// Protocol Buffers - Google's data interchange format // Copyright 2008 Google Inc. All rights reserved. // https://developers.google.com/protocol-buffers/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // This file defines an Arena allocator for better allocation performance. #ifndef GOOGLE_PROTOBUF_ARENA_H__ #define GOOGLE_PROTOBUF_ARENA_H__ #include #include #include #ifdef max #undef max // Visual Studio defines this macro #endif #if defined(_MSC_VER) && !defined(_LIBCPP_STD_VER) && !_HAS_EXCEPTIONS // Work around bugs in MSVC header when _HAS_EXCEPTIONS=0. #include #include namespace std { using type_info = ::type_info; } #else #include #endif #include #include #include #include #ifdef SWIG #error "You cannot SWIG proto headers" #endif namespace google { namespace protobuf { struct ArenaOptions; // defined below } // namespace protobuf } // namespace google namespace google { namespace protobuf { class Arena; // defined below class Message; // defined in message.h class MessageLite; template class Map; namespace arena_metrics { void EnableArenaMetrics(ArenaOptions* options); } // namespace arena_metrics namespace TestUtil { class ReflectionTester; // defined in test_util.h } // namespace TestUtil namespace internal { struct ArenaStringPtr; // defined in arenastring.h class LazyField; // defined in lazy_field.h class EpsCopyInputStream; // defined in parse_context.h template class GenericTypeHandler; // defined in repeated_field.h inline PROTOBUF_ALWAYS_INLINE void* AlignTo(void* ptr, size_t align) { return reinterpret_cast( (reinterpret_cast(ptr) + align - 1) & (~align + 1)); } // Templated cleanup methods. template void arena_destruct_object(void* object) { reinterpret_cast(object)->~T(); } template struct ObjectDestructor { constexpr static void (*destructor)(void*) = &arena_destruct_object; }; template struct ObjectDestructor { constexpr static void (*destructor)(void*) = nullptr; }; template void arena_delete_object(void* object) { delete reinterpret_cast(object); } } // namespace internal // ArenaOptions provides optional additional parameters to arena construction // that control its block-allocation behavior. struct ArenaOptions { // This defines the size of the first block requested from the system malloc. // Subsequent block sizes will increase in a geometric series up to a maximum. size_t start_block_size; // This defines the maximum block size requested from system malloc (unless an // individual arena allocation request occurs with a size larger than this // maximum). Requested block sizes increase up to this value, then remain // here. size_t max_block_size; // An initial block of memory for the arena to use, or NULL for none. If // provided, the block must live at least as long as the arena itself. The // creator of the Arena retains ownership of the block after the Arena is // destroyed. char* initial_block; // The size of the initial block, if provided. size_t initial_block_size; // A function pointer to an alloc method that returns memory blocks of size // requested. By default, it contains a ptr to the malloc function. // // NOTE: block_alloc and dealloc functions are expected to behave like // malloc and free, including Asan poisoning. void* (*block_alloc)(size_t); // A function pointer to a dealloc method that takes ownership of the blocks // from the arena. By default, it contains a ptr to a wrapper function that // calls free. void (*block_dealloc)(void*, size_t); ArenaOptions() : start_block_size(internal::AllocationPolicy::kDefaultStartBlockSize), max_block_size(internal::AllocationPolicy::kDefaultMaxBlockSize), initial_block(NULL), initial_block_size(0), block_alloc(nullptr), block_dealloc(nullptr), make_metrics_collector(nullptr) {} private: // If make_metrics_collector is not nullptr, it will be called at Arena init // time. It may return a pointer to a collector instance that will be notified // of interesting events related to the arena. internal::ArenaMetricsCollector* (*make_metrics_collector)(); internal::ArenaMetricsCollector* MetricsCollector() const { return make_metrics_collector ? (*make_metrics_collector)() : nullptr; } internal::AllocationPolicy AllocationPolicy() const { internal::AllocationPolicy res; res.start_block_size = start_block_size; res.max_block_size = max_block_size; res.block_alloc = block_alloc; res.block_dealloc = block_dealloc; res.metrics_collector = MetricsCollector(); return