/** * \file Utility.hpp * \brief Header for GeographicLib::Utility class * * Copyright (c) Charles Karney (2011-2020) and licensed * under the MIT/X11 License. For more information, see * https://geographiclib.sourceforge.io/ **********************************************************************/ #if !defined(GEOGRAPHICLIB_UTILITY_HPP) #define GEOGRAPHICLIB_UTILITY_HPP 1 #include #include #include #include #include #include #include #if defined(_MSC_VER) // Squelch warnings about constant conditional expressions and unsafe gmtime # pragma warning (push) # pragma warning (disable: 4127 4996) #endif namespace GeographicLib { /** * \brief Some utility routines for %GeographicLib * * Example of use: * \include example-Utility.cpp **********************************************************************/ class GEOGRAPHICLIB_EXPORT Utility { private: static bool gregorian(int y, int m, int d) { // The original cut over to the Gregorian calendar in Pope Gregory XIII's // time had 1582-10-04 followed by 1582-10-15. Here we implement the // switch over used by the English-speaking world where 1752-09-02 was // followed by 1752-09-14. We also assume that the year always begins // with January 1, whereas in reality it often was reckoned to begin in // March. return 100 * (100 * y + m) + d >= 17520914; // or 15821015 } static bool gregorian(int s) { return s >= 639799; // 1752-09-14 } public: /** * Convert a date to the day numbering sequentially starting with * 0001-01-01 as day 1. * * @param[in] y the year (must be positive). * @param[in] m the month, Jan = 1, etc. (must be positive). Default = 1. * @param[in] d the day of the month (must be positive). Default = 1. * @return the sequential day number. **********************************************************************/ static int day(int y, int m = 1, int d = 1) { // Convert from date to sequential day and vice versa // // Here is some code to convert a date to sequential day and vice // versa. The sequential day is numbered so that January 1, 1 AD is day 1 // (a Saturday). So this is offset from the "Julian" day which starts the // numbering with 4713 BC. // // This is inspired by a talk by John Conway at the John von Neumann // National Supercomputer Center when he described his Doomsday algorithm // for figuring the day of the week. The code avoids explicitly doing ifs // (except for the decision of whether to use the Julian or Gregorian // calendar). Instead the equivalent result is achieved using integer // arithmetic. I got this idea from the routine for the day of the week // in MACLisp (I believe that that routine was written by Guy Steele). // // There are three issues to take care of // // 1. the rules for leap years, // 2. the inconvenient placement of leap days at the end of February, // 3. the irregular pattern of month lengths. // // We deal with these as follows: // // 1. Leap years are given by simple rules which are straightforward to // accommodate. // // 2. We simplify the calculations by moving January and February to the // previous year. Here we internally number the months March–December, // January, February as 0–9, 10, 11. // // 3. The pattern of month lengths from March through January is regular // with a 5-month period—31, 30, 31, 30, 31, 31, 30, 31, 30, 31, 31. The // 5-month period is 153 days long. Since February is now at the end of // the year, we don't need to include its length in this part of the // calculation. bool greg = gregorian(y, m, d); y += (m + 9) / 12 - 1; // Move Jan and Feb to previous year, m = (m + 9) % 12; // making March month 0. return (1461 * y) / 4 // Julian years converted to days. Julian year is 365 + // 1/4 = 1461/4 days. // Gregorian leap year corrections. The 2 offset with respect to the // Julian calendar synchronizes the vernal equinox with that at the // time of the Council of Nicea (325 AD). + (greg ? (y / 100) / 4 - (y / 100) + 2 : 0) + (153 * m + 2) / 5 // The zero-based start of the m'th month + d - 1 // The zero-based day - 305; // The number of days between March 1 and December 31. // This makes 0001-01-01 day 1 } /** * Convert a date to the day numbering sequentially starting with * 0001-01-01 as day 1. * * @param[in] y the year (must be positive). * @param[in] m the month, Jan = 1, etc. (must be positive). Default = 1. * @param[in] d the day of the month (must be positive). Default = 1. * @param[in] check whether to check the date. * @exception GeographicErr if the date is invalid and \e check is true. * @return the sequential day number. **********************************************************************/ static int day(int y, int m, int d, bool check) { int s = day(y, m, d); if (!check) return s; int y1, m1, d1; date(s, y1, m1, d1); if (!