// Protocol Buffers - Google's data interchange format // Copyright 2008 Google Inc. All rights reserved. // https://developers.google.com/protocol-buffers/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // A StringPiece points to part or all of a string, Cord, double-quoted string // literal, or other string-like object. A StringPiece does *not* own the // string to which it points. A StringPiece is not null-terminated. // // You can use StringPiece as a function or method parameter. A StringPiece // parameter can receive a double-quoted string literal argument, a "const // char*" argument, a string argument, or a StringPiece argument with no data // copying. Systematic use of StringPiece for arguments reduces data // copies and strlen() calls. // // Prefer passing StringPieces by value: // void MyFunction(StringPiece arg); // If circumstances require, you may also pass by const reference: // void MyFunction(const StringPiece& arg); // not preferred // Both of these have the same lifetime semantics. Passing by value // generates slightly smaller code. For more discussion, see the thread // go/stringpiecebyvalue on c-users. // // StringPiece is also suitable for local variables if you know that // the lifetime of the underlying object is longer than the lifetime // of your StringPiece variable. // // Beware of binding a StringPiece to a temporary: // StringPiece sp = obj.MethodReturningString(); // BAD: lifetime problem // // This code is okay: // string str = obj.MethodReturningString(); // str owns its contents // StringPiece sp(str); // GOOD, because str outlives sp // // StringPiece is sometimes a poor choice for a return value and usually a poor // choice for a data member. If you do use a StringPiece this way, it is your // responsibility to ensure that the object pointed to by the StringPiece // outlives the StringPiece. // // A StringPiece may represent just part of a string; thus the name "Piece". // For example, when splitting a string, vector is a natural data // type for the output. For another example, a Cord is a non-contiguous, // potentially very long string-like object. The Cord class has an interface // that iteratively provides StringPiece objects that point to the // successive pieces of a Cord object. // // A StringPiece is not null-terminated. If you write code that scans a // StringPiece, you must check its length before reading any characters. // Common idioms that work on null-terminated strings do not work on // StringPiece objects. // // There are several ways to create a null StringPiece: // StringPiece() // StringPiece(nullptr) // StringPiece(nullptr, 0) // For all of the above, sp.data() == nullptr, sp.length() == 0, // and sp.empty() == true. Also, if you create a StringPiece with // a non-null pointer then sp.data() != nullptr. Once created, // sp.data() will stay either nullptr or not-nullptr, except if you call // sp.clear() or sp.set(). // // Thus, you can use StringPiece(nullptr) to signal an out-of-band value // that is different from other StringPiece values. This is similar // to the way that const char* p1 = nullptr; is different from // const char* p2 = "";. // // There are many ways to create an empty StringPiece: // StringPiece() // StringPiece(nullptr) // StringPiece(nullptr, 0) // StringPiece("") // StringPiece("", 0) // StringPiece("abcdef", 0) // StringPiece("abcdef"+6, 0) // For all of the above, sp.length() will be 0 and sp.empty() will be true. // For some empty StringPiece values, sp.data() will be nullptr. // For some empty StringPiece values, sp.data() will not be nullptr. // // Be careful not to confuse: null StringPiece and empty StringPiece. // The set of empty StringPieces properly includes the set of null StringPieces. // That is, every null StringPiece is an empty StringPiece, // but some non-null StringPieces are empty Stringpieces too. // // All empty StringPiece values compare equal to each other. // Even a null StringPieces compares equal to a non-null empty StringPiece: // StringPiece() == StringPiece("", 0) // StringPiece(nullptr) == StringPiece("abc", 0) // StringPiece(nullptr, 0) == StringPiece("abcdef"+6, 0) // // Look carefully at this example: // StringPiece("") == nullptr // True or false? TRUE, because StringPiece::operator== converts // the right-hand side from nullptr to StringPiece(nullptr), // and then compares two zero-length spans of characters. // However, we are working to make this example produce a compile error. // // Suppose you want to write: // bool TestWhat?