res; } friend void arena_metrics::EnableArenaMetrics(ArenaOptions*); friend class Arena; friend class ArenaOptionsTestFriend; }; // Support for non-RTTI environments. (The metrics hooks API uses type // information.) #if PROTOBUF_RTTI #define RTTI_TYPE_ID(type) (&typeid(type)) #else #define RTTI_TYPE_ID(type) (NULL) #endif // Arena allocator. Arena allocation replaces ordinary (heap-based) allocation // with new/delete, and improves performance by aggregating allocations into // larger blocks and freeing allocations all at once. Protocol messages are // allocated on an arena by using Arena::CreateMessage(Arena*), below, and // are automatically freed when the arena is destroyed. // // This is a thread-safe implementation: multiple threads may allocate from the // arena concurrently. Destruction is not thread-safe and the destructing // thread must synchronize with users of the arena first. // // An arena provides two allocation interfaces: CreateMessage, which works // for arena-enabled proto2 message types as well as other types that satisfy // the appropriate protocol (described below), and Create, which works for // any arbitrary type T. CreateMessage is better when the type T supports it, // because this interface (i) passes the arena pointer to the created object so // that its sub-objects and internal allocations can use the arena too, and (ii) // elides the object's destructor call when possible. Create does not place // any special requirements on the type T, and will invoke the object's // destructor when the arena is destroyed. // // The arena message allocation protocol, required by // CreateMessage(Arena* arena, Args&&... args), is as follows: // // - The type T must have (at least) two constructors: a constructor callable // with `args` (without `arena`), called when a T is allocated on the heap; // and a constructor callable with `Arena* arena, Args&&... args`, called when // a T is allocated on an arena. If the second constructor is called with a // NULL arena pointer, it must be equivalent to invoking the first // (`args`-only) constructor. // // - The type T must have a particular type trait: a nested type // |InternalArenaConstructable_|. This is usually a typedef to |void|. If no // such type trait exists, then the instantiation CreateMessage will fail // to compile. // // - The type T *may* have the type trait |DestructorSkippable_|. If this type // trait is present in the type, then its destructor will not be called if and // only if it was passed a non-NULL arena pointer. If this type trait is not // present on the type, then its destructor is always called when the // containing arena is destroyed. // // This protocol is implemented by all arena-enabled proto2 message classes as // well as protobuf container types like RepeatedPtrField and Map. The protocol // is internal to protobuf and is not guaranteed to be stable. Non-proto types // should not rely on this protocol. class PROTOBUF_EXPORT PROTOBUF_ALIGNAS(8) Arena final { public: // Default constructor with sensible default options, tuned for average // use-cases. inline Arena() : impl_() {} // Construct an arena with default options, except for the supplied // initial block. It is more efficient to use this constructor // instead of passing ArenaOptions if the only configuration needed // by the caller is supplying an initial block. inline Arena(char* initial_block, size_t initial_block_size) : impl_(initial_block, initial_block_size) {} // Arena constructor taking custom options. See ArenaOptions above for // descriptions of the options available. explicit Arena(const ArenaOptions& options) : impl_(options.initial_block, options.initial_block_size, options.AllocationPolicy()) {} // Block overhead. Use this as a guide for how much to over-allocate the // initial block if you want an allocation of size N to fit inside it. // // WARNING: if you allocate multiple objects, it is difficult to guarantee // that a series of allocations will fit in the initial block, especially if // Arena changes its alignment guarantees in the future! static const size_t kBlockOverhead = internal::ThreadSafeArena::kBlockHeaderSize + internal::ThreadSafeArena::kSerialArenaSize; inline ~Arena() {} // TODO(protobuf-team): Fix callers to use constructor and delete this method. void Init(const ArenaOptions&) {} // API to create proto2 message objects on the arena. If the arena passed in // is NULL, then a heap allocated object is returned. Type T must be a message // defined in a .proto file with cc_enable_arenas set to true, otherwise a // compilation error will occur. // // RepeatedField and RepeatedPtrField may also be instantiated directly on an // arena with this method. // // This function also accepts any type T that satisfies the arena message // allocation protocol, documented above. template PROTOBUF_ALWAYS_INLINE static T* CreateMessage(Arena* arena, Args&&... args) { static_assert( InternalHelper::is_arena_constructable::value, "CreateMessage can only construct types that are ArenaConstructable"); // We must delegate to CreateMaybeMessage() and NOT CreateMessageInternal() // because protobuf generated classes specialize CreateMaybeMessage() and we // need to use that specialization for code size reasons. return Arena::CreateMaybeMessage(arena, std::forward(args)...); } // API to create any objects on the arena. Note that only the object will // be created on the arena; the underlying ptrs (in case of a proto2 message) // will be still heap allocated. Proto messages should usually be allocated // with CreateMessage() instead. // // Note that even if T satisfies the arena message construction protocol // (InternalArenaConstructable_ trait and optional DestructorSkippable_ // trait), as described above, this function does not follow the protocol; // instead, it treats T as a black-box type, just as if it did not have these // traits. Specifically, T's constructor arguments will always be only those // passed to Create() -- no additional arena pointer is implicitly added. // Furthermore, the destructor will always be called at arena destruction time // (unless the destructor is trivial). Hence, from T's point of view, it is as // if the object were allocated on the heap (except that the underlying memory // is obtained from the arena). template PROTOBUF_NDEBUG_INLINE static T* Create(Arena* arena, Args&&... args) { return CreateInternal(arena, std::is_convertible(), std::forward(args)...); } // Create an array of object type T on the arena *without* invoking the // constructor of T. If `arena` is null, then the return value should be freed // with `delete[] x;` (or `::operator delete[](x);`). // To ensure safe uses, this function checks at compile time // (when compiled as C++11) that T is trivially default-constructible and // trivially destructible. template PROTOBUF_NDEBUG_INLINE static T* CreateArray(Arena* arena, size_t num_elements) { static_assert(std::is_trivial::value, "CreateArray requires a trivially constructible type"); static_assert(std::is_trivially_destructible::value, "CreateArray requires a trivially destructible type"); GOOGLE_CHECK_LE(num_elements, std::numeric_limits::max() / sizeof(T)) << "Requested size is too large to fit into size_t."; if (arena == NULL) { return static_cast(::operator new[](num_elements * sizeof(T))); } else { return arena->CreateInternalRawArray(num_elements); } } // The following are routines are for monitoring. They will approximate the // total sum allocated and used memory, but the exact value is an // implementation deal. For instance allocated space depends on growth // policies. Do not use these in unit tests. // Returns the total space allocated by the arena, which is the sum of the // sizes of the underlying blocks. uint64 SpaceAllocated() const { return impl_.SpaceAllocated(); } // Returns the total space used by the arena. Similar to SpaceAllocated but // does not include free space and block overhead. The total space returned // may not include space used by other threads executing concurrently with // the call to this method. uint64 SpaceUsed() const { return impl_.SpaceUsed(); } // Frees all storage allocated by this arena after calling destructors // registered with OwnDestructor() and freeing objects registered with Own(). // Any objects allocated on this arena are unusable after this call. It also // returns the total space used by the arena which is the sums of the sizes // of the allocated blocks. This method is not thread-safe. uint64 Reset() { return impl_.Reset(); } // Adds |object| to a list of heap-allocated objects to be freed with |delete| // when the arena is destroyed or reset. template PROTOBUF_ALWAYS_INLINE void Own(T* object) { OwnInternal(object, std::is_convertible()); } // Adds |object| to a list of objects whose destructors will be manually // called when the arena is destroyed or reset. This differs from Own() in // that it does not free the underlying memory with |delete|; hence, it is // normally only used for objects that are placement-newed into // arena-allocated memory. template PROTOBUF_ALWAYS_INLINE void OwnDestructor(T* object) { if (object != NULL) { impl_.AddCleanup(object, &internal::arena_destruct_object); } } // Adds a custom member function on an object to the list of destructors that // will be manually called when the arena is destroyed or reset. This differs // from OwnDestructor() in that any member function may be specified, not only // the class destructor. PROTOBUF_ALWAYS_INLINE void OwnCustomDestructor(void* object, void (*destruct)(void*)) { impl_.AddCleanup(object, destruct); } // Retrieves the arena associated with |value| if |value| is an arena-capable // message, or NULL otherwise. If possible, the call resolves at compile time. // Note that we can often devirtualize calls to `value->GetArena()` so usually // calling this method is unnecessary. template PROTOBUF_ALWAYS_INLINE static Arena* GetArena(const T* value) { return GetArenaInternal(value); } template class InternalHelper { public: // Provides access to protected GetOwningArena to generated messages. static Arena* GetOwningArena(const T* p) { return p->GetOwningArena(); } // Provides access to protected GetArenaForAllocation to generated messages. static Arena* GetArenaForAllocation(const T* p) { return GetArenaForAllocationInternal( p, std::is_convertible()); } private: static Arena* GetArenaForAllocationInternal( const T* p, std::true_type /*is_derived_from*/) { return p->GetArenaForAllocation(); } static Arena* GetArenaForAllocationInternal( const T* p, std::false_type /*is_derived_from*/) { return GetArenaForAllocationForNonMessage( p, typename is_arena_constructable::type()); } static Arena* GetArenaForAllocationForNonMessage( const T* p, std::true_type /*is_arena_constructible*/) { return p->GetArena(); } static Arena* GetArenaForAllocationForNonMessage( const T* p, std::false_type /*is_arena_constructible*/) { return GetArenaForAllocationForNonMessageNonArenaConstructible( p, typename has_get_arena::type()); } static Arena* GetArenaForAllocationForNonMessageNonArenaConstructible( const T* p, std::true_type /*has_get_arena*/) { return p->GetArena(); } static Arena* GetArenaForAllocationForNonMessageNonArenaConstructible( const T* p, std::false_type /*has_get_arena*/) { return nullptr; } template static char DestructorSkippable(const typename U::DestructorSkippable_*); template static double DestructorSkippable(...); typedef std::integral_constant< bool, sizeof(DestructorSkippable(static_cast(0))) == sizeof(char) || std::is_trivially_destructible::value> is_destructor_skippable; template static char ArenaConstructable( const typename U::InternalArenaConstructable_*); template static double ArenaConstructable(...); typedef std::integral_constant( static_cast(0))) == sizeof(char)> is_arena_constructable; template () .GetArena())>::value, int>::type = 0> static char HasGetArena(decltype(&U::GetArena)); template static double HasGetArena(...); typedef std::integral_constant(nullptr)) == sizeof(char)> has_get_arena; template static T* Construct(void* ptr, Args&&... args) { return new (ptr) T(std::forward(args)...); } static T* New() { return new T(nullptr); } static Arena* GetArena(const T* p) { return p->GetArena(); } friend class Arena; friend class TestUtil::ReflectionTester; }; // Helper typetraits that indicates support for arenas in a type T at compile // time. This is public only to allow construction of higher-level templated // utilities. // // is_arena_constructable::value is true if the message type T has arena // support enabled, and false otherwise. // // is_destructor_skippable::value is true if the message type T has told // the arena that it is safe to skip the destructor, and false otherwise. // // This is inside Arena because only Arena has the friend relationships // necessary to see the underlying generated code traits. template struct is_arena_constructable : InternalHelper::is_arena_constructable {}; template struct is_destructor_skippable : InternalHelper::is_destructor_skippable { }; private: internal::ThreadSafeArena impl_; template struct has_get_arena : InternalHelper::has_get_arena {}; template PROTOBUF_NDEBUG_INLINE static