(s > 0 && y == y1 && m == m1 && d == d1)) throw GeographicErr("Invalid date " + str(y) + "-" + str(m) + "-" + str(d) + (s > 0 ? "; use " + str(y1) + "-" + str(m1) + "-" + str(d1) : " before 0001-01-01")); return s; } /** * Given a day (counting from 0001-01-01 as day 1), return the date. * * @param[in] s the sequential day number (must be positive) * @param[out] y the year. * @param[out] m the month, Jan = 1, etc. * @param[out] d the day of the month. **********************************************************************/ static void date(int s, int& y, int& m, int& d) { int c = 0; bool greg = gregorian(s); s += 305; // s = 0 on March 1, 1BC if (greg) { s -= 2; // The 2 day Gregorian offset // Determine century with the Gregorian rules for leap years. The // Gregorian year is 365 + 1/4 - 1/100 + 1/400 = 146097/400 days. c = (4 * s + 3) / 146097; s -= (c * 146097) / 4; // s = 0 at beginning of century } y = (4 * s + 3) / 1461; // Determine the year using Julian rules. s -= (1461 * y) / 4; // s = 0 at start of year, i.e., March 1 y += c * 100; // Assemble full year m = (5 * s + 2) / 153; // Determine the month s -= (153 * m + 2) / 5; // s = 0 at beginning of month d = s + 1; // Determine day of month y += (m + 2) / 12; // Move Jan and Feb back to original year m = (m + 2) % 12 + 1; // Renumber the months so January = 1 } /** * Given a date as a string in the format yyyy, yyyy-mm, or yyyy-mm-dd, * return the numeric values for the year, month, and day. No checking is * done on these values. The string "now" is interpreted as the present * date (in UTC). * * @param[in] s the date in string format. * @param[out] y the year. * @param[out] m the month, Jan = 1, etc. * @param[out] d the day of the month. * @exception GeographicErr is \e s is malformed. **********************************************************************/ static void date(const std::string& s, int& y, int& m, int& d) { if (s == "now") { std::time_t t = std::time(0); struct tm* now = gmtime(&t); y = now->tm_year + 1900; m = now->tm_mon + 1; d = now->tm_mday; return; } int y1, m1 = 1, d1 = 1; const char* digits = "0123456789"; std::string::size_type p1 = s.find_first_not_of(digits); if (p1 == std::string::npos) y1 = val(s); else if (s[p1] != '-') throw GeographicErr("Delimiter not hyphen in date " + s); else if (p1 == 0) throw GeographicErr("Empty year field in date " + s); else { y1 = val(s.substr(0, p1)); if (++p1 == s.size()) throw GeographicErr("Empty month field in date " + s); std::string::size_type p2 = s.find_first_not_of(digits, p1); if (p2 == std::string::npos) m1 = val(s.substr(p1)); else if (s[p2] != '-') throw GeographicErr("Delimiter not hyphen in date " + s); else if (p2 == p1) throw GeographicErr("Empty month field in date " + s); else { m1 = val(s.substr(p1, p2 - p1)); if (++p2 == s.size()) throw GeographicErr("Empty day field in date " + s); d1 = val(s.substr(p2)); } } y = y1; m = m1; d = d1; } /** * Given the date, return the day of the week. * * @param[in] y the year (must be positive). * @param[in] m the month, Jan = 1, etc. (must be positive). * @param[in] d the day of the month (must be positive). * @return the day of the week with Sunday, Monday--Saturday = 0, * 1--6. **********************************************************************/ static int dow(int y, int m, int d) { return dow(day(y, m, d)); } /** * Given the sequential day, return the day of the week. * * @param[in] s the sequential day (must be positive). * @return the day of the week with Sunday, Monday--Saturday = 0, * 1--6. **********************************************************************/ static int dow(int s) { return (s + 5) % 