/** * \file Geodesic.hpp * \brief Header for GeographicLib::Geodesic class * * Copyright (c) Charles Karney (2009-2020) and licensed * under the MIT/X11 License. For more information, see * https://geographiclib.sourceforge.io/ **********************************************************************/ #if !defined(GEOGRAPHICLIB_GEODESIC_HPP) #define GEOGRAPHICLIB_GEODESIC_HPP 1 #include #if !defined(GEOGRAPHICLIB_GEODESIC_ORDER) /** * The order of the expansions used by Geodesic. * GEOGRAPHICLIB_GEODESIC_ORDER can be set to any integer in [3, 8]. **********************************************************************/ # define GEOGRAPHICLIB_GEODESIC_ORDER \ (GEOGRAPHICLIB_PRECISION == 2 ? 6 : \ (GEOGRAPHICLIB_PRECISION == 1 ? 3 : \ (GEOGRAPHICLIB_PRECISION == 3 ? 7 : 8))) #endif namespace GeographicLib { class GeodesicLine; /** * \brief %Geodesic calculations * * The shortest path between two points on a ellipsoid at (\e lat1, \e lon1) * and (\e lat2, \e lon2) is called the geodesic. Its length is \e s12 and * the geodesic from point 1 to point 2 has azimuths \e azi1 and \e azi2 at * the two end points. (The azimuth is the heading measured clockwise from * north. \e azi2 is the "forward" azimuth, i.e., the heading that takes you * beyond point 2 not back to point 1.) In the figure below, latitude if * labeled φ, longitude λ (with λ12 = * λ2 − λ1), and azimuth α. * * spheroidal triangle * * Given \e lat1, \e lon1, \e azi1, and \e s12, we can determine \e lat2, \e * lon2, and \e azi2. This is the \e direct geodesic problem and its * solution is given by the function Geodesic::Direct. (If \e s12 is * sufficiently large that the geodesic wraps more than halfway around the * earth, there will be another geodesic between the points with a smaller \e * s12.) * * Given \e lat1, \e lon1, \e lat2, and \e lon2, we can determine \e azi1, \e * azi2, and \e s12. This is the \e inverse geodesic problem, whose solution * is given by Geodesic::Inverse. Usually, the solution to the inverse * problem is unique. In cases where there are multiple solutions (all with * the same \e s12, of course), all the solutions can be easily generated * once a particular solution is provided. * * The standard way of specifying the direct problem is the specify the * distance \e s12 to the second point. However it is sometimes useful * instead to specify the arc length \e a12 (in degrees) on the auxiliary * sphere. This is a mathematical construct used in solving the geodesic * problems. The solution of the direct problem in this form is provided by * Geodesic::ArcDirect. An arc length in excess of 180° indicates that * the geodesic is not a shortest path. In addition, the arc length between * an equatorial crossing and the next extremum of latitude for a geodesic is * 90°. * * This class can also calculate several other quantities related to * geodesics. These are: * - reduced length. If we fix the first point and increase \e azi1 * by \e dazi1 (radians), the second point is displaced \e m12 \e dazi1 in * the direction \e azi2 + 90°. The quantity \e m12 is called * the "reduced length" and is symmetric under interchange of the two * points. On a curved surface the reduced length obeys a symmetry * relation, \e m12 + \e m21 = 0. On a flat surface, we have \e m12 = \e * s12. The ratio s12/\e m12 gives the azimuthal scale for an * azimuthal equidistant projection. * - geodesic scale. Consider a reference geodesic and a second * geodesic parallel to this one at point 1 and separated by a small * distance \e dt. The separation of the two geodesics at point 2 is \e * M12 \e dt where \e M12 is called the "geodesic scale". \e M21 is * defined similarly (with the geodesics being parallel at point 2). On a * flat surface, we have \e M12 = \e M21 = 1. The quantity 1/\e M12 gives * the scale of the Cassini-Soldner projection. * - area. The area between the geodesic from point 1 to point 2 and * the equation is represented by \e S12; it is the area, measured * counter-clockwise, of the geodesic quadrilateral with corners * (lat1,lon1), (0,lon1), (0,lon2), and * (lat2,lon2). It can be used to compute the area of any * geodesic polygon. * * Overloaded versions of Geodesic::Direct, Geodesic::ArcDirect, and * Geodesic::Inverse allow these quantities to be returned. In addition * there are general functions Geodesic::GenDirect, and Geodesic::GenInverse * which allow an arbitrary set of results to be computed. The quantities \e * m12, \e M12, \e M21 which all specify the behavior of nearby geodesics * obey addition rules. If points 1, 2, and 3 all lie on a single geodesic, * then the following rules hold: * - \e s13 = \e s12 + \e s23 * - \e a13 = \e a12 + \e a23 * - \e S13 = \e S12 + \e S23 * - \e m13 = \e m12 \e M23 + \e m23 \e M21 * - \e M13 = \e M12 \e M23 − (1 − \e M12 \e M21) \e m23 / \e m12 * - \e M31 = \e M32 \e M21 − (1 − \e M23 \e M32) \e m12 / \e m23 * * Additional functionality is provided by the GeodesicLine class, which * allows a sequence of points along a geodesic to be computed. * * The shortest distance returned by the solution of the inverse problem is * (obviously) uniquely defined. However, in a few special cases there are * multiple azimuths which yield the same shortest distance. Here is a * catalog of those cases: * - \e lat1 = −\e lat2 (with neither point at a pole). If \e azi1 = * \e azi2, the geodesic is unique. Otherwise there are two geodesics and * the second one is obtained by setting [\e azi1, \e azi2] → [\e * azi2, \e azi1], [\e M12, \e M21] → [\e M21, \e M12], \e S12 → * −\e S12. (This occurs when the longitude difference is near * ±180° for oblate ellipsoids.) * - \e lon2 = \e lon1 ± 180° (with neither point at a pole). If * \e azi1 = 0° or ±180°, the geodesic is unique. Otherwise * there are two geodesics and the second one is obtained by setting [\e * azi1, \e azi2] → [−\e azi1, −\e azi2], \e S12 → * −\e S12. (This occurs when \e lat2 is near −\e lat1 for * prolate ellipsoids.) * - Points 1 and 2 at opposite poles. There are infinitely many geodesics * which can be generated by setting [\e azi1, \e azi2] → [\e azi1, \e * azi2] + [\e d, −\e d], for arbitrary \e d. (For spheres, this * prescription applies when points 1 and 2 are antipodal.) * - \e s12 = 0 (coincident points). There are infinitely many geodesics * which can be generated by setting [\e azi1, \e azi2] → * [\e azi1, \e azi2] + [\e d, \e d], for arbitrary \e d. * * The calculations are accurate to better than 15 nm (15 nanometers) for the * WGS84 ellipsoid. See Sec. 9 of * arXiv:1102.1215v1 for * details. The algorithms used by this class are based on series expansions * using the flattening \e f as a small parameter. These are only accurate * for |f| < 0.02; however reasonably accurate results will be * obtained for |f| < 0.2. Here is a table of the approximate * maximum error (expressed as a distance) for an ellipsoid with the same * equatorial radius as the WGS84 ellipsoid and different values of the * flattening.
   *     |f|      error
   *     0.01     25 nm
   *     0.02     30 nm
   *     0.05     10 um
   *     0.1     1.5 mm
   *     0.2     300 mm
   * 
* For very eccentric ellipsoids, use GeodesicExact instead. * * The algorithms are described in * - C. F. F. Karney, * * Algorithms for geodesics, * J. Geodesy 87, 43--55 (2013); * DOI: * 10.1007/s00190-012-0578-z; * addenda: * * geod-addenda.html. * . * For more information on geodesics see \ref geodesic. * * Example of use: * \include example-Geodesic.cpp * * GeodSolve is a command-line utility * providing access to the functionality of Geodesic and GeodesicLine. **********************************************************************/ class GEOGRAPHICLIB_EXPORT Geodesic { private: typedef Math::real real; friend class GeodesicLine; static const int nA1_ = GEOGRAPHICLIB_GEODESIC_ORDER; static const int nC1_ = GEOGRAPHICLIB_GEODESIC_ORDER; static const int nC1p_ = GEOGRAPHICLIB_GEODESIC_ORDER; static const int nA2_ = GEOGRAPHICLIB_GEODESIC_ORDER; static const int nC2_ = GEOGRAPHICLIB_GEODESIC_ORDER; static const int nA3_ = GEOGRAPHICLIB_GEODESIC_ORDER; static const int nA3x_ = nA3_; static const int nC3_ = GEOGRAPHICLIB_GEODESIC_ORDER; static const int nC3x_ = (nC3_ * (nC3_ - 1)) / 2; static const int nC4_ = GEOGRAPHICLIB_GEODESIC_ORDER; static const int nC4x_ = (nC4_ * (nC4_ + 1)) / 2; // Size for temporary array // nC = max(max(nC1_, nC1p_, nC2_) + 1, max(nC3_, nC4_)) static const int nC_ = GEOGRAPHICLIB_GEODESIC_ORDER + 1; static const unsigned maxit1_ = 20; unsigned maxit2_; real tiny_, tol0_, tol1_, tol2_, tolb_, xthresh_; enum captype { CAP_NONE = 0U, CAP_C1 = 1U<<0, CAP_C1p = 1U<<1, CAP_C2 = 1U<<2, CAP_C3 = 1U<<3, CAP_C4 = 1U<<4, CAP_ALL = 0x1FU, CAP_MASK = CAP_ALL, OUT_ALL = 0x7F80U, OUT_MASK = 0xFF80U, // Includes LONG_UNROLL }; static real SinCosSeries(bool sinp, real sinx, real cosx, const real c[], int n); static real Astroid(real x, real y); real _a, _f, _f1, _e2, _ep2, _n, _b, _c2, _etol2; real _A3x[nA3x_], _C3x[nC3x_], _C4x[nC4x_]; void Lengths(real eps, real sig12, real ssig1, real csig1, real dn1, real ssig2, real csig2, real dn2, real cbet1, real cbet2, unsigned outmask, real& s12s, real& m12a, real& m0, real& M12, real& M21, real Ca[]) const; real InverseStart(real sbet1, real cbet1, real dn1, real sbet2, real cbet2, real dn2, real lam12, real slam12, real