetRepeatedEnum(const Message& message, const FieldDescriptor* field, int index) const; // GetRepeatedEnumValue() returns an enum field's value as an integer rather // than an EnumValueDescriptor*. If the integer value does not correspond to a // known value descriptor, a new value descriptor is created. (Such a value // will only be present when the new unknown-enum-value semantics are enabled // for a message.) int GetRepeatedEnumValue(const Message& message, const FieldDescriptor* field, int index) const; const Message& GetRepeatedMessage(const Message& message, const FieldDescriptor* field, int index) const; // See GetStringReference(), above. const std::string& GetRepeatedStringReference(const Message& message, const FieldDescriptor* field, int index, std::string* scratch) const; // Repeated field mutators ----------------------------------------- // These mutate the value of one element of a repeated field. void SetRepeatedInt32(Message* message, const FieldDescriptor* field, int index, int32_t value) const; void SetRepeatedInt64(Message* message, const FieldDescriptor* field, int index, int64_t value) const; void SetRepeatedUInt32(Message* message, const FieldDescriptor* field, int index, uint32_t value) const; void SetRepeatedUInt64(Message* message, const FieldDescriptor* field, int index, uint64_t value) const; void SetRepeatedFloat(Message* message, const FieldDescriptor* field, int index, float value) const; void SetRepeatedDouble(Message* message, const FieldDescriptor* field, int index, double value) const; void SetRepeatedBool(Message* message, const FieldDescriptor* field, int index, bool value) const; void SetRepeatedString(Message* message, const FieldDescriptor* field, int index, std::string value) const; void SetRepeatedEnum(Message* message, const FieldDescriptor* field, int index, const EnumValueDescriptor* value) const; // Set an enum field's value with an integer rather than EnumValueDescriptor. // For proto3 this is just setting the enum field to the value specified, for // proto2 it's more complicated. If value is a known enum value the field is // set as usual. If the value is unknown then it is added to the unknown field // set. Note this matches the behavior of parsing unknown enum values. // If multiple calls with unknown values happen than they are all added to the // unknown field set in order of the calls. void SetRepeatedEnumValue(Message* message, const FieldDescriptor* field, int index, int value) const; // Get a mutable pointer to an element of a repeated field with a message // type. Message* MutableRepeatedMessage(Message* message, const FieldDescriptor* field, int index) const; // Repeated field adders ------------------------------------------- // These add an element to a repeated field. void AddInt32(Message* message, const FieldDescriptor* field, int32_t value) const; void AddInt64(Message* message, const FieldDescriptor* field, int64_t value) const; void AddUInt32(Message* message, const FieldDescriptor* field, uint32_t value) const; void AddUInt64(Message* message, const FieldDescriptor* field, uint64_t value) const; void AddFloat(Message* message, const FieldDescriptor* field, float value) const; void AddDouble(Message* message, const FieldDescriptor* field, double value) const; void AddBool(Message* message, const FieldDescriptor* field, bool value) const; void AddString(Message* message, const FieldDescriptor* field, std::string value) const; void AddEnum(Message* message, const FieldDescriptor* field, const EnumValueDescriptor* value) const; // Add an integer value to a repeated enum field rather than // EnumValueDescriptor. For proto3 this is just setting the enum field to the // value specified, for proto2 it's more complicated. If value is a known enum // value the field is set as usual. If the value is unknown then it is added // to the unknown field set. Note this matches the behavior of parsing unknown // enum values. If multiple calls with unknown values happen than they are all // added to the unknown field set in order of the calls. void AddEnumValue(Message* message, const FieldDescriptor* field, int value) const; // See MutableMessage() for comments on the "factory" parameter. Message* AddMessage(Message* message, const FieldDescriptor* field, MessageFactory* factory = nullptr) const; // Appends an already-allocated object 'new_entry' to the repeated field // specified by 'field' passing ownership to the message. void AddAllocatedMessage(Message* message, const FieldDescriptor* field, Message* new_entry) const; // Similar to AddAllocatedMessage() without