7; // The 5 offset makes day 1 (0001-01-01) a Saturday. } /** * Convert a string representing a date to a fractional year. * * @tparam T the type of the argument. * @param[in] s the string to be converted. * @exception GeographicErr if \e s can't be interpreted as a date. * @return the fractional year. * * The string is first read as an ordinary number (e.g., 2010 or 2012.5); * if this is successful, the value is returned. Otherwise the string * should be of the form yyyy-mm or yyyy-mm-dd and this is converted to a * number with 2010-01-01 giving 2010.0 and 2012-07-03 giving 2012.5. **********************************************************************/ template static T fractionalyear(const std::string& s) { try { return val(s); } catch (const std::exception&) {} int y, m, d; date(s, y, m, d); int t = day(y, m, d, true); return T(y) + T(t - day(y)) / T(day(y + 1) - day(y)); } /** * Convert a object of type T to a string. * * @tparam T the type of the argument. * @param[in] x the value to be converted. * @param[in] p the precision used (default −1). * @exception std::bad_alloc if memory for the string can't be allocated. * @return the string representation. * * If \e p ≥ 0, then the number fixed format is used with p bits of * precision. With p < 0, there is no manipulation of the format. **********************************************************************/ template static std::string str(T x, int p = -1) { std::ostringstream s; if (p >= 0) s << std::fixed << std::setprecision(p); s << x; return s.str(); } /** * Convert a Math::real object to a string. * * @param[in] x the value to be converted. * @param[in] p the precision used (default −1). * @exception std::bad_alloc if memory for the string can't be allocated. * @return the string representation. * * If \e p ≥ 0, then the number fixed format is used with p bits of * precision. With p < 0, there is no manipulation of the format. This is * an overload of str which deals with inf and nan. **********************************************************************/ static std::string str(Math::real x, int p = -1) { using std::isfinite; if (!isfinite(x)) return x < 0 ? std::string("-inf") : (x > 0 ? std::string("inf") : std::string("nan")); std::ostringstream s; #if GEOGRAPHICLIB_PRECISION == 4 // boost-quadmath treats precision == 0 as "use as many digits as // necessary" (see https://svn.boost.org/trac/boost/ticket/10103), so... using std::floor; using std::fmod; if (p == 0) { x += Math::real(0.5); Math::real ix = floor(x); // Implement the "round ties to even" rule x = (ix == x && fmod(ix, Math::real(2)) == 1) ? ix - 1 : ix; s << std::fixed << std::setprecision(1) << x; std::string r(s.str()); // strip off trailing ".0" return r.substr(0, (std::max)(int(r.size()) - 2, 0)); } #endif if (p >= 0) s << std::fixed << std::setprecision(p); s << x; return s.str(); } /** * Trim the white space from the beginning and end of a string. * * @param[in] s the string to be trimmed * @return the trimmed string **********************************************************************/ static std::string trim(const std::string& s) { unsigned beg = 0, end = unsigned(s.size()); while (beg < end && isspace(s[beg])) ++beg; while (beg < end && isspace(s[end - 1])) --end; return std::string(s, beg, end-beg); } /** * Convert a string to type T. * * @tparam T the type of the return value. * @param[in] s the string to be converted. * @exception GeographicErr is \e s is not readable as a T. * @return object of type T. * * White space at the beginning and end of \e s is ignored. * * Special handling is provided for some types. * * If T is a floating point type, then inf and nan are recognized. * * If T is bool, then \e s should either be string a representing 0 (false) * or 1 (true) or one of the strings * - "false", "f", "nil", "no", "n", "off", or "" meaning false, * - "true", "t", "yes", "y", or "on" meaning true; * . * case is ignored. * * If T is std::string, then \e s is returned (with the white space at the * beginning and end removed). **********************************************************************/ template static T val(const std::string& s) { // If T is bool, then the specialization val() defined below is // used. T x; std::string errmsg, t(trim(s)); do { // Executed once (provides the ability to break) std::istringstream is(t); if (!