clam12, real& salp1, real& calp1, real& salp2, real& calp2, real& dnm, real Ca[]) const; real Lambda12(real sbet1, real cbet1, real dn1, real sbet2, real cbet2, real dn2, real salp1, real calp1, real slam120, real clam120, real& salp2, real& calp2, real& sig12, real& ssig1, real& csig1, real& ssig2, real& csig2, real& eps, real& domg12, bool diffp, real& dlam12, real Ca[]) const; real GenInverse(real lat1, real lon1, real lat2, real lon2, unsigned outmask, real& s12, real& salp1, real& calp1, real& salp2, real& calp2, real& m12, real& M12, real& M21, real& S12) const; // These are Maxima generated functions to provide series approximations to // the integrals for the ellipsoidal geodesic. static real A1m1f(real eps); static void C1f(real eps, real c[]); static void C1pf(real eps, real c[]); static real A2m1f(real eps); static void C2f(real eps, real c[]); void A3coeff(); real A3f(real eps) const; void C3coeff(); void C3f(real eps, real c[]) const; void C4coeff(); void C4f(real k2, real c[]) const; public: /** * Bit masks for what calculations to do. These masks do double duty. * They signify to the GeodesicLine::GeodesicLine constructor and to * Geodesic::Line what capabilities should be included in the GeodesicLine * object. They also specify which results to return in the general * routines Geodesic::GenDirect and Geodesic::GenInverse routines. * GeodesicLine::mask is a duplication of this enum. **********************************************************************/ enum mask { /** * No capabilities, no output. * @hideinitializer **********************************************************************/ NONE = 0U, /** * Calculate latitude \e lat2. (It's not necessary to include this as a * capability to GeodesicLine because this is included by default.) * @hideinitializer **********************************************************************/ LATITUDE = 1U<<7 | CAP_NONE, /** * Calculate longitude \e lon2. * @hideinitializer **********************************************************************/ LONGITUDE = 1U<<8 | CAP_C3, /** * Calculate azimuths \e azi1 and \e azi2. (It's not necessary to * include this as a capability to GeodesicLine because this is included * by default.) * @hideinitializer **********************************************************************/ AZIMUTH = 1U<<9 | CAP_NONE, /** * Calculate distance \e s12. * @hideinitializer **********************************************************************/ DISTANCE = 1U<<10 | CAP_C1, /** * Allow distance \e s12 to be used as input in the direct geodesic * problem. * @hideinitializer **********************************************************************/ DISTANCE_IN = 1U<<11 | CAP_C1 | CAP_C1p, /** * Calculate reduced length \e m12. * @hideinitializer **********************************************************************/ REDUCEDLENGTH = 1U<<12 | CAP_C1 | CAP_C2, /** * Calculate geodesic scales \e M12 and \e M21. * @hideinitializer **********************************************************************/ GEODESICSCALE = 1U<<13 | CAP_C1 | CAP_C2, /** * Calculate area \e S12. * @hideinitializer **********************************************************************/ AREA = 1U<<14 | CAP_C4, /** * Unroll \e lon2 in the direct calculation. * @hideinitializer **********************************************************************/ LONG_UNROLL = 1U<<15, /** * All capabilities, calculate everything. (LONG_UNROLL is not * included in this mask.) * @hideinitializer **********************************************************************/ ALL = OUT_ALL| CAP_ALL, }; /** \name Constructor **********************************************************************/ ///@{ /** * Constructor for a ellipsoid with * * @param[in] a equatorial radius (meters). * @param[in] f flattening of ellipsoid. Setting \e f = 0 gives a sphere. * Negative \e f gives a prolate ellipsoid. * @exception GeographicErr if \e a or (1 − \e f) \e a is not * positive. **********************************************************************/ Geodesic(real a, real f); ///@} /** \name Direct geodesic problem specified in terms of distance. **********************************************************************/ ///@{ /** * Solve the direct geodesic problem where the length of the geodesic * is specified in terms of distance. * * @param[in] lat1 latitude of point 1 (degrees). * @param[in] lon1 longitude of point 1 (degrees). * @param[in] azi1 azimuth at point 1 (degrees). * @param[in] s12 distance between point 1 and point 2 (meters); it can be * negative. * @param[out] lat2 latitude of point 2 (degrees). * @param[out] lon2 longitude of point 2 (degrees). * @param[out] azi2 (forward) azimuth