internal safety and ownership // checks. This method should only be used when the objects are on the same // arena or paired with a call to `UnsafeArenaReleaseLast`. void UnsafeArenaAddAllocatedMessage(Message* message, const FieldDescriptor* field, Message* new_entry) const; // Get a RepeatedFieldRef object that can be used to read the underlying // repeated field. The type parameter T must be set according to the // field's cpp type. The following table shows the mapping from cpp type // to acceptable T. // // field->cpp_type() T // CPPTYPE_INT32 int32_t // CPPTYPE_UINT32 uint32_t // CPPTYPE_INT64 int64_t // CPPTYPE_UINT64 uint64_t // CPPTYPE_DOUBLE double // CPPTYPE_FLOAT float // CPPTYPE_BOOL bool // CPPTYPE_ENUM generated enum type or int32_t // CPPTYPE_STRING std::string // CPPTYPE_MESSAGE generated message type or google::protobuf::Message // // A RepeatedFieldRef object can be copied and the resulted object will point // to the same repeated field in the same message. The object can be used as // long as the message is not destroyed. // // Note that to use this method users need to include the header file // "reflection.h" (which defines the RepeatedFieldRef class templates). template RepeatedFieldRef GetRepeatedFieldRef(const Message& message, const FieldDescriptor* field) const; // Like GetRepeatedFieldRef() but return an object that can also be used // manipulate the underlying repeated field. template MutableRepeatedFieldRef GetMutableRepeatedFieldRef( Message* message, const FieldDescriptor* field) const; // DEPRECATED. Please use Get(Mutable)RepeatedFieldRef() for repeated field // access. The following repeated field accessors will be removed in the // future. // // Repeated field accessors ------------------------------------------------- // The methods above, e.g. GetRepeatedInt32(msg, fd, index), provide singular // access to the data in a RepeatedField. The methods below provide aggregate // access by exposing the RepeatedField object itself with the Message. // Applying these templates to inappropriate types will lead to an undefined // reference at link time (e.g. GetRepeatedField<***double>), or possibly a // template matching error at compile time (e.g. GetRepeatedPtrField). // // Usage example: my_doubs = refl->GetRepeatedField(msg, fd); // DEPRECATED. Please use GetRepeatedFieldRef(). // // for T = Cord and all protobuf scalar types except enums. template PROTOBUF_DEPRECATED_MSG("Please use GetRepeatedFieldRef() instead") const RepeatedField& GetRepeatedField(const Message& msg, const FieldDescriptor* d) const { return GetRepeatedFieldInternal(msg, d); } // DEPRECATED. Please use GetMutableRepeatedFieldRef(). // // for T = Cord and all protobuf scalar types except enums. template PROTOBUF_DEPRECATED_MSG("Please use GetMutableRepeatedFieldRef() instead") RepeatedField* MutableRepeatedField(Message* msg, const FieldDescriptor* d) const { return MutableRepeatedFieldInternal(msg, d); } // DEPRECATED. Please use GetRepeatedFieldRef(). // // for T = std::string, google::protobuf::internal::StringPieceField // google::protobuf::Message & descendants. template PROTOBUF_DEPRECATED_MSG("Please use GetRepeatedFieldRef() instead") const RepeatedPtrField& GetRepeatedPtrField( const Message& msg, const FieldDescriptor* d) const { return GetRepeatedPtrFieldInternal(msg, d); } // DEPRECATED. Please use GetMutableRepeatedFieldRef(). // // for T = std::string, google::protobuf::internal::StringPieceField // google::protobuf::Message & descendants. template PROTOBUF_DEPRECATED_MSG("Please use GetMutableRepeatedFieldRef() instead") RepeatedPtrField* MutableRepeatedPtrField(Message* msg, const FieldDescriptor* d) const { return MutableRepeatedPtrFieldInternal(msg, d); } // Extensions ---------------------------------------------------------------- // Try to find an extension of this message type by fully-qualified field // name. Returns nullptr if no extension is known for this name or number. const FieldDescriptor* FindKnownExtensionByName( const std::string& name) const; // Try to find an extension of this message type by field number. // Returns nullptr if no extension is known for this name or number. const FieldDescriptor* FindKnownExtensionByNumber(int number) const; // Feature Flags ------------------------------------------------------------- // Does this message support storing arbitrary integer values in enum fields? // If |true|, GetEnumValue/SetEnumValue and associated repeated-field versions // take arbitrary integer values, and the legacy GetEnum() getter will // dynamically