T* CreateMessageInternal(Arena* arena, Args&&... args) { static_assert( InternalHelper::is_arena_constructable::value, "CreateMessage can only construct types that are ArenaConstructable"); if (arena == NULL) { return new T(nullptr, std::forward(args)...); } else { return arena->DoCreateMessage(std::forward(args)...); } } // This specialization for no arguments is necessary, because its behavior is // slightly different. When the arena pointer is nullptr, it calls T() // instead of T(nullptr). template PROTOBUF_NDEBUG_INLINE static T* CreateMessageInternal(Arena* arena) { static_assert( InternalHelper::is_arena_constructable::value, "CreateMessage can only construct types that are ArenaConstructable"); if (arena == NULL) { // Generated arena constructor T(Arena*) is protected. Call via // InternalHelper. return InternalHelper::New(); } else { return arena->DoCreateMessage(); } } // Allocate and also optionally call collector with the allocated type info // when allocation recording is enabled. PROTOBUF_NDEBUG_INLINE void* AllocateInternal(size_t size, size_t align, void (*destructor)(void*), const std::type_info* type) { // Monitor allocation if needed. if (destructor == nullptr) { return AllocateAlignedWithHook(size, align, type); } else { if (align <= 8) { auto res = AllocateAlignedWithCleanup(internal::AlignUpTo8(size), type); res.second->elem = res.first; res.second->cleanup = destructor; return res.first; } else { auto res = AllocateAlignedWithCleanup(size + align - 8, type); auto ptr = internal::AlignTo(res.first, align); res.second->elem = ptr; res.second->cleanup = destructor; return ptr; } } } // CreateMessage requires that T supports arenas, but this private method // works whether or not T supports arenas. These are not exposed to user code // as it can cause confusing API usages, and end up having double free in // user code. These are used only internally from LazyField and Repeated // fields, since they are designed to work in all mode combinations. template PROTOBUF_ALWAYS_INLINE static Msg* DoCreateMaybeMessage(Arena* arena, std::true_type, Args&&... args) { return CreateMessageInternal(arena, std::forward(args)...); } template PROTOBUF_ALWAYS_INLINE static T* DoCreateMaybeMessage(Arena* arena, std::false_type, Args&&... args) { return Create(arena, std::forward(args)...); } template PROTOBUF_ALWAYS_INLINE static T* CreateMaybeMessage(Arena* arena, Args&&... args) { return DoCreateMaybeMessage(arena, is_arena_constructable(), std::forward(args)...); } // Just allocate the required size for the given type assuming the // type has a trivial constructor. template PROTOBUF_NDEBUG_INLINE T* CreateInternalRawArray(size_t num_elements) { GOOGLE_CHECK_LE(num_elements, std::numeric_limits::max() / sizeof(T)) << "Requested size is too large to fit into size_t."; // We count on compiler to realize that if sizeof(T) is a multiple of // 8 AlignUpTo can be elided. const size_t n = sizeof(T) * num_elements; return static_cast( AllocateAlignedWithHook(n, alignof(T), RTTI_TYPE_ID(T))); } template PROTOBUF_NDEBUG_INLINE T* DoCreateMessage(Args&&... args) { return InternalHelper::Construct( AllocateInternal(sizeof(T), alignof(T), internal::ObjectDestructor< InternalHelper::is_destructor_skippable::value, T>::destructor, RTTI_TYPE_ID(T)), this, std::forward(args)...); } // CreateInArenaStorage is used to implement map field. Without it, // Map need to call generated message's protected arena constructor, // which needs to declare Map as friend of generated message. template static void CreateInArenaStorage(T* ptr, Arena* arena, Args&&... args) { CreateInArenaStorageInternal(ptr, arena, typename is_arena_constructable::type(), std::forward(args)...); RegisterDestructorInternal( ptr, arena, typename InternalHelper::is_destructor_skippable::type()); } template static void CreateInArenaStorageInternal(T* ptr, Arena* arena, std::true_type, Args&&... args) { InternalHelper::Construct(ptr, arena, std::forward(args)...); } template static void CreateInArenaStorageInternal(T* ptr, Arena* /* arena */, std::false_type, Args&&... args) { new (ptr) T(std::forward(args)...); } template static void RegisterDestructorInternal(T* /* ptr */, Arena* /* arena */, std::true_type) {} template static void RegisterDestructorInternal(T* ptr, Arena* arena, std::false_type) { arena->OwnDestructor(ptr); } // These implement Create(). The second parameter has type 'true_type' if T is // a subtype of Message and 