at point 2 (degrees). * @param[out] m12 reduced length of geodesic (meters). * @param[out] M12 geodesic scale of point 2 relative to point 1 * (dimensionless). * @param[out] M21 geodesic scale of point 1 relative to point 2 * (dimensionless). * @param[out] S12 area under the geodesic (meters2). * @return \e a12 arc length of between point 1 and point 2 (degrees). * * \e lat1 should be in the range [−90°, 90°]. The values of * \e lon2 and \e azi2 returned are in the range [−180°, * 180°]. * * If either point is at a pole, the azimuth is defined by keeping the * longitude fixed, writing \e lat = ±(90° − ε), * and taking the limit ε → 0+. An arc length greater that * 180° signifies a geodesic which is not a shortest path. (For a * prolate ellipsoid, an additional condition is necessary for a shortest * path: the longitudinal extent must not exceed of 180°.) * * The following functions are overloaded versions of Geodesic::Direct * which omit some of the output parameters. Note, however, that the arc * length is always computed and returned as the function value. **********************************************************************/ Math::real Direct(real lat1, real lon1, real azi1, real s12, real& lat2, real& lon2, real& azi2, real& m12, real& M12, real& M21, real& S12) const { real t; return GenDirect(lat1, lon1, azi1, false, s12, LATITUDE | LONGITUDE | AZIMUTH | REDUCEDLENGTH | GEODESICSCALE | AREA, lat2, lon2, azi2, t, m12, M12, M21, S12); } /** * See the documentation for Geodesic::Direct. **********************************************************************/ Math::real Direct(real lat1, real lon1, real azi1, real s12, real& lat2, real& lon2) const { real t; return GenDirect(lat1, lon1, azi1, false, s12, LATITUDE | LONGITUDE, lat2, lon2, t, t, t, t, t, t); } /** * See the documentation for Geodesic::Direct. **********************************************************************/ Math::real Direct(real lat1, real lon1, real azi1, real s12, real& lat2, real& lon2, real& azi2) const { real t; return GenDirect(lat1, lon1, azi1, false, s12, LATITUDE | LONGITUDE | AZIMUTH, lat2, lon2, azi2, t, t, t, t, t); } /** * See the documentation for Geodesic::Direct. **********************************************************************/ Math::real Direct(real lat1, real lon1, real azi1, real s12, real& lat2, real& lon2, real& azi2, real& m12) const { real t; return GenDirect(lat1, lon1, azi1, false, s12, LATITUDE | LONGITUDE | AZIMUTH | REDUCEDLENGTH, lat2, lon2, azi2, t, m12, t, t, t); } /** * See the documentation for Geodesic::Direct. **********************************************************************/ Math::real Direct(real lat1, real lon1, real azi1, real s12, real& lat2, real& lon2, real& azi2, real& M12, real& M21) const { real t; return GenDirect(lat1, lon1, azi1, false, s12, LATITUDE | LONGITUDE | AZIMUTH | GEODESICSCALE, lat2, lon2, azi2, t, t, M12, M21, t); } /** * See the documentation for Geodesic::Direct. **********************************************************************/ Math::real Direct(real lat1, real lon1, real azi1, real s12, real& lat2, real& lon2, real& azi2, real& m12, real& M12, real& M21) const { real t; return GenDirect(lat1, lon1, azi1, false, s12, LATITUDE | LONGITUDE | AZIMUTH | REDUCEDLENGTH | GEODESICSCALE, lat2, lon2, azi2, t, m12, M12, M21, t); } ///@} /** \name Direct geodesic problem specified in terms of arc length. **********************************************************************/ ///@{ /** * Solve the direct geodesic problem where the length of the geodesic * is specified in terms of arc length. * * @param[in] lat1 latitude of point 1 (degrees). * @param[in] lon1 longitude of point 1 (degrees). * @param[in] azi1 azimuth at point 1 (degrees). * @param[in] a12 arc length between point 1 and point 2 (degrees); it can * be negative. * @param[out] lat2 latitude of point 2 (degrees). * @param[out] lon2 longitude of point 2 (degrees). * @param[out] azi2 (forward) azimuth at point 2 (degrees). * @param[out] s12 distance between point 1 and point 2 (meters). * @param[out] m12 reduced length of geodesic (meters). * @param[out] M12 geodesic scale of point 2 relative to point 1 * (dimensionless). * @param[out] M21 geodesic scale of point 1 relative to point 2 * (dimensionless). * @param[out] S12 area under the geodesic (meters2). * * \e lat1 should be in the range [−90°, 90°]. The values of * \e lon2 and \e azi2 returned are in the range [−180°, * 180°]. * * If either point is at a pole, the azimuth is defined by keeping the * longitude fixed, writing \e lat = ±(90° − ε), * and taking the limit ε → 0+. An arc length greater that * 180° signifies a geodesic which