/** * \file GeodesicLineExact.hpp * \brief Header for GeographicLib::GeodesicLineExact class * * Copyright (c) Charles Karney (2012-2020) and licensed * under the MIT/X11 License. For more information, see * https://geographiclib.sourceforge.io/ **********************************************************************/ #if !defined(GEOGRAPHICLIB_GEODESICLINEEXACT_HPP) #define GEOGRAPHICLIB_GEODESICLINEEXACT_HPP 1 #include #include #include namespace GeographicLib { /** * \brief An exact geodesic line * * GeodesicLineExact facilitates the determination of a series of points on a * single geodesic. This is a companion to the GeodesicExact class. For * additional information on this class see the documentation on the * GeodesicLine class. * * Example of use: * \include example-GeodesicLineExact.cpp * * GeodSolve is a command-line utility * providing access to the functionality of GeodesicExact and * GeodesicLineExact (via the -E option). **********************************************************************/ class GEOGRAPHICLIB_EXPORT GeodesicLineExact { private: typedef Math::real real; friend class GeodesicExact; static const int nC4_ = GeodesicExact::nC4_; real tiny_; real _lat1, _lon1, _azi1; real _a, _f, _b, _c2, _f1, _e2, _salp0, _calp0, _k2, _salp1, _calp1, _ssig1, _csig1, _dn1, _stau1, _ctau1, _somg1, _comg1, _cchi1, _A4, _B41, _E0, _D0, _H0, _E1, _D1, _H1; real _a13, _s13; real _C4a[nC4_]; // all the elements of _C4a are used EllipticFunction _E; unsigned _caps; void LineInit(const GeodesicExact& g, real lat1, real lon1, real azi1, real salp1, real calp1, unsigned caps); GeodesicLineExact(const GeodesicExact& g, real lat1, real lon1, real azi1, real salp1, real calp1, unsigned caps, bool arcmode, real s13_a13); enum captype { CAP_NONE = GeodesicExact::CAP_NONE, CAP_E = GeodesicExact::CAP_E, CAP_D = GeodesicExact::CAP_D, CAP_H = GeodesicExact::CAP_H, CAP_C4 = GeodesicExact::CAP_C4, CAP_ALL = GeodesicExact::CAP_ALL, CAP_MASK = GeodesicExact::CAP_MASK, OUT_ALL = GeodesicExact::OUT_ALL, OUT_MASK = GeodesicExact::OUT_MASK, }; public: /** * Bit masks for what calculations to do. They signify to the * GeodesicLineExact::GeodesicLineExact constructor and to * GeodesicExact::Line what capabilities should be included in the * GeodesicLineExact object. This is merely a duplication of * GeodesicExact::mask. **********************************************************************/ enum mask { /** * No capabilities, no output. * @hideinitializer **********************************************************************/ NONE = GeodesicExact::NONE, /** * Calculate latitude \e lat2. (It's not necessary to include this as a * capability to GeodesicLineExact because this is included by default.) * @hideinitializer **********************************************************************/ LATITUDE = GeodesicExact::LATITUDE, /** * Calculate longitude \e lon2. * @hideinitializer **********************************************************************/ LONGITUDE = GeodesicExact::LONGITUDE, /** * Calculate azimuths \e azi1 and \e azi2. (It's not necessary to * include this as a capability to GeodesicLineExact because this is * included by default.) * @hideinitializer **********************************************************************/ AZIMUTH = GeodesicExact::AZIMUTH, /** * Calculate distance \e s12. * @hideinitializer **********************************************************************/ DISTANCE = GeodesicExact::DISTANCE, /** * Allow distance \e s12 to be used as input in the direct geodesic * problem. * @hideinitializer **********************************************************************/ DISTANCE_IN = GeodesicExact::DISTANCE_IN, /** * Calculate reduced length \e m12. * @hideinitializer **********************************************************************/ REDUCEDLENGTH = GeodesicExact::REDUCEDLENGTH, /** * Calculate geodesic scales \e M12 and \e M21. * @hideinitializer **********************************************************************/ GEODESICSCALE = GeodesicExact::GEODESICSCALE, /** * Calculate area \e S12. * @hideinitializer **********************************************************************/ AREA = GeodesicExact::AREA, /** * Unroll \e lon2 in the direct calculation. * @hideinitializer **********************************************************************/ LONG_UNROLL = GeodesicExact::LONG_UNROLL, /** * All capabilities, calculate everything. (LONG_UNROLL is not * included in this mask.) * @hideinitializer **********************************************************************/ ALL = GeodesicExact::ALL, }; /** \name Constructors **********************************************************************/ ///@{ /** * Constructor for a geodesic line staring at latitude \e lat1, longitude * \e lon1, and azimuth \e azi1 (all in degrees). * * @param[in] g A GeodesicExact object used to compute the necessary * information about the GeodesicLineExact. * @param[in] lat1 latitude of point 1 (degrees). * @param[in] lon1 longitude of point 1 (degrees). * @param[in] azi1 azimuth at point 1 (degrees). * @param[in] caps bitor'ed combination of GeodesicLineExact::mask values * specifying the capabilities the GeodesicLineExact object should * possess, i.e., which quantities can be returned in calls to * GeodesicLine::Position. * * \e lat1 should be in the range [−90°, 90°]. * * The GeodesicLineExact::mask values are * - \e caps |= GeodesicLineExact::LATITUDE for the latitude \e lat2; this * is added automatically; * - \e caps |= GeodesicLineExact::LONGITUDE for the latitude \e lon2; * - \e caps |= GeodesicLineExact::AZIMUTH for the latitude \e azi2; this * is added automatically; * - \e caps |= GeodesicLineExact::DISTANCE for the distance \e s12; * - \e caps |= GeodesicLineExact::REDUCEDLENGTH for the reduced length \e m12; * - \e caps |= GeodesicLineExact::GEODESICSCALE for the geodesic scales \e * M12 and \e M21; * - \e caps |= GeodesicLineExact::AREA for the area \e S12; * - \e caps |= GeodesicLineExact::DISTANCE_IN permits the length of the * geodesic to be given in terms of \e s12; without this capability the * length can only be specified in terms of arc length; * - \e caps |= GeodesicLineExact::ALL for all of the above. * . * The default value of \e caps is GeodesicLineExact::ALL. * * If the point is at a pole, the azimuth is defined by keeping \e lon1 * fixed, writing \e lat1 = ±(90° − ε), and taking * the limit ε → 0+. **********************************************************************/ GeodesicLineExact(const GeodesicExact& g, real lat1, real lon1, real azi1, unsigned caps = ALL); /** * A default constructor. If GeodesicLineExact::Position is called on the * resulting object, it returns immediately (without doing any * calculations). The object can be set with a call to * GeodesicExact::Line. Use Init() to test whether object is still in this * uninitialized state. **********************************************************************/ GeodesicLineExact() : _caps(0U) {} ///@} /** \name Position in terms of distance **********************************************************************/ ///@{ /** * Compute the position of point 2 which is a distance \e s12 (meters) * from point 1. * * @param[in] s12 distance from point 1 to point 2 (meters); it can be * signed. * @param[out] lat2 latitude of point 2 (degrees). * @param[out] lon2 longitude of point 2 (degrees); requires that the * GeodesicLineExact object was constructed with \e caps |= * GeodesicLineExact::LONGITUDE. * @param[out] azi2 (forward) azimuth at point 2 (degrees). * @param[out] m12 reduced length of geodesic (meters); requires that the * GeodesicLineExact object was constructed with \e caps |= * GeodesicLineExact::REDUCEDLENGTH. * @param[out] M12 geodesic scale of point 2 relative to point 1 * (dimensionless); requires that the GeodesicLineExact object was * constructed with \e caps |= GeodesicLineExact::GEODESICSCALE. * @param[out] M21 geodesic scale of point 1 relative to point 2 * (dimensionless); requires that the GeodesicLineExact object was * constructed with \e caps |= GeodesicLineExact::GEODESICSCALE. * @param[out] S12 area under the geodesic (meters2); requires * that the GeodesicLineExact object was constructed with \e caps |= * GeodesicLineExact::AREA. * @return \e a12 arc length from point 1 to point 2 (degrees). * * The values of \e lon2 and \e azi2 returned are in the range * [−180°, 180°]. * * The GeodesicLineExact object \e must have been constructed with \e caps * |= GeodesicLineExact::DISTANCE_IN; otherwise Math::NaN() is returned and * no parameters are set. Requesting a value which the GeodesicLineExact * object is not capable of computing is not an error; the corresponding * argument will not be altered. * * The following functions are overloaded versions of * GeodesicLineExact::Position which omit some of the output parameters. * Note, however, that the arc length is always computed and returned as * the function value. **********************************************************************/ Math::real Position(real s12, real& lat2, real& lon2, real& azi2, real& m12, real& M12, real& M21, real& S12) const { real t; return GenPosition(false, s12, LATITUDE | LONGITUDE | AZIMUTH | REDUCEDLENGTH | GEODESICSCALE | AREA, lat2, lon2, azi2, t, m12, M12, M21, S12); } /** * See the documentation for GeodesicLineExact::Position. **********************************************************************/ Math::real Position(real s12, real& lat2, real& lon2) const { real t; return GenPosition(false, s12, LATITUDE | LONGITUDE, lat2, lon2, t, t, t, t, t, t); } /** * See the documentation for GeodesicLineExact::Position. **********************************************************************/ Math::real Position(real s12, real& lat2, real& lon2, real& azi2) const { real t; return GenPosition(false, s12, LATITUDE | LONGITUDE | AZIMUTH, lat2, lon2, azi2, t, t, t, t, t); } /** * See the documentation for GeodesicLineExact::Position. **********************************************************************/ Math::real Position(real s12, real& lat2, real& lon2, real& azi2, real& m12) const { real t; return GenPosition(false, s12, LATITUDE | LONGITUDE | AZIMUTH | REDUCEDLENGTH, lat2, lon2, azi2, t, m12, t, t, t); } /** * See the documentation for GeodesicLineExact::Position. **********************************************************************/ Math::real Position(real s12, real& lat2, real& lon2, real& azi2, real& M12, real& M21) const { real t; return GenPosition(false, s12, LATITUDE | LONGITUDE | AZIMUTH | GEODESICSCALE, lat2, lon2, azi2, t, t, M12, M21, t); } /** * See the documentation for GeodesicLineExact::Position. **********************************************************************/ Math::real Position(real s12, real& lat2, real& lon2, real& azi2, real& m12, real& M12, real& M21) const { real t; return GenPosition(false, s12, LATITUDE | LONGITUDE | AZIMUTH | REDUCEDLENGTH | GEODESICSCALE, lat2, lon2, azi2, t, m12, M12, M21, t); } ///@} /** \name Position in terms of arc length **********************************************************************/ ///@{ /** * Compute the position of point 2 which is an arc length \e a12 (degrees) * from point 1. * * @param[in] a12 arc length from point 1 to point 2 (degrees); it can * be signed. * @param[out] lat2 latitude of point 2 (degrees). * @param[out] lon2 longitude of point 2 (degrees); requires that the * GeodesicLineExact object was constructed with \e caps |= * GeodesicLineExact::LONGITUDE. * @param[out] azi2 (forward) azimuth at point 2 (degrees). * @param[out] s12 distance from point 1 to point 2 (meters); requires * that the GeodesicLineExact object was constructed with \e caps |= * GeodesicLineExact::DISTANCE. * @param[out] m12 reduced length of geodesic (meters); requires that the * GeodesicLineExact object was constructed with \e caps |= * GeodesicLineExact::REDUCEDLENGTH. * @param[out] M12 geodesic scale of point 2 relative to point 1 * (dimensionless); requires that the GeodesicLineExact object was * constructed with \e caps |= GeodesicLineExact::GEODESICSCALE. * @param[out] M21 geodesic scale of point 1 relative to point 2 * (dimensionless); requires that the GeodesicLineExact object was * constructed with \e caps |= GeodesicLineExact::GEODESICSCALE. * @param[out] S12 area under the geodesic (meters2); requires * that the GeodesicLineExact object was constructed with \e caps |= * GeodesicLineExact::AREA. * * The values of \e lon2 and \e azi2 returned are in the range * [−180°, 180°]. * * Requesting a value which the GeodesicLineExact object is not capable of * computing is not an error; the corresponding argument will not be * altered. * * The following functions are overloaded versions of * GeodesicLineExact::ArcPosition which omit some of the output parameters. **********************************************************************/ void ArcPosition(real a12, real& lat2, real& lon2, real& azi2, real& s12, real& m12, real& M12, real& M21, real& S12) const { GenPosition(true, a12, LATITUDE | LONGITUDE | AZIMUTH | DISTANCE | REDUCEDLENGTH | GEODESICSCALE | AREA, lat2, lon2, azi2, s12, m12, M12, M21, S12); } /** * See the documentation for GeodesicLineExact::ArcPosition. **********************************************************************/ void ArcPosition(real a12, real& lat2, real& lon2) const { real t; GenPosition(true, a12, LATITUDE | LONGITUDE, lat2, lon2, t, t, t, t, t, t); } /** * See the documentation for GeodesicLineExact::ArcPosition. **********************************************************************/ void ArcPosition(real a12, real& lat2, real& lon2, real& azi2) const { real t; GenPosition(true, a12, LATITUDE | LONGITUDE | AZIMUTH, lat2, lon2, azi2, t, t, t, t, t); } /** * See the documentation for GeodesicLineExact::ArcPosition. **********************************************************************/ void ArcPosition(real a12, real& lat2, real& lon2, real& azi2, real& s12) const { real t; GenPosition(true, a12, LATITUDE | LONGITUDE | AZIMUTH | DISTANCE, lat2, lon2, azi2, s12, t, t, t, t); } /** * See the documentation for GeodesicLineExact::ArcPosition. **********************************************************************/ void ArcPosition(real a12, real& lat2, real& lon2, real& azi2, real& s12, real& m12) const { real t; GenPosition(true, a12, LATITUDE | LONGITUDE | AZIMUTH | DISTANCE | REDUCEDLENGTH, lat2, lon2, azi2, s12, m12, t, t, t); } /** * See the documentation for GeodesicLineExact::ArcPosition. **********************************************************************/ void ArcPosition(real a12, real& lat2, real& lon2, real& azi2, real& s12, real& M12, real& M21) const { real t; GenPosition(true, a12, LATITUDE | LONGITUDE | AZIMUTH | DISTANCE | GEODESICSCALE, lat2, lon2, azi2, s12, t, M12, M21, t); } /** * See the documentation for GeodesicLineExact::ArcPosition. **********************************************************************/ void ArcPosition(real a12, real& lat2, real& lon2, real& azi2, real& s12, real& m12, real& M12, real& M21) const { real t; GenPosition(true, a12, LATITUDE | LONGITUDE | AZIMUTH | DISTANCE | REDUCEDLENGTH | GEODESICSCALE, lat2, lon2, azi2, s12, m12, M12, M21, t); } ///@} /** \name The general position function. **********************************************************************/ ///@{ /** * The general position function. GeodesicLineExact::Position and * GeodesicLineExact::ArcPosition are defined in terms of this function. * * @param[in] arcmode boolean flag determining the meaning of the second * parameter; if \e arcmode is false, then the GeodesicLineExact object * must have been constructed with \e caps |= * GeodesicLineExact::DISTANCE_IN. * @param[in] s12_a12 if \e arcmode is false, this is the distance between * point 1 and point 2 (meters); otherwise it is the arc length between * point 1 and point 2 (degrees); it can be signed. * @param[in] outmask a bitor'ed combination of GeodesicLineExact::mask * values specifying which of the following parameters should be set. * @param[out] lat2 latitude of point 2 (degrees). * @param[out] lon2 longitude of point 2 (degrees); requires that the * GeodesicLineExact object was constructed with \e caps |= * GeodesicLineExact::LONGITUDE. * @param[out] azi2 (forward) azimuth at point 2 (degrees). * @param[out] s12 distance from point 1 to point 2 (meters); requires * that the GeodesicLineExact object was constructed with \e caps |= * GeodesicLineExact::DISTANCE. * @param[out] m12 reduced length of geodesic (meters); requires that the * GeodesicLineExact object was constructed with \e caps |= * GeodesicLineExact::REDUCEDLENGTH. * @param[out] M12 geodesic scale of point 2 relative to point 1 * (dimensionless); requires that the GeodesicLineExact object was * constructed with \e caps |= GeodesicLineExact::GEODESICSCALE. * @param[out] M21 geodesic scale of point 1 relative to point 2 * (dimensionless); requires that the GeodesicLineExact object was * constructed with \e caps |= GeodesicLineExact::GEODESICSCALE. * @param[out] S12 area under the geodesic (meters2); requires * that the GeodesicLineExact object was constructed with \e caps |= * GeodesicLineExact::AREA. * @return \e a12 arc length from point 1 to point 2 (degrees). * * The GeodesicLineExact::mask values possible for \e outmask are * - \e outmask |= GeodesicLineExact::LATITUDE for the latitude \e lat2; * - \e outmask |= GeodesicLineExact::LONGITUDE for the latitude \e lon2; * - \e outmask |= GeodesicLineExact::AZIMUTH for the latitude \e azi2; * - \e outmask |= GeodesicLineExact::DISTANCE for the distance \e s12; * - \e outmask |= GeodesicLineExact::REDUCEDLENGTH for the reduced length * \e m12; * - \e outmask |= GeodesicLineExact::GEODESICSCALE for the geodesic scales * \e M12 and \e M21; * - \e outmask |= GeodesicLineExact::AREA for the area \e S12; * - \e outmask |= GeodesicLineExact::ALL for all of the above; * - \e outmask |= GeodesicLineExact::LONG_UNROLL to unroll \e lon2 instead * of wrapping it into the range [−180°, 180°]. * . * Requesting a value which the GeodesicLineExact object is not capable of * computing is not an error; the corresponding argument will not be * altered. Note, however, that the arc length is always computed and * returned as the function value. * * With the GeodesicLineExact::LONG_UNROLL bit set, the quantity \e lon2 * − \e lon1 indicates how many times and in what sense the geodesic * encircles the ellipsoid. **********************************************************************/ Math::real GenPosition(bool arcmode, real s12_a12, unsigned outmask, real& lat2, real& lon2, real& azi2, real& s12, real& m12, real& M12, real& M21, real& S12) const; ///@} /** \name Setting point 3 **********************************************************************/ ///@{ /** * Specify position of point 3 in terms of distance. * * @param[in] s13 the distance from point 1 to point 3 (meters); it * can be negative. * * This is only useful if the GeodesicLineExact object has been constructed * with \e caps |= GeodesicLineExact::DISTANCE_IN. **********************************************************************/ void SetDistance(real s13); /** * Specify position of point 3 in terms of arc length. * * @param[in] a13 the arc length from point 1 to point 3 (degrees); it * can be negative. * * The distance \e s13 is only set if the GeodesicLineExact object has been * constructed with \e caps |= GeodesicLineExact::DISTANCE. **********************************************************************/ void SetArc(real a13); /** * Specify position of point 3 in terms of either distance or arc length. * * @param[in] arcmode boolean flag determining the meaning of the second * parameter; if \e arcmode is false, then the GeodesicLineExact object * must have been constructed with \e caps |= * GeodesicLineExact::DISTANCE_IN. * @param[in] s13_a13 if \e arcmode is false, this is the distance from * point 1 to point 3 (meters); otherwise it is the arc length from * point 1 to point 3 (degrees); it can be negative. **********************************************************************/ void GenSetDistance(bool arcmode, real s13_a13); /** \name Inspector functions **********************************************************************/ ///@{ /** * @return true if the object has been initialized. **********************************************************************/ bool Init() const { return _caps != 0U; } /** * @return \e lat1 the latitude of point 1 (degrees). **********************************************************************/ Math::real Latitude() const { return Init() ? _lat1 : Math::NaN(); } /** * @return \e lon1 the longitude of point 1 (degrees). **********************************************************************/ Math::real Longitude() const { return Init() ? _lon1 : Math::NaN(); } /** * @return \e azi1 the azimuth (degrees) of the geodesic line at point 1. **********************************************************************/ Math::real Azimuth() const { return Init() ? _azi1 : Math::NaN(); } /** * The sine and cosine of \e azi1. * * @param[out] sazi1 the sine of \e azi1. * @param[out] cazi1 the cosine of \e azi1. **********************************************************************/ void Azimuth(real& sazi1, real& cazi1) const { if (Init()) { sazi1 = _salp1; cazi1 = _calp1; } } /** * @return \e azi0 the azimuth (degrees) of the geodesic line as it crosses * the equator in a northward direction. * * The result lies in [−90°, 90°]. **********************************************************************/ Math::real EquatorialAzimuth() const { return Init() ? Math::atan2d(_salp0, _calp0) : Math::NaN(); } /** * The sine and cosine of \e azi0. * * @param[out] sazi0 the sine of \e azi0. * @param[out] cazi0 the cosine of \e azi0. **********************************************************************/ void EquatorialAzimuth(real& sazi0, real& cazi0) const { if (Init()) { sazi0 = _salp0; cazi0 = _calp0; } } /** * @return \e a1 the arc length (degrees) between the northward equatorial * crossing and point 1. * * The result lies in (−180°, 180°]. **********************************************************************/ Math::real EquatorialArc() const { using std::atan2; return Init() ? atan2(_ssig1, _csig1) / Math::degree() : Math::NaN(); } /** * @return \e a the equatorial radius of the ellipsoid (meters). This is * the value inherited from the GeodesicExact object used in the * constructor. **********************************************************************/ Math::real EquatorialRadius() const { return Init() ? _a : Math::NaN(); } /** * @return \e f the flattening of the ellipsoid. This is the value * inherited from the GeodesicExact object used in the constructor. **********************************************************************/ Math::real Flattening() const { return Init() ? _f : Math::NaN(); } /** * @return \e caps the computational capabilities that this object was * constructed with. LATITUDE and AZIMUTH are always included. **********************************************************************/ unsigned Capabilities() const { return _caps; } /** * Test what capabilities are available. * * @param[in] testcaps a set of bitor'ed GeodesicLineExact::mask values. * @return true if the GeodesicLineExact object has all these capabilities. **********************************************************************/ bool Capabilities(unsigned testcaps) const { testcaps &= OUT_ALL; return (_caps & testcaps) == testcaps; } /** * The distance or arc length to point 3. * * @param[in] arcmode boolean flag determining the meaning of returned * value. * @return \e s13 if \e arcmode is false; \e a13 if \e arcmode is true. **********************************************************************/ Math::real GenDistance(bool arcmode) const { return Init() ? (arcmode ? _a13 : _s13) : Math::NaN(); } /** * @return \e s13, the distance to point 3 (meters). **********************************************************************/ Math::real Distance() const { return GenDistance(false); } /** * @return \e a13, the arc length to point 3 (degrees). **********************************************************************/ Math::real Arc() const { return GenDistance(true); } /** * \deprecated An old name for EquatorialRadius(). **********************************************************************/ GEOGRAPHICLIB_DEPRECATED("Use EquatorialRadius()") Math::real MajorRadius() const { return EquatorialRadius(); } ///@} }; } // namespace GeographicLib #endif // GEOGRAPHICLIB_GEODESICLINEEXACT_HPP