(is >> x)) { errmsg = "Cannot decode " + t; break; } int pos = int(is.tellg()); // Returns -1 at end of string? if (!(pos < 0 || pos == int(t.size()))) { errmsg = "Extra text " + t.substr(pos) + " at end of " + t; break; } return x; } while (false); x = std::numeric_limits::is_integer ? 0 : nummatch(t); if (x == 0) throw GeographicErr(errmsg); return x; } /** * \deprecated An old name for val(s). **********************************************************************/ template GEOGRAPHICLIB_DEPRECATED("Use Utility::val(s)") static T num(const std::string& s) { return val(s); } /** * Match "nan" and "inf" (and variants thereof) in a string. * * @tparam T the type of the return value (this should be a floating point * type). * @param[in] s the string to be matched. * @return appropriate special value (±∞, nan) or 0 if none is * found. * * White space is not allowed at the beginning or end of \e s. **********************************************************************/ template static T nummatch(const std::string& s) { if (s.length() < 3) return 0; std::string t(s); for (std::string::iterator p = t.begin(); p != t.end(); ++p) *p = char(std::toupper(*p)); for (size_t i = s.length(); i--;) t[i] = char(std::toupper(s[i])); int sign = t[0] == '-' ? -1 : 1; std::string::size_type p0 = t[0] == '-' || t[0] == '+' ? 1 : 0; std::string::size_type p1 = t.find_last_not_of('0'); if (p1 == std::string::npos || p1 + 1 < p0 + 3) return 0; // Strip off sign and trailing 0s t = t.substr(p0, p1 + 1 - p0); // Length at least 3 if (t == "NAN" || t == "1.#QNAN" || t == "1.#SNAN" || t == "1.#IND" || t == "1.#R") return Math::NaN(); else if (t == "INF" || t == "1.#INF") return sign * Math::infinity(); return 0; } /** * Read a simple fraction, e.g., 3/4, from a string to an object of type T. * * @tparam T the type of the return value. * @param[in] s the string to be converted. * @exception GeographicErr is \e s is not readable as a fraction of type * T. * @return object of type T * * \note The msys shell under Windows converts arguments which look like * pathnames into their Windows equivalents. As a result the argument * "-1/300" gets mangled into something unrecognizable. A workaround is to * use a floating point number in the numerator, i.e., "-1.0/300". (Recent * versions of the msys shell appear \e not to have this problem.) **********************************************************************/ template static T fract(const std::string& s) { std::string::size_type delim = s.find('/'); return !(delim != std::string::npos && delim >= 1 && delim + 2 <= s.size()) ? val(s) : // delim in [1, size() - 2] val(s.substr(0, delim)) / val(s.substr(delim + 1)); } /** * Lookup up a character in a string. * * @param[in] s the string to be searched. * @param[in] c the character to look for. * @return the index of the first occurrence character in the string or * −1 is the character is not present. * * \e c is converted to upper case before search \e s. Therefore, it is * intended that \e s should not contain any lower case letters. **********************************************************************/ static int lookup(const std::string& s, char c) { std::string::size_type r = s.find(char(std::toupper(c))); return r == std::string::npos ? -1 : int(r); } /** * Lookup up a character in a char*. * * @param[in] s the char* string to be searched. * @param[in] c the character to look for. * @return the index of the first occurrence character in the string or * −1 is the character is not present. * * \e c is converted to upper case before search \e s. Therefore, it is * intended that \e s should not contain any lower case letters. **********************************************************************/ static int lookup(const char* s, char c) { const char* p = std::strchr(s, std::toupper(c)); return p != NULL ? int(p - s) : -1; } /** * Read data of type ExtT from a binary stream to an array of type IntT. * The data in the file is in (bigendp ? big : little)-endian format. * * @tparam ExtT the type of the objects in