create an EnumValueDescriptor for any integer value without // one. If |false|, setting an unknown enum value via the integer-based // setters results in undefined behavior (in practice, GOOGLE_DCHECK-fails). // // Generic code that uses reflection to handle messages with enum fields // should check this flag before using the integer-based setter, and either // downgrade to a compatible value or use the UnknownFieldSet if not. For // example: // // int new_value = GetValueFromApplicationLogic(); // if (reflection->SupportsUnknownEnumValues()) { // reflection->SetEnumValue(message, field, new_value); // } else { // if (field_descriptor->enum_type()-> // FindValueByNumber(new_value) != nullptr) { // reflection->SetEnumValue(message, field, new_value); // } else if (emit_unknown_enum_values) { // reflection->MutableUnknownFields(message)->AddVarint( // field->number(), new_value); // } else { // // convert value to a compatible/default value. // new_value = CompatibleDowngrade(new_value); // reflection->SetEnumValue(message, field, new_value); // } // } bool SupportsUnknownEnumValues() const; // Returns the MessageFactory associated with this message. This can be // useful for determining if a message is a generated message or not, for // example: // if (message->GetReflection()->GetMessageFactory() == // google::protobuf::MessageFactory::generated_factory()) { // // This is a generated message. // } // It can also be used to create more messages of this type, though // Message::New() is an easier way to accomplish this. MessageFactory* GetMessageFactory() const; private: template const RepeatedField& GetRepeatedFieldInternal( const Message& message, const FieldDescriptor* field) const; template RepeatedField* MutableRepeatedFieldInternal( Message* message, const FieldDescriptor* field) const; template const RepeatedPtrField& GetRepeatedPtrFieldInternal( const Message& message, const FieldDescriptor* field) const; template RepeatedPtrField* MutableRepeatedPtrFieldInternal( Message* message, const FieldDescriptor* field) const; // Obtain a pointer to a Repeated Field Structure and do some type checking: // on field->cpp_type(), // on field->field_option().ctype() (if ctype >= 0) // of field->message_type() (if message_type != nullptr). // We use 2 routine rather than 4 (const vs mutable) x (scalar vs pointer). void* MutableRawRepeatedField(Message* message, const FieldDescriptor* field, FieldDescriptor::CppType, int ctype, const Descriptor* message_type) const; const void* GetRawRepeatedField(const Message& message, const FieldDescriptor* field, FieldDescriptor::CppType cpptype, int ctype, const Descriptor* message_type) const; // The following methods are used to implement (Mutable)RepeatedFieldRef. // A Ref object will store a raw pointer to the repeated field data (obtained // from RepeatedFieldData()) and a pointer to a Accessor (obtained from // RepeatedFieldAccessor) which will be used to access the raw data. // Returns a raw pointer to the repeated field // // "cpp_type" and "message_type" are deduced from the type parameter T passed // to Get(Mutable)RepeatedFieldRef. If T is a generated message type, // "message_type" should be set to its descriptor. Otherwise "message_type" // should be set to nullptr. Implementations of this method should check // whether "cpp_type"/"message_type" is consistent with the actual type of the // field. We use 1 routine rather than 2 (const vs mutable) because it is // protected and it doesn't change the message. void* RepeatedFieldData(Message* message, const FieldDescriptor* field, FieldDescriptor::CppType cpp_type, const Descriptor* message_type) const; // The returned pointer should point to a singleton instance which implements // the RepeatedFieldAccessor interface. const internal::RepeatedFieldAccessor* RepeatedFieldAccessor( const FieldDescriptor* field) const; // Lists all fields of the message which are currently set, except for unknown // fields and stripped fields. See ListFields for details. void ListFieldsOmitStripped( const Message& message, std::vector* output) const; bool IsMessageStripped(const Descriptor* descriptor) const { return schema_.IsMessageStripped(descriptor); } friend class TextFormat; void ListFieldsMayFailOnStripped( const Message& message, bool should_fail, std::vector* output) const; // Returns true if the message field is backed by a LazyField. // // A message field may be backed by a LazyField without the user annotation // ([lazy = true]). While the user-annotated LazyField is lazily verified on // first touch (i.e. failure on access