(StringPiece sp) { return sp == nullptr; } // BAD // Do not do that. Write one of these instead: // bool TestNull(StringPiece sp) { return sp.data() == nullptr; } // bool TestEmpty(StringPiece sp) { return sp.empty(); } // The intent of TestWhat? is unclear. Did you mean TestNull or TestEmpty? // Right now, TestWhat? behaves likes TestEmpty. // We are working to make TestWhat? produce a compile error. // TestNull is good to test for an out-of-band signal. // TestEmpty is good to test for an empty StringPiece. // // Caveats (again): // (1) The lifetime of the pointed-to string (or piece of a string) // must be longer than the lifetime of the StringPiece. // (2) There may or may not be a '\0' character after the end of // StringPiece data. // (3) A null StringPiece is empty. // An empty StringPiece may or may not be a null StringPiece. #ifndef GOOGLE_PROTOBUF_STUBS_STRINGPIECE_H_ #define GOOGLE_PROTOBUF_STUBS_STRINGPIECE_H_ #include #include #include #include #include #include #include #include namespace google { namespace protobuf { namespace stringpiece_internal { class PROTOBUF_EXPORT StringPiece { public: using traits_type = std::char_traits; using value_type = char; using pointer = char*; using const_pointer = const char*; using reference = char&; using const_reference = const char&; using const_iterator = const char*; using iterator = const_iterator; using const_reverse_iterator = std::reverse_iterator; using reverse_iterator = const_reverse_iterator; using size_type = size_t; using difference_type = std::ptrdiff_t; private: const char* ptr_; size_type length_; static constexpr size_type kMaxSize = (std::numeric_limits::max)(); static size_type CheckSize(size_type size) { #if !defined(NDEBUG) || defined(_FORTIFY_SOURCE) && _FORTIFY_SOURCE > 0 if (PROTOBUF_PREDICT_FALSE(size > kMaxSize)) { // Some people grep for this message in logs // so take care if you ever change it. LogFatalSizeTooBig(size, "string length exceeds max size"); } #endif return size; } // Out-of-line error path. static void LogFatalSizeTooBig(size_type size, const char* details); public: // We provide non-explicit singleton constructors so users can pass // in a "const char*" or a "string" wherever a "StringPiece" is // expected. // // Style guide exception granted: // http://goto/style-guide-exception-20978288 StringPiece() : ptr_(nullptr), length_(0) {} StringPiece(const char* str) // NOLINT(runtime/explicit) : ptr_(str), length_(0) { if (str != nullptr) { length_ = CheckSize(strlen(str)); } } template StringPiece( // NOLINT(runtime/explicit) const std::basic_string, Allocator>& str) : ptr_(str.data()), length_(0) { length_ = CheckSize(str.size()); } StringPiece(const char* offset, size_type len) : ptr_(offset), length_(CheckSize(len)) {} // data() may return a pointer to a buffer with embedded NULs, and the // returned buffer may or may not be null terminated. Therefore it is // typically a mistake to pass data() to a routine that expects a NUL // terminated string. const_pointer data() const { return ptr_; } size_type size() const { return length_; } size_type length() const { return length_; } bool empty() const { return length_ == 0; } char operator[](size_type i) const { assert(i < length_); return ptr_[i]; } void remove_prefix(size_type n) { assert(length_ >= n); ptr_ += n; length_ -= n; } void remove_suffix(size_type n) { assert(length_ >= n); length_ -= n; } // returns {-1, 0, 1} int compare(StringPiece x) const { size_type min_size = length_ < x.length_ ? length_ : x.length_; int r = memcmp(ptr_, x.ptr_, static_cast(min_size)); if (r < 0) return -1; if (r > 0) return 1; if (length_ < x.length_) return -1; if (length_ > x.length_) return 1; return 0; } std::string as_string() const { return ToString(); } // We also define