the binary stream (external). * @tparam IntT the type of the objects in the array (internal). * @tparam bigendp true if the external storage format is big-endian. * @param[in] str the input stream containing the data of type ExtT * (external). * @param[out] array the output array of type IntT (internal). * @param[in] num the size of the array. * @exception GeographicErr if the data cannot be read. **********************************************************************/ template static void readarray(std::istream& str, IntT array[], size_t num) { #if GEOGRAPHICLIB_PRECISION < 4 if (sizeof(IntT) == sizeof(ExtT) && std::numeric_limits::is_integer == std::numeric_limits::is_integer) { // Data is compatible (aside from the issue of endian-ness). str.read(reinterpret_cast(array), num * sizeof(ExtT)); if (!str.good()) throw GeographicErr("Failure reading data"); if (bigendp != Math::bigendian) { // endian mismatch -> swap bytes for (size_t i = num; i--;) array[i] = Math::swab(array[i]); } } else #endif { const int bufsize = 1024; // read this many values at a time ExtT buffer[bufsize]; // temporary buffer int k = int(num); // data values left to read int i = 0; // index into output array while (k) { int n = (std::min)(k, bufsize); str.read(reinterpret_cast(buffer), n * sizeof(ExtT)); if (!str.good()) throw GeographicErr("Failure reading data"); for (int j = 0; j < n; ++j) // fix endian-ness and cast to IntT array[i++] = IntT(bigendp == Math::bigendian ? buffer[j] : Math::swab(buffer[j])); k -= n; } } return; } /** * Read data of type ExtT from a binary stream to a vector array of type * IntT. The data in the file is in (bigendp ? big : little)-endian * format. * * @tparam ExtT the type of the objects in the binary stream (external). * @tparam IntT the type of the objects in the array (internal). * @tparam bigendp true if the external storage format is big-endian. * @param[in] str the input stream containing the data of type ExtT * (external). * @param[out] array the output vector of type IntT (internal). * @exception GeographicErr if the data cannot be read. **********************************************************************/ template static void readarray(std::istream& str, std::vector& array) { if (array.size() > 0) readarray(str, &array[0], array.size()); } /** * Write data in an array of type IntT as type ExtT to a binary stream. * The data in the file is in (bigendp ? big : little)-endian format. * * @tparam ExtT the type of the objects in the binary stream (external). * @tparam IntT the type of the objects in the array (internal). * @tparam bigendp true if the external storage format is big-endian. * @param[out] str the output stream for the data of type ExtT (external). * @param[in] array the input array of type IntT (internal). * @param[in] num the size of the array. * @exception GeographicErr if the data cannot be written. **********************************************************************/ template static void writearray(std::ostream& str, const IntT array[], size_t num) { #if GEOGRAPHICLIB_PRECISION < 4 if (sizeof(IntT) == sizeof(ExtT) && std::numeric_limits::is_integer == std::numeric_limits::is_integer && bigendp == Math::bigendian) { // Data is compatible (including endian-ness). str.write(reinterpret_cast(array), num * sizeof(ExtT)); if (!str.good()) throw GeographicErr("Failure writing data"); } else #endif { const int bufsize = 1024; // write this many values at a time ExtT buffer[bufsize]; // temporary buffer int k = int(num); // data values left to write int i = 0; // index into output array while (k) { int n = (std::min)(k, bufsize); for (int j = 0; j < n; ++j) // cast to ExtT and fix endian-ness buffer[j] = bigendp == Math::bigendian ? ExtT(array[i++]) : Math::swab(ExtT(array[i++])); str.write(reinterpret_cast(buffer), n * sizeof(ExtT)); if (!str.good()) throw GeographicErr("Failure writing data"); k -= n; } } return; } /** * Write data in an array of type IntT as type ExtT to a binary stream. * The data in the file is in (bigendp ? big : little)-endian format. * * @tparam ExtT the type of the objects in the binary stream (external). * @tparam IntT the type of the objects in the array (internal). * @tparam