rather than parsing if the LazyField is // not initialized), the inferred LazyField is eagerly verified to avoid lazy // parsing error at the cost of lower efficiency. When reflecting a message // field, use this API instead of checking field->options().lazy(). bool IsLazyField(const FieldDescriptor* field) const { return IsLazilyVerifiedLazyField(field) || IsEagerlyVerifiedLazyField(field); } bool IsLazilyVerifiedLazyField(const FieldDescriptor* field) const; bool IsEagerlyVerifiedLazyField(const FieldDescriptor* field) const; friend class FastReflectionMessageMutator; const Descriptor* const descriptor_; const internal::ReflectionSchema schema_; const DescriptorPool* const descriptor_pool_; MessageFactory* const message_factory_; // Last non weak field index. This is an optimization when most weak fields // are at the end of the containing message. If a message proto doesn't // contain weak fields, then this field equals descriptor_->field_count(). int last_non_weak_field_index_; template friend class RepeatedFieldRef; template friend class MutableRepeatedFieldRef; friend class ::PROTOBUF_NAMESPACE_ID::MessageLayoutInspector; friend class ::PROTOBUF_NAMESPACE_ID::AssignDescriptorsHelper; friend class DynamicMessageFactory; friend class DynamicMessageReflectionHelper; friend class GeneratedMessageReflectionTestHelper; friend class python::MapReflectionFriend; friend class python::MessageReflectionFriend; friend class util::MessageDifferencer; #define GOOGLE_PROTOBUF_HAS_CEL_MAP_REFLECTION_FRIEND friend class expr::CelMapReflectionFriend; friend class internal::MapFieldReflectionTest; friend class internal::MapKeySorter; friend class internal::WireFormat; friend class internal::ReflectionOps; friend class internal::SwapFieldHelper; // Needed for implementing text format for map. friend class internal::MapFieldPrinterHelper; Reflection(const Descriptor* descriptor, const internal::ReflectionSchema& schema, const DescriptorPool* pool, MessageFactory* factory); // Special version for specialized implementations of string. We can't // call MutableRawRepeatedField directly here because we don't have access to // FieldOptions::* which are defined in descriptor.pb.h. Including that // file here is not possible because it would cause a circular include cycle. // We use 1 routine rather than 2 (const vs mutable) because it is private // and mutable a repeated string field doesn't change the message. void* MutableRawRepeatedString(Message* message, const FieldDescriptor* field, bool is_string) const; friend class MapReflectionTester; // Returns true if key is in map. Returns false if key is not in map field. bool ContainsMapKey(const Message& message, const FieldDescriptor* field, const MapKey& key) const; // If key is in map field: Saves the value pointer to val and returns // false. If key in not in map field: Insert the key into map, saves // value pointer to val and returns true. Users are able to modify the // map value by MapValueRef. bool InsertOrLookupMapValue(Message* message, const FieldDescriptor* field, const MapKey& key, MapValueRef* val) const; // If key is in map field: Saves the value pointer to val and returns true. // Returns false if key is not in map field. Users are NOT able to modify // the value by MapValueConstRef. bool LookupMapValue(const Message& message, const FieldDescriptor* field, const MapKey& key, MapValueConstRef* val) const; bool LookupMapValue(const Message&, const FieldDescriptor*, const MapKey&, MapValueRef*) const = delete; // Delete and returns true if key is in the map field. Returns false // otherwise. bool DeleteMapValue(Message* message, const FieldDescriptor* field, const MapKey& key) const; // Returns a MapIterator referring to the first element in the map field. // If the map field is empty, this function returns the same as // reflection::MapEnd. Mutation to the field may invalidate the iterator. MapIterator MapBegin(Message* message, const FieldDescriptor* field) const; // Returns a MapIterator referring to the theoretical element that would // follow the last element in the map field. It does not point to any // real element. Mutation to the field may invalidate the iterator. MapIterator MapEnd(Message* message, const FieldDescriptor* field) const; // Get the number of pair of a map field. The result may be // different from FieldSize which can have duplicate keys. int MapSize(const Message& message, const FieldDescriptor* field) const; // Help method for MapIterator. friend class MapIterator; friend class WireFormatForMapFieldTest; internal::MapFieldBase* MutableMapData(Message* message, const