ToString() here, since many other string-like // interfaces name the routine that converts to a C++ string // "ToString", and it's confusing to have the method that does that // for a StringPiece be called "as_string()". We also leave the // "as_string()" method defined here for existing code. std::string ToString() const { if (ptr_ == nullptr) return ""; return std::string(data(), static_cast(size())); } explicit operator std::string() const { return ToString(); } void CopyToString(std::string* target) const; void AppendToString(std::string* target) const; bool starts_with(StringPiece x) const { return (length_ >= x.length_) && (memcmp(ptr_, x.ptr_, static_cast(x.length_)) == 0); } bool ends_with(StringPiece x) const { return ((length_ >= x.length_) && (memcmp(ptr_ + (length_-x.length_), x.ptr_, static_cast(x.length_)) == 0)); } // Checks whether StringPiece starts with x and if so advances the beginning // of it to past the match. It's basically a shortcut for starts_with // followed by remove_prefix. bool Consume(StringPiece x); // Like above but for the end of the string. bool ConsumeFromEnd(StringPiece x); // standard STL container boilerplate static const size_type npos; const_iterator begin() const { return ptr_; } const_iterator end() const { return ptr_ + length_; } const_reverse_iterator rbegin() const { return const_reverse_iterator(ptr_ + length_); } const_reverse_iterator rend() const { return const_reverse_iterator(ptr_); } size_type max_size() const { return length_; } size_type capacity() const { return length_; } // cpplint.py emits a false positive [build/include_what_you_use] size_type copy(char* buf, size_type n, size_type pos = 0) const; // NOLINT bool contains(StringPiece s) const; size_type find(StringPiece s, size_type pos = 0) const; size_type find(char c, size_type pos = 0) const; size_type rfind(StringPiece s, size_type pos = npos) const; size_type rfind(char c, size_type pos = npos) const; size_type find_first_of(StringPiece s, size_type pos = 0) const; size_type find_first_of(char c, size_type pos = 0) const { return find(c, pos); } size_type find_first_not_of(StringPiece s, size_type pos = 0) const; size_type find_first_not_of(char c, size_type pos = 0) const; size_type find_last_of(StringPiece s, size_type pos = npos) const; size_type find_last_of(char c, size_type pos = npos) const { return rfind(c, pos); } size_type find_last_not_of(StringPiece s, size_type pos = npos) const; size_type find_last_not_of(char c, size_type pos = npos) const; StringPiece substr(size_type pos, size_type n = npos) const; }; // This large function is defined inline so that in a fairly common case where // one of the arguments is a literal, the compiler can elide a lot of the // following comparisons. inline bool operator==(StringPiece x, StringPiece y) { StringPiece::size_type len = x.size(); if (len != y.size()) { return false; } return x.data() == y.data() || len <= 0 || memcmp(x.data(), y.data(), static_cast(len)) == 0; } inline bool operator!=(StringPiece x, StringPiece y) { return !(x == y); } inline bool operator<(StringPiece x, StringPiece y) { const StringPiece::size_type min_size = x.size() < y.size() ? x.size() : y.size(); const int r = memcmp(x.data(), y.data(), static_cast(min_size)); return (r < 0) || (r == 0 && x.size() < y.size()); } inline bool operator>(StringPiece x, StringPiece y) { return y < x; } inline bool operator<=(StringPiece x, StringPiece y) { return !(x > y); } inline bool operator>=(StringPiece x, StringPiece y) { return !(x < y); } // allow StringPiece to be logged extern std::ostream& operator<<(std::ostream& o, StringPiece piece); } // namespace stringpiece_internal using ::google::protobuf::stringpiece_internal::StringPiece; } // namespace protobuf } // namespace google GOOGLE_PROTOBUF_HASH_NAMESPACE_DECLARATION_START template<> struct hash { size_t operator()(const StringPiece& s) const { size_t result = 0; for (const char *str = s.data(), *end = str + s.size(); str < end; str++) { result = 5 * result + static_cast(*str); } return result; } }; GOOGLE_PROTOBUF_HASH_NAMESPACE_DECLARATION_END #include #endif // STRINGS_STRINGPIECE_H_