bigendp true if the external storage format is big-endian. * @param[out] str the output stream for the data of type ExtT (external). * @param[in] array the input vector of type IntT (internal). * @exception GeographicErr if the data cannot be written. **********************************************************************/ template static void writearray(std::ostream& str, std::vector& array) { if (array.size() > 0) writearray(str, &array[0], array.size()); } /** * Parse a KEY [=] VALUE line. * * @param[in] line the input line. * @param[out] key the KEY. * @param[out] value the VALUE. * @param[in] delim delimiter to separate KEY and VALUE, if NULL use first * space character. * @exception std::bad_alloc if memory for the internal strings can't be * allocated. * @return whether a key was found. * * A "#" character and everything after it are discarded and the result * trimmed of leading and trailing white space. Use the delimiter * character (or, if it is NULL, the first white space) to separate \e key * and \e value. \e key and \e value are trimmed of leading and trailing * white space. If \e key is empty, then \e value is set to "" and false * is returned. **********************************************************************/ static bool ParseLine(const std::string& line, std::string& key, std::string& value, char delim); /** * Parse a KEY VALUE line. * * @param[in] line the input line. * @param[out] key the KEY. * @param[out] value the VALUE. * @exception std::bad_alloc if memory for the internal strings can't be * allocated. * @return whether a key was found. * * \note This is a transition routine. At some point \e delim will be made * an optional argument in the previous version of ParseLine and this * version will be removed. **********************************************************************/ static bool ParseLine(const std::string& line, std::string& key, std::string& value); /** * Set the binary precision of a real number. * * @param[in] ndigits the number of bits of precision. If ndigits is 0 * (the default), then determine the precision from the environment * variable GEOGRAPHICLIB_DIGITS. If this is undefined, use ndigits = * 256 (i.e., about 77 decimal digits). * @return the resulting number of bits of precision. * * This only has an effect when GEOGRAPHICLIB_PRECISION = 5. The * precision should only be set once and before calls to any other * GeographicLib functions. (Several functions, for example Math::pi(), * cache the return value in a static local variable. The precision needs * to be set before a call to any such functions.) In multi-threaded * applications, it is necessary also to set the precision in each thread * (see the example GeoidToGTX.cpp). **********************************************************************/ static int set_digits(int ndigits = 0); }; /** * The specialization of Utility::val() for strings. **********************************************************************/ template<> inline std::string Utility::val(const std::string& s) { return trim(s); } /** * The specialization of Utility::val() for bools. **********************************************************************/ template<> inline bool Utility::val(const std::string& s) { std::string t(trim(s)); if (t.empty()) return false; bool x; { std::istringstream is(t); if (is >> x) { int pos = int(is.tellg()); // Returns -1 at end of string? if (!(pos < 0 || pos == int(t.size()))) throw GeographicErr("Extra text " + t.substr(pos) + " at end of " + t); return x; } } for (std::string::iterator p = t.begin(); p != t.end(); ++p) *p = char(std::tolower(*p)); switch (t[0]) { // already checked that t isn't empty case 'f': if (t == "f" || t == "false") return false; break; case 'n': if (t == "n" || t == "nil" || t == "no") return false; break; case 'o': if (t == "off") return false; else if (t == "on") return true; break; case 't': if (t == "t" || t == "true") return true; break; case 'y': if (t == "y" || t == "yes") return true; break; default: break; } throw GeographicErr("Cannot decode " + t + " as a bool"); } } // namespace GeographicLib #if defined(_MSC_VER) # pragma warning (pop) #endif #endif // GEOGRAPHICLIB_UTILITY_HPP