FieldDescriptor* field) const; const internal::MapFieldBase* GetMapData(const Message& message, const FieldDescriptor* field) const; template const T& GetRawNonOneof(const Message& message, const FieldDescriptor* field) const; template T* MutableRawNonOneof(Message* message, const FieldDescriptor* field) const; template const Type& GetRaw(const Message& message, const FieldDescriptor* field) const; template inline Type* MutableRaw(Message* message, const FieldDescriptor* field) const; template const Type& DefaultRaw(const FieldDescriptor* field) const; const Message* GetDefaultMessageInstance(const FieldDescriptor* field) const; inline const uint32_t* GetHasBits(const Message& message) const; inline uint32_t* MutableHasBits(Message* message) const; inline uint32_t GetOneofCase(const Message& message, const OneofDescriptor* oneof_descriptor) const; inline uint32_t* MutableOneofCase( Message* message, const OneofDescriptor* oneof_descriptor) const; inline bool HasExtensionSet(const Message& /* message */) const { return schema_.HasExtensionSet(); } const internal::ExtensionSet& GetExtensionSet(const Message& message) const; internal::ExtensionSet* MutableExtensionSet(Message* message) const; inline const internal::InternalMetadata& GetInternalMetadata( const Message& message) const; internal::InternalMetadata* MutableInternalMetadata(Message* message) const; inline bool IsInlined(const FieldDescriptor* field) const; inline bool HasBit(const Message& message, const FieldDescriptor* field) const; inline void SetBit(Message* message, const FieldDescriptor* field) const; inline void ClearBit(Message* message, const FieldDescriptor* field) const; inline void SwapBit(Message* message1, Message* message2, const FieldDescriptor* field) const; inline const uint32_t* GetInlinedStringDonatedArray( const Message& message) const; inline uint32_t* MutableInlinedStringDonatedArray(Message* message) const; inline bool IsInlinedStringDonated(const Message& message, const FieldDescriptor* field) const; // Shallow-swap fields listed in fields vector of two messages. It is the // caller's responsibility to make sure shallow swap is safe. void UnsafeShallowSwapFields( Message* message1, Message* message2, const std::vector& fields) const; // This function only swaps the field. Should swap corresponding has_bit // before or after using this function. void SwapField(Message* message1, Message* message2, const FieldDescriptor* field) const; // Unsafe but shallow version of SwapField. void UnsafeShallowSwapField(Message* message1, Message* message2, const FieldDescriptor* field) const; template void SwapFieldsImpl(Message* message1, Message* message2, const std::vector& fields) const; template void SwapOneofField(Message* lhs, Message* rhs, const OneofDescriptor* oneof_descriptor) const; inline bool HasOneofField(const Message& message, const FieldDescriptor* field) const; inline void SetOneofCase(Message* message, const FieldDescriptor* field) const; inline void ClearOneofField(Message* message, const FieldDescriptor* field) const; template inline const Type& GetField(const Message& message, const FieldDescriptor* field) const; template inline void SetField(Message* message, const FieldDescriptor* field, const Type& value) const; template inline Type* MutableField(Message* message, const FieldDescriptor* field) const; template inline const Type& GetRepeatedField(const Message& message, const FieldDescriptor* field, int index) const; template inline const Type& GetRepeatedPtrField(const Message& message, const FieldDescriptor* field, int index) const; template inline void SetRepeatedField(Message* message, const FieldDescriptor* field, int index, Type value) const; template inline Type* MutableRepeatedField(Message* message, const FieldDescriptor* field, int index) const; template inline void AddField(Message* message, const FieldDescriptor* field, const Type& value) const; template inline Type* AddField(Message* message, const FieldDescriptor* field) const; int GetExtensionNumberOrDie(const Descriptor* type) const; // Internal versions of EnumValue API perform no checking. Called after checks // by public methods. void SetEnumValueInternal(Message* message, const FieldDescriptor* field, int value) const; void SetRepeatedEnumValueInternal(Message* message, const FieldDescriptor* field, int index, int value) const; void AddEnumValueInternal(Message* message, const FieldDescriptor* field, int value) const; friend inline // inline so nobody can call this function. void RegisterAllTypesInternal(const