'false_type' otherwise. template PROTOBUF_ALWAYS_INLINE static T* CreateInternal(Arena* arena, std::true_type, Args&&... args) { if (arena == nullptr) { return new T(std::forward(args)...); } else { auto destructor = internal::ObjectDestructor::value, T>::destructor; T* result = new (arena->AllocateInternal(sizeof(T), alignof(T), destructor, RTTI_TYPE_ID(T))) T(std::forward(args)...); return result; } } template PROTOBUF_ALWAYS_INLINE static T* CreateInternal(Arena* arena, std::false_type, Args&&... args) { if (arena == nullptr) { return new T(std::forward(args)...); } else { auto destructor = internal::ObjectDestructor::value, T>::destructor; return new (arena->AllocateInternal(sizeof(T), alignof(T), destructor, RTTI_TYPE_ID(T))) T(std::forward(args)...); } } // These implement Own(), which registers an object for deletion (destructor // call and operator delete()). The second parameter has type 'true_type' if T // is a subtype of Message and 'false_type' otherwise. Collapsing // all template instantiations to one for generic Message reduces code size, // using the virtual destructor instead. template PROTOBUF_ALWAYS_INLINE void OwnInternal(T* object, std::true_type) { if (object != NULL) { impl_.AddCleanup(object, &internal::arena_delete_object); } } template PROTOBUF_ALWAYS_INLINE void OwnInternal(T* object, std::false_type) { if (object != NULL) { impl_.AddCleanup(object, &internal::arena_delete_object); } } // Implementation for GetArena(). Only message objects with // InternalArenaConstructable_ tags can be associated with an arena, and such // objects must implement a GetArena() method. template ::value, int>::type = 0> PROTOBUF_ALWAYS_INLINE static Arena* GetArenaInternal(const T* value) { return InternalHelper::GetArena(value); } template ::value && has_get_arena::value, int>::type = 0> PROTOBUF_ALWAYS_INLINE static Arena* GetArenaInternal(const T* value) { return value->GetArena(); } template ::value && !has_get_arena::value, int>::type = 0> PROTOBUF_ALWAYS_INLINE static Arena* GetArenaInternal(const T* value) { (void)value; return nullptr; } template PROTOBUF_ALWAYS_INLINE static Arena* GetOwningArena(const T* value) { return GetOwningArenaInternal( value, std::is_convertible()); } // Implementation for GetOwningArena(). All and only message objects have // GetOwningArena() method. template PROTOBUF_ALWAYS_INLINE static Arena* GetOwningArenaInternal( const T* value, std::true_type) { return InternalHelper::GetOwningArena(value); } template PROTOBUF_ALWAYS_INLINE static Arena* GetOwningArenaInternal( const T* /* value */, std::false_type) { return nullptr; } // For friends of arena. void* AllocateAligned(size_t n, size_t align = 8) { if (align <= 8) { return AllocateAlignedNoHook(internal::AlignUpTo8(n)); } else { // We are wasting space by over allocating align - 8 bytes. Compared // to a dedicated function that takes current alignment in consideration. // Such a scheme would only waste (align - 8)/2 bytes on average, but // requires a dedicated function in the outline arena allocation // functions. Possibly re-evaluate tradeoffs later. return internal::AlignTo(AllocateAlignedNoHook(n + align - 8), align); } } void* AllocateAlignedWithHook(size_t n, size_t align, const std::type_info* type) { if (align <= 8) { return AllocateAlignedWithHook(internal::AlignUpTo8(n), type); } else { // We are wasting space by over allocating align - 8 bytes. Compared // to a dedicated function that takes current alignment in consideration. // Such a schemee would only waste (align - 8)/2 bytes on average, but // requires a dedicated function in the outline arena allocation // functions. Possibly re-evaluate tradeoffs later. return internal::AlignTo(AllocateAlignedWithHook(n + align - 8, type), align); } } void* AllocateAlignedNoHook(size_t n); void* AllocateAlignedWithHook(size_t n, const std::type_info* type); std::pair AllocateAlignedWithCleanup(size_t n, const std::type_info* type); template friend class internal::GenericTypeHandler; friend struct internal::ArenaStringPtr; // For AllocateAligned. friend class internal::LazyField; // For CreateMaybeMessage. friend class internal::EpsCopyInputStream; // For parser performance friend class MessageLite; template friend class Map; }; // Defined above for supporting environments without RTTI. #undef RTTI_TYPE_ID } // namespace protobuf } // namespace google #include #endif // GOOGLE_PROTOBUF_ARENA_H__