is not a shortest path. (For a * prolate ellipsoid, an additional condition is necessary for a shortest * path: the longitudinal extent must not exceed of 180°.) * * The following functions are overloaded versions of Geodesic::Direct * which omit some of the output parameters. **********************************************************************/ void ArcDirect(real lat1, real lon1, real azi1, real a12, real& lat2, real& lon2, real& azi2, real& s12, real& m12, real& M12, real& M21, real& S12) const { GenDirect(lat1, lon1, azi1, true, a12, LATITUDE | LONGITUDE | AZIMUTH | DISTANCE | REDUCEDLENGTH | GEODESICSCALE | AREA, lat2, lon2, azi2, s12, m12, M12, M21, S12); } /** * See the documentation for Geodesic::ArcDirect. **********************************************************************/ void ArcDirect(real lat1, real lon1, real azi1, real a12, real& lat2, real& lon2) const { real t; GenDirect(lat1, lon1, azi1, true, a12, LATITUDE | LONGITUDE, lat2, lon2, t, t, t, t, t, t); } /** * See the documentation for Geodesic::ArcDirect. **********************************************************************/ void ArcDirect(real lat1, real lon1, real azi1, real a12, real& lat2, real& lon2, real& azi2) const { real t; GenDirect(lat1, lon1, azi1, true, a12, LATITUDE | LONGITUDE | AZIMUTH, lat2, lon2, azi2, t, t, t, t, t); } /** * See the documentation for Geodesic::ArcDirect. **********************************************************************/ void ArcDirect(real lat1, real lon1, real azi1, real a12, real& lat2, real& lon2, real& azi2, real& s12) const { real t; GenDirect(lat1, lon1, azi1, true, a12, LATITUDE | LONGITUDE | AZIMUTH | DISTANCE, lat2, lon2, azi2, s12, t, t, t, t); } /** * See the documentation for Geodesic::ArcDirect. **********************************************************************/ void ArcDirect(real lat1, real lon1, real azi1, real a12, real& lat2, real& lon2, real& azi2, real& s12, real& m12) const { real t; GenDirect(lat1, lon1, azi1, true, a12, LATITUDE | LONGITUDE | AZIMUTH | DISTANCE | REDUCEDLENGTH, lat2, lon2, azi2, s12, m12, t, t, t); } /** * See the documentation for Geodesic::ArcDirect. **********************************************************************/ void ArcDirect(real lat1, real lon1, real azi1, real a12, real& lat2, real& lon2, real& azi2, real& s12, real& M12, real& M21) const { real t; GenDirect(lat1, lon1, azi1, true, a12, LATITUDE | LONGITUDE | AZIMUTH | DISTANCE | GEODESICSCALE, lat2, lon2, azi2, s12, t, M12, M21, t); } /** * See the documentation for Geodesic::ArcDirect. **********************************************************************/ void ArcDirect(real lat1, real lon1, real azi1, real a12, real& lat2, real& lon2, real& azi2, real& s12, real& m12, real& M12, real& M21) const { real t; GenDirect(lat1, lon1, azi1, true, a12, LATITUDE | LONGITUDE | AZIMUTH | DISTANCE | REDUCEDLENGTH | GEODESICSCALE, lat2, lon2, azi2, s12, m12, M12, M21, t); } ///@} /** \name General version of the direct geodesic solution. **********************************************************************/ ///@{ /** * The general direct geodesic problem. Geodesic::Direct and * Geodesic::ArcDirect are defined in terms of this function. * * @param[in] lat1 latitude of point 1 (degrees). * @param[in] lon1 longitude of point 1 (degrees). * @param[in] azi1 azimuth at point 1 (degrees). * @param[in] arcmode boolean flag determining the meaning of the \e * s12_a12. * @param[in] s12_a12 if \e arcmode is false, this is the distance between * point 1 and point 2 (meters); otherwise it is the arc length between * point 1 and point 2 (degrees); it can be negative. * @param[in] outmask a bitor'ed combination of Geodesic::mask values * specifying which of the following parameters should be set. * @param[out] lat2 latitude of point 2 (degrees). * @param[out] lon2 longitude of point 2 (degrees). * @param[out] azi2 (forward) azimuth at point 2 (degrees). * @param[out] s12 distance between point 1 and point 2 (meters). * @param[out] m12 reduced length of geodesic (meters). * @param[out] M12 geodesic scale of point 2 relative to point 1 * (dimensionless). * @param[out] M21 geodesic scale of point 1 relative to point 2 * (dimensionless). * @param[out] S12 area under the geodesic (meters2). * @return \e a12 arc length of between point 1 and point 2 (degrees). * * The Geodesic::mask values possible for \e outmask are * - \e outmask |= Geodesic::LATITUDE for the latitude \e lat2; * - \e outmask |= Geodesic::LONGITUDE for the latitude \e lon2; * - \e outmask |= Geodesic::AZIMUTH for the latitude \e azi2; * - \e outmask |= Geodesic::DISTANCE for the distance \e s12; * - \e outmask |= Geodesic::REDUCEDLENGTH for the reduced length \e * m12; * - \e outmask |= Geodesic::GEODESICSCALE for the geodesic scales \e * M12 and \e M21; * - \e outmask |= Geodesic::AREA for the area \e S12; * - \e outmask |= Geodesic::ALL for all of the above; * - \e outmask |= Geodesic::LONG_UNROLL to unroll \e lon2 instead of * wrapping it into the range [−180°, 180°]. * . * The function value \e a12 is always computed and returned and this * equals \e s12_a12 is \e arcmode is true. If \e outmask includes * Geodesic::DISTANCE and \e arcmode is false, then \e s12 = \e s12_a12. * It is not necessary to include Geodesic::DISTANCE_IN in \e outmask; this * is automatically included is \e arcmode is false. * * With the Geodesic::LONG_UNROLL bit set, the quantity \e lon2 − \e * lon1 indicates how many times and in what sense the geodesic encircles * the ellipsoid. **********************************************************************/ Math::real GenDirect(real lat1, real lon1, real azi1, bool arcmode, real s12_a12, unsigned outmask, real& lat2, real& lon2, real& azi2, real& s12, real& m12, real& M12, real& M21, real& S12) const; ///@} /** \name Inverse geodesic problem. **********************************************************************/ ///@{ /** * Solve the inverse geodesic problem. * * @param[in] lat1 latitude of point 1 (degrees). * @param[in] lon1 longitude of point 1 (degrees). * @param[in] lat2 latitude of point 2 (degrees). * @param[in] lon2 longitude of point 2 (degrees). * @param[out] s12 distance between point 1 and point 2 (meters). * @param[out] azi1 azimuth at point 1 (degrees). * @param[out] azi2 (forward) azimuth at point 2 (degrees). * @param[out] m12 reduced length of geodesic (meters). * @param[out] M12 geodesic scale of point 2 relative to point 1 * (dimensionless). * @param[out] M21 geodesic scale of point 1 relative to point 2 * (dimensionless). * @param[out] S12 area under the geodesic (meters2). * @return \e a12 arc length of between point 1 and point 2 (degrees). * * \e lat1 and \e lat2 should be in the range [−90°, 90°]. * The values of \e azi1 and \e azi2 returned are in the range * [−180°, 180°]. * * If either point is at a pole, the azimuth is defined by keeping the * longitude fixed, writing \e lat = ±(90° − ε), * and taking the limit ε → 0+. * * The solution to the inverse problem is found using Newton's method. If * this fails to converge (this is very unlikely in geodetic applications * but does occur for very eccentric ellipsoids), then the bisection method * is used to refine the solution. * * The following functions are overloaded versions of Geodesic::Inverse * which omit some of the output parameters. Note, however, that the arc * length is always computed and returned as the function value. **********************************************************************/ Math::real Inverse(real lat1, real lon1, real lat2, real lon2, real& s12, real& azi1, real& azi2, real& m12, real& M12, real& M21, real& S12) const { return GenInverse(lat1, lon1, lat2, lon2, DISTANCE | AZIMUTH | REDUCEDLENGTH | GEODESICSCALE | AREA, s12, azi1, azi2, m12, M12, M21, S12); } /** * See the documentation for Geodesic::Inverse. **********************************************************************/ Math::real Inverse(real lat1, real lon1, real lat2, real lon2, real& s12) const { real t; return GenInverse(lat1, lon1, lat2, lon2, DISTANCE, s12, t, t, t, t, t, t); } /** * See the documentation for Geodesic::Inverse. **********************************************************************/ Math::real Inverse(real lat1, real lon1, real lat2, real lon2, real& azi1, real& azi2) const { real t; return GenInverse(lat1, lon1, lat2, lon2, AZIMUTH, t, azi1, azi2, t, t, t, t); } /** * See the documentation for Geodesic::Inverse. **********************************************************************/ Math::real Inverse(real lat1, real lon1, real lat2, real lon2, real& s12, real& azi1, real& azi2) const { real t; return GenInverse(lat1, lon1, lat2, lon2, DISTANCE | AZIMUTH, s12, azi1, azi2, t, t, t, t); } /** * See the documentation for Geodesic::Inverse. **********************************************************************/ Math::real Inverse(real lat1, real lon1, real lat2, real lon2, real& s12, real& azi1, real& azi2, real& m12) const { real t; return GenInverse(lat1, lon1, lat2, lon2, DISTANCE | AZIMUTH | REDUCEDLENGTH, s12, azi1, azi2, m12, t, t, t); } /** * See the documentation for Geodesic::Inverse. **********************************************************************/ Math::real Inverse(real lat1, real lon1, real lat2, real lon2, real& s12, real& azi1, real& azi2, real& M12, real& M21) const { real t; return GenInverse(lat1, lon1, lat2, lon2, DISTANCE | AZIMUTH | GEODESICSCALE, s12, azi1, azi2, t, M12, M21, t); } /** * See the documentation for Geodesic::Inverse. **********************************************************************/ Math::real Inverse(real lat1, real lon1, real lat2, real lon2, real& s12, real& azi1, real& azi2, real& m12, real& M12, real& M21) const { real t; return GenInverse(lat1, lon1, lat2, lon2, DISTANCE | AZIMUTH | REDUCEDLENGTH | GEODESICSCALE, s12, azi1, azi2, m12, M12, M21, t); } ///@} /** \name General version of inverse geodesic solution. **********************************************************************/ ///@{ /** * The general inverse geodesic calculation. Geodesic::Inverse is defined * in terms of this function. * * @param[in] lat1 latitude of point 1 (degrees). * @param[in] lon1 longitude of point 1 (degrees). * @param[in] lat2 latitude of point 2 (degrees). * @param[in] lon2 longitude of point 2 (degrees). * @param[in] outmask a bitor'ed combination of Geodesic::mask values * specifying which of the following parameters should be set. * @param[out] s12 distance between point 1 and point 2 (meters). * @param[out] azi1 azimuth at point 1 (degrees). * @param[out] azi2 (forward) azimuth at point 2 (degrees). * @param[out] m12 reduced length of geodesic (meters). * @param[out] M12 geodesic scale of point 2 relative to point 1 * (dimensionless). * @param[out] M21 geodesic scale of point 1 relative to point 2 * (dimensionless). * @param[out] S12 area under the geodesic (meters2). * @return \e a12 arc length of between point 1 and point 2 (degrees). * * The Geodesic::mask values possible for \e outmask are * - \e outmask |= Geodesic::DISTANCE for the distance \e s12; * - \e outmask |= Geodesic::AZIMUTH for the latitude \e azi2; * - \e outmask |= Geodesic::REDUCEDLENGTH for the reduced length \e * m12; * - \e outmask |= Geodesic::GEODESICSCALE for the geodesic scales \e * M12 and \e M21; * - \e outmask |= Geodesic::AREA for the area \e S12; * - \e outmask |= Geodesic::ALL for all of the above. * . * The arc length is always computed and returned as the function value. **********************************************************************/ Math::real GenInverse(real lat1, real lon1, real lat2, real lon2, unsigned outmask, real& s12, real& azi1, real& azi2, real& m12, real& M12, real& M21, real& S12) const; ///@} /** \name Interface to GeodesicLine. **********************************************************************/ ///@{ /** * Set up to compute several points on a single geodesic. * * @param[in] lat1 latitude of point 1 (degrees). * @param[in] lon1 longitude of point 1 (degrees). * @param[in] azi1 azimuth at point 1 (degrees). * @param[in] caps bitor'ed combination of Geodesic::mask values * specifying the capabilities the GeodesicLine object should possess, * i.e., which quantities can be returned in calls to * GeodesicLine::Position. * @return a GeodesicLine object. * * \e lat1 should be in the range [−90°, 90°]. * * The Geodesic::mask values are * - \e caps |= Geodesic::LATITUDE for the latitude \e lat2; this is * added automatically; * - \e caps |= Geodesic::LONGITUDE for the latitude \e lon2; * - \e caps |= Geodesic::AZIMUTH for the azimuth \e azi2; this is * added automatically; * - \e caps |= Geodesic::DISTANCE for the distance \e s12; * - \e caps |= Geodesic::REDUCEDLENGTH for the reduced length \e m12; * - \e caps |= Geodesic::GEODESICSCALE for the geodesic scales \e M12 * and \e M21; * - \e caps |= Geodesic::AREA for the area \e S12; * - \e caps |= Geodesic::DISTANCE_IN permits the length of the * geodesic to be given in terms of \e s12; without this capability the * length can only be specified in terms of arc length; * - \e caps |= Geodesic::ALL for all of the above. * . * The default value of \e caps is Geodesic::ALL. * * If the point is at a pole, the azimuth is defined by keeping \e lon1 * fixed, writing \e lat1 = ±(90 − ε), and taking the * limit ε → 0+. **********************************************************************/ GeodesicLine Line(real lat1, real lon1, real azi1, unsigned caps = ALL) const; /** * Define a GeodesicLine in terms of the inverse geodesic problem. * * @param[in] lat1 latitude of point 1 (degrees). * @param[in] lon1 longitude of point 1 (degrees). * @param[in] lat2 latitude of point 2 (degrees). * @param[in] lon2 longitude of point 2 (degrees). * @param[in] caps bitor'ed combination of Geodesic::mask values * specifying the capabilities the GeodesicLine object should possess, * i.e., which quantities can be returned in calls to * GeodesicLine::Position. * @return a GeodesicLine object. * * This function sets point 3 of the GeodesicLine to correspond to point 2 * of the inverse geodesic problem. * * \e lat1 and \e lat2 should be in the range [−90°, 90°]. **********************************************************************/ GeodesicLine InverseLine(real lat1, real lon1, real lat2, real lon2, unsigned caps = ALL) const; /** * Define a GeodesicLine in terms of the direct geodesic problem specified * in terms of distance. * * @param[in] lat1 latitude of point 1 (degrees). * @param[in] lon1 longitude of point 1 (degrees). * @param[in] azi1 azimuth at point 1 (degrees). * @param[in] s12 distance between point 1 and point 2 (meters); it can be * negative. * @param[in] caps bitor'ed combination of Geodesic::mask values * specifying the capabilities the GeodesicLine object should possess, * i.e., which quantities can be returned in calls to * GeodesicLine::Position. * @return a GeodesicLine object. * * This function sets point 3 of the GeodesicLine to correspond to point 2 * of the direct geodesic problem. * * \e lat1 should be in the range [−90°, 90°]. **********************************************************************/ GeodesicLine DirectLine(real lat1, real lon1, real azi1, real s12, unsigned caps = ALL) const; /** * Define a GeodesicLine in terms of the direct geodesic problem specified * in terms of arc length. * * @param[in] lat1 latitude of point 1 (degrees). * @param[in] lon1 longitude of point 1 (degrees). * @param[in] azi1 azimuth at point 1 (degrees). * @param[in] a12 arc length between point 1 and point 2 (degrees); it can * be negative. * @param[in] caps bitor'ed combination of Geodesic::mask values * specifying the capabilities the GeodesicLine object should possess, * i.e., which quantities can be returned in calls to * GeodesicLine::Position. * @return a GeodesicLine object. * * This function sets point 3 of the GeodesicLine to correspond to point 2 * of the direct geodesic problem. * * \e lat1 should be in the range [−90°, 90°]. **********************************************************************/ GeodesicLine ArcDirectLine(real lat1, real lon1, real azi1, real a12, unsigned caps = ALL) const; /** * Define a GeodesicLine in terms of the direct geodesic problem specified * in terms of either distance or arc length. * * @param[in] lat1 latitude of point 1 (degrees). * @param[in] lon1 longitude of point 1 (degrees). * @param[in] azi1 azimuth at point 1 (degrees). * @param[in] arcmode boolean flag determining the meaning of the \e * s12_a12. * @param[in] s12_a12 if \e arcmode is false, this is the distance between * point 1 and point 2 (meters); otherwise it is the arc length between * point 1 and point 2 (degrees); it can be negative. * @param[in] caps bitor'ed combination of Geodesic::mask values * specifying the capabilities the GeodesicLine object should possess, * i.e., which quantities can be returned in calls to * GeodesicLine::Position. * @return a GeodesicLine object. * * This function sets point 3 of the GeodesicLine to correspond to point 2 * of the direct geodesic problem. * * \e lat1 should be in the range [−90°, 90°]. **********************************************************************/ GeodesicLine GenDirectLine(real lat1, real lon1, real azi1, bool arcmode, real s12_a12, unsigned caps = ALL) const; ///@} /** \name Inspector functions. **********************************************************************/ ///@{ /** * @return \e a the equatorial radius of the ellipsoid (meters). This is * the value used in the constructor. **********************************************************************/ Math::real EquatorialRadius() const { return _a; } /** * @return \e f the flattening of the ellipsoid. This is the * value used in the constructor. **********************************************************************/ Math::real Flattening() const { return _f; } /** * @return total area of ellipsoid in meters2. The area of a * polygon encircling a pole can be found by adding * Geodesic::EllipsoidArea()/2 to the sum of \e S12 for each side of the * polygon. **********************************************************************/ Math::real EllipsoidArea() const { return 4 * Math::pi() * _c2; } /** * \deprecated An old name for EquatorialRadius(). **********************************************************************/ GEOGRAPHICLIB_DEPRECATED("Use EquatorialRadius()") Math::real MajorRadius() const { return EquatorialRadius(); } ///@} /** * A global instantiation of Geodesic with the parameters for the WGS84 * ellipsoid. **********************************************************************/ static const Geodesic& WGS84(); }; } // namespace GeographicLib #endif // GEOGRAPHICLIB_GEODESIC_HPP