Metadata* file_level_metadata, int size); friend inline const char* ParseLenDelim(int field_number, const FieldDescriptor* field, Message* msg, const Reflection* reflection, const char* ptr, internal::ParseContext* ctx); friend inline const char* ParsePackedField(const FieldDescriptor* field, Message* msg, const Reflection* reflection, const char* ptr, internal::ParseContext* ctx); GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(Reflection); }; // Abstract interface for a factory for message objects. class PROTOBUF_EXPORT MessageFactory { public: inline MessageFactory() {} virtual ~MessageFactory(); // Given a Descriptor, gets or constructs the default (prototype) Message // of that type. You can then call that message's New() method to construct // a mutable message of that type. // // Calling this method twice with the same Descriptor returns the same // object. The returned object remains property of the factory. Also, any // objects created by calling the prototype's New() method share some data // with the prototype, so these must be destroyed before the MessageFactory // is destroyed. // // The given descriptor must outlive the returned message, and hence must // outlive the MessageFactory. // // Some implementations do not support all types. GetPrototype() will // return nullptr if the descriptor passed in is not supported. // // This method may or may not be thread-safe depending on the implementation. // Each implementation should document its own degree thread-safety. virtual const Message* GetPrototype(const Descriptor* type) = 0; // Gets a MessageFactory which supports all generated, compiled-in messages. // In other words, for any compiled-in type FooMessage, the following is true: // MessageFactory::generated_factory()->GetPrototype( // FooMessage::descriptor()) == FooMessage::default_instance() // This factory supports all types which are found in // DescriptorPool::generated_pool(). If given a descriptor from any other // pool, GetPrototype() will return nullptr. (You can also check if a // descriptor is for a generated message by checking if // descriptor->file()->pool() == DescriptorPool::generated_pool().) // // This factory is 100% thread-safe; calling GetPrototype() does not modify // any shared data. // // This factory is a singleton. The caller must not delete the object. static MessageFactory* generated_factory(); // For internal use only: Registers a .proto file at static initialization // time, to be placed in generated_factory. The first time GetPrototype() // is called with a descriptor from this file, |register_messages| will be // called, with the file name as the parameter. It must call // InternalRegisterGeneratedMessage() (below) to register each message type // in the file. This strange mechanism is necessary because descriptors are // built lazily, so we can't register types by their descriptor until we // know that the descriptor exists. |filename| must be a permanent string. static void InternalRegisterGeneratedFile( const google::protobuf::internal::DescriptorTable* table); // For internal use only: Registers a message type. Called only by the // functions which are registered with InternalRegisterGeneratedFile(), // above. static void InternalRegisterGeneratedMessage(const Descriptor* descriptor, const Message* prototype); private: GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(MessageFactory); }; #define DECLARE_GET_REPEATED_FIELD(TYPE) \ template <> \ PROTOBUF_EXPORT const RepeatedField& \ Reflection::GetRepeatedFieldInternal( \ const Message& message, const FieldDescriptor* field) const; \ \ template <> \ PROTOBUF_EXPORT RepeatedField* \ Reflection::MutableRepeatedFieldInternal( \ Message * message, const FieldDescriptor* field) const; DECLARE_GET_REPEATED_FIELD(int32_t) DECLARE_GET_REPEATED_FIELD(int64_t) DECLARE_GET_REPEATED_FIELD(uint32_t) DECLARE_GET_REPEATED_FIELD(uint64_t) DECLARE_GET_REPEATED_FIELD(float) DECLARE_GET_REPEATED_FIELD(double) DECLARE_GET_REPEATED_FIELD(bool) #undef DECLARE_GET_REPEATED_FIELD // Tries to downcast this message to a generated message type. Returns nullptr // if this class is not an instance of T. This works even if RTTI is disabled. // // This also has the effect of creating a strong reference to T that will // prevent the linker from stripping it out at link time. This can be important // if you are using a DynamicMessageFactory that delegates to the generated // factory. template const T* DynamicCastToGenerated(const Message* from) { // Compile-time assert that T is a generated type that has a // default_instance() accessor, but avoid actually calling it. const T& (*get_default_instance)() = &T::default_instance; (void)get_default_instance; // Compile-time assert that T is a subclass of google::protobuf::Message. const Message* unused = static_cast(nullptr); (void)unused; #if PROTOBUF_RTTI return dynamic_cast(from); #else bool ok = from != nullptr && T::default_instance().GetReflection() == from->GetReflection(); return ok ? down_cast(from) : nullptr; #endif } template T* DynamicCastToGenerated(Message* from) { const Message* message_const = from; return const_cast(DynamicCastToGenerated(message_const)); } // Call this function to ensure that this message's reflection is linked into // the binary: // // google::protobuf::LinkMessageReflection(); // // This will ensure that the following lookup will succeed: // // DescriptorPool::generated_pool()->FindMessageTypeByName("FooMessage"); // // As a side-effect, it will also guarantee that anything else from the same // .proto file will also be available for lookup in the generated pool. // // This function does not actually register the message, so it does not need // to be called before the lookup. However it does need to occur in a function // that cannot be stripped from the binary (ie. it must be reachable from main). // // Best practice is to call this function as close as possible to where the // reflection is actually needed. This function is very cheap to call, so you // should not need to worry about its runtime overhead except in the tightest // of loops (on x86-64 it compiles into two "mov" instructions). template void LinkMessageReflection() { internal::StrongReference(T::default_instance); } // ============================================================================= // Implementation details for {Get,Mutable}RawRepeatedPtrField. We provide // specializations for , and and // handle everything else with the default template which will match any type // having a method with signature "static const google::protobuf::Descriptor* // descriptor()". Such a type presumably is a descendant of google::protobuf::Message. template <> inline const RepeatedPtrField& Reflection::GetRepeatedPtrFieldInternal( const Message& message, const FieldDescriptor* field) const { return *static_cast*>( MutableRawRepeatedString(const_cast(&message), field, true)); } template <> inline RepeatedPtrField* Reflection::MutableRepeatedPtrFieldInternal( Message* message, const FieldDescriptor* field) const { return static_cast*>( MutableRawRepeatedString(message, field, true)); } // ----- template <> inline const RepeatedPtrField& Reflection::GetRepeatedPtrFieldInternal( const Message& message, const FieldDescriptor* field) const { return *static_cast*>(GetRawRepeatedField( message, field, FieldDescriptor::CPPTYPE_MESSAGE, -1, nullptr)); } template <> inline RepeatedPtrField* Reflection::MutableRepeatedPtrFieldInternal( Message* message, const FieldDescriptor* field) const { return static_cast*>(MutableRawRepeatedField( message, field, FieldDescriptor::CPPTYPE_MESSAGE, -1, nullptr)); } template inline const RepeatedPtrField& Reflection::GetRepeatedPtrFieldInternal( const Message& message, const FieldDescriptor* field) const { return *static_cast*>( GetRawRepeatedField(message, field, FieldDescriptor::CPPTYPE_MESSAGE, -1, PB::default_instance().GetDescriptor())); } template inline RepeatedPtrField* Reflection::MutableRepeatedPtrFieldInternal( Message* message, const FieldDescriptor* field) const { return static_cast*>( MutableRawRepeatedField(message, field, FieldDescriptor::CPPTYPE_MESSAGE, -1, PB::default_instance().GetDescriptor())); } template const Type& Reflection::DefaultRaw(const FieldDescriptor* field) const { return *reinterpret_cast(schema_.GetFieldDefault(field)); } uint32_t Reflection::GetOneofCase( const Message& message, const OneofDescriptor* oneof_descriptor) const { GOOGLE_DCHECK(!oneof_descriptor->is_synthetic()); return internal::GetConstRefAtOffset( message, schema_.GetOneofCaseOffset(oneof_descriptor)); } bool Reflection::HasOneofField(const Message& message, const FieldDescriptor* field) const { return (GetOneofCase(message, field->containing_oneof()) == static_cast(field->number())); } template const Type& Reflection::GetRaw(const Message& message, const FieldDescriptor* field) const { GOOGLE_DCHECK(!schema_.InRealOneof(field) || HasOneofField(message, field)) << "Field = " << field->full_name(); return internal::GetConstRefAtOffset(message, schema_.GetFieldOffset(field)); } } // namespace protobuf } // namespace google #include #endif // GOOGLE